首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Epstein SL  Kong WP  Misplon JA  Lo CY  Tumpey TM  Xu L  Nabel GJ 《Vaccine》2005,23(46-47):5404-5410
Influenza epidemic and pandemic strains cannot be predicted with certainty. Current vaccines elicit antibodies effective against specific strains, but new strategies are urgently needed for protection against unexpected strains. DNA vaccines encoding conserved antigens protect animals against diverse subtypes, but their potency needs improvement. We tested DNA prime-recombinant adenoviral boost immunization to nucleoprotein (NP). Strong antibody and T cell responses were induced. Protection against challenge was T cell-dependent and substantially more potent than DNA vaccination alone. Importantly, vaccination protected against lethal challenge with highly pathogenic H5N1 virus. Thus, gene-based vaccination with NP may contribute to protective immunity against diverse influenza viruses through its ability to stimulate cellular immunity.  相似文献   

2.
《Vaccine》2016,34(5):622-629
H5N1, highly pathogenic avian influenza poses, a threat to animal and human health. Rapid changes in H5N1 viruses require periodic reformulation of the conventional strain-matched vaccines, thus emphasizing the need for a broadly protective influenza vaccine. Here, we constructed BV-Dual-3M2e-LTB, a recombinant baculovirus based on baculovirus display and BacMam technology. BV-Dual-3M2e-LTB harbors a gene cassette expressing three tandem copies of the highly conserved extracellular domain of influenza M2 protein (M2e) and the mucosal adjuvant, LTB. We showed that BV-Dual-3M2e-LTB displayed the target protein (M2e/LTB) on the baculoviral surface and expressed it in transduced mammalian cells. BV-Dual-3M2e-LTB, when delivered nasally in mice, was highly immunogenic and induced superior levels of anti-M2e IgA than the non-adjuvanted baculovirus (BV-Dual-3M2e). Importantly, after challenge with different H5N1 clades (clade 0, 2.3.2.1, 2.3.4 and 4), mice inoculated with BV-Dual-3M2e-LTB displayed improved survival and decreased lung virus shedding compared with mice inoculated with BV-Dual-3M2e. The enhanced protection from BV-Dual-3M2e-LTB is mediated by T cell immunity and is primarily based on CD8+ T cells, while mucosal antibodies alone were insufficient for protection from lethal H5N1 challenge. These results suggest that BV-Dual-3M2e-LTB has potential to protect against a broad range of H5N1 strains thereby providing a novel direction for developing broadly protective vaccines based on cellular immunity.  相似文献   

3.
《Vaccine》2016,34(14):1688-1695
Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. Conclusion: MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza.  相似文献   

4.
Virus-specific cytotoxic T lymphocytes (CTL) contribute to the control of virus infections including those caused by influenza viruses. Especially under circumstances when antibodies induced by previous infection or vaccination fail to recognize and neutralize the virus adequately, CTL are important and contribute to protective immunity. During epidemic outbreaks caused by antigenic drift variants and during pandemic outbreaks of influenza, humoral immunity against influenza viruses is inadequate. Under these circumstances, pre-existing CTL directed to the relatively conserved internal proteins of the virus may provide cross-protective immunity. Indeed, most of the known human influenza virus CTL epitopes are conserved. However, during the evolution of influenza A/H3N2 viruses, the most important cause of seasonal influenza outbreaks, variation in CTL epitopes has been observed. The observed amino acid substitutions affected recognition by virus-specific CTL and the human virus-specific CTL response in vitro. Examples of variable epitopes and their HLA restrictions are: NP383–391/HLA-B*2705, NP380–388/HLA-B*0801, NP418–426/HLA-B*3501, NP251–259/HLA-B*4002, NP103–111/HLA-B*1503. In some cases amino acid substitutions occurred at anchor residues and in other cases at T cell receptor contact residues. It is of special interest that the R384G substitution in the NP383–391 epitope was detrimental to virus fitness and was only tolerated in the presence of multiple functionally compensating co-mutations. In contrast, other epitopes, like the HLA-A*0201 restricted epitope from the matrix protein, M158–66, are highly conserved despite their immunodominant nature and the high prevalence of HLA-A*0201 in the population. A mutational analysis of this epitope indicated that it is under functional constraints. Also in influenza A viruses of other subtypes, including H5N1, the M158–66 is highly conserved.  相似文献   

5.
Avian influenza in poultry continues to be a great concern worldwide, and the currently licensed inactivated influenza vaccines are not effective against the novel strains of influenza virus that continue to emerge in the field. This warrants the development of more broadly protective influenza vaccines or vaccination regimens. Live attenuated influenza vaccines (LAIVs) and subunit vaccines derived from viral peptides, such as the highly conserved ectodomain of influenza virus matrix protein 2 (M2e), can offer a more broadly reactive immune response. In chickens, we previously showed that a chimeric norovirus P particle containing M2e (M2eP) could provide partial but broad immunity, when administered as a standalone vaccine, and also enhanced the protective efficacy of inactivated vaccine when used in a combination regimen. We also demonstrated that a naturally-selected NS1-truncated H7N3 LAIV (pc4-LAIV) was highly efficacious against antigenically distant heterologous H7N2 low pathogenicity avian influenza virus challenge, especially when used as the priming vaccine in a prime-boost vaccination regimen. In this study, we investigated the cross-subtype protective efficacy of pc4-LAIV in conjunction with M2eP using single vaccination, combined treatment, and prime-boost approaches. Chickens vaccinated with pc4-LAIV showed significant reduction of tracheal shedding of a low pathogenicity H5N2 challenge virus. This cross-subtype protective efficacy was further enhanced, during the initial stages of challenge virus replication, in chickens that received a vaccination regimen consisting of priming with pc4-LAIV at 1?day of age and boosting with M2eP. Further, H5N2-specific serum IgG and pc4-LAIV-specific hemagglutination-inhibition antibody titers were enhanced in LAIV-primed and M2eP boost-vaccinated chickens. Taken together, our data point to the need of further investigation into the benefits of combined and prime-boost vaccination schemes utilizing LAIV and epitope-based vaccines, to develop more broadly protective vaccination regimens.  相似文献   

6.
《Vaccine》2022,40(32):4412-4423
In response to immune pressure, influenza viruses evolve, producing drifted variants capable of escaping immune recognition. One strategy for inducing a broad-spectrum immune response capable of recognizing multiple antigenically diverse strains is to target conserved proteins or protein domains. To that end, we assessed the efficacy and immunogenicity of mRNA vaccines encoding either the conserved stem domain of a group 1 hemagglutinin (HA), a group 2 nucleoprotein (NP), or a combination of the two antigens in mice, as well as evaluated immunogenicity in naïve and influenza seropositive nonhuman primates (NHPs). HA stem-immunized animals developed a robust anti-stem antibody binding titer, and serum antibodies recognized antigenically distinct group 1 HA proteins. These antibodies showed little to no neutralizing activity in vitro but were active in an assay measuring induction of antibody-dependent cellular cytotoxicity. HA-directed cell-mediated immunity was weak following HA stem mRNA vaccination; however, robust CD4 and CD8 T cell responses were detected in both mice and NHPs after immunization with mRNA vaccines encoding NP. Both HA stem and NP mRNA vaccines partially protected mice from morbidity following lethal influenza virus challenge, and superior efficacy against two different H1N1 strains was observed when the antigens were combined. In vivo T cell depletion suggested that anti-NP cell-mediated immunity contributed to protection in the mouse model. Taken together, these data show that mRNA vaccines encoding conserved influenza antigens, like HA stem and NP in combination, induce broadly reactive humoral responses as well as cell-mediated immunity in mice and NHPs, providing protection against homologous and heterologous influenza infection in mice.  相似文献   

7.
《Vaccine》2016,34(42):5090-5098
Despite the annual public health burden of seasonal influenza and the continuing threat of a global pandemic posed by the emergence of highly pathogenic/pandemic strains, conventional influenza vaccines do not provide universal protection, and exhibit suboptimal efficacy rates, even when they are well matched to circulating strains. To address the need for a highly effective universal influenza vaccine, we have developed a novel M2-deficient single replication vaccine virus (M2SR) that induces strong cross-protective immunity against multiple influenza strains in mice. M2SR is able to infect cells and expresses all viral proteins except M2, but is unable to generate progeny virus.M2SR generated from influenza A/Puerto Rico/8/34 (H1N1) protected mice against lethal challenge with influenza A/Puerto Rico/8/34 (H1N1, homosubtypic) and influenza A/Aichi/2/1968 (H3N2, heterosubtypic). The vaccine induced strong systemic and mucosal antibody responses of both IgA and IgG classes. Strong virus-specific T cell responses were also induced. Following heterologous challenge, significant numbers of IFN-γ-producing CD8 T cells, with effector or effector/memory phenotypes and specific for conserved viral epitopes, were observed in the lungs of vaccinated mice. A substantial proportion of the CD8 T cells expressed Granzyme B, suggesting that they were capable of killing virus-infected cells.Thus, our data suggest that M2-deficient influenza viruses represent a promising new approach for developing a universal influenza vaccine.  相似文献   

8.
Previous studies have shown that a recombinant vaccine expressing four highly conserved influenza virus epitopes has a potential for a broad spectrum, cross-reactive vaccine; it induced protection against H1, H2 and H3 influenza strains. Here, we report on the evaluation of an epitope-based vaccine in which six conserved epitopes, common to many influenza virus strains are expressed within a recombinant flagellin that serves as both a carrier and adjuvant. In an HLA-A2.1 transgenic mice model, this vaccine induced both humoral and cellular responses and conferred some protection against lethal challenge with the highly pathogenic H5N1 avian influenza strain. Hence, it is expected to protect against future strains as well. The data presented, demonstrate the feasibility of using an array of peptides for vaccination, which might pave the way to an advantageous universal influenza virus vaccine that does not require frequent updates and/or annual immunizations.  相似文献   

9.
Annual vaccination of healthy children >6 months of age against seasonal influenza has been recommended by public health authorities of some countries. However, currently used seasonal vaccines provide only limited protection against (potentially) pandemic influenza viruses. Furthermore, we recently hypothesized that annual vaccination may hamper the development of cross-reactive immunity against influenza A viruses of novel subtypes, that would otherwise be induced by natural infection. Here we summarize our findings in animal models in which we demonstrated that vaccination against influenza A/H3N2 virus reduced the induction of heterosubtypic immunity against highly pathogenic avian influenza A/H5N1 virus, otherwise induced by a prior infection with influenza A/H3N2 virus. The reduction of heterosubtypic immunity correlated with reduced virus-specific CD8+ T cell responses. An additional study was performed in humans, in which we collected peripheral blood mononuclear cells from annually vaccinated children with cystic fibrosis (CF) and age-matched unvaccinated healthy control children to study the virus-specific T cell response. An age-related increase of the virus-specific CD8+ T cell response was observed in unvaccinated children that was absent in vaccinated children with CF. These findings highlight the importance of the development of vaccines that provide protection against influenza A viruses of all subtypes.  相似文献   

10.
Current influenza vaccines induce poor cross-reactive CD8+ T cell responses. Cellular immunity is generally specific for epitopes that are remarkably conserved among different subtypes, suggesting that strategies to improve the cross-presentation of viral antigens by dendritic cells (DC) could elicit a broadly protective immune response. Previous studies have shown that limited proteolysis within the endocytic pathway can favorably influence antigen processing and thus immune responses. Herein, we demonstrate that chloroquine improves the cross-presentation of non-replicating influenza virus in vitro and T cell responses in mice following a single administration of inactivated HI-X31 virus. CD8+ T cells were also recruited to lymph nodes draining the site of infection and able to reduce viral load following pulmonary challenge with the heterologous PR8 virus. These findings may have implications for vaccination strategies aimed at improving the cross-presentation capacity of DCs and thus the size of effector and memory CD8+ T cells against influenza vaccines.  相似文献   

11.
《Vaccine》2017,35(40):5366-5372
Influenza viruses frequently acquire mutations undergoing antigenic drift necessitating annual evaluation of vaccine strains. Highly conserved epitopes have been identified in the hemagglutinin (HA) head and stem regions, however, current influenza vaccines induce only limited responses to these conserved sites. Here, we describe a novel seasonal recombinant HA nanoparticle influenza vaccine (NIV) formulated with a saponin-based adjuvant, Matrix-M™. NIV induced hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies against a broad range of influenza A(H3N2) subtypes. In a comparison of NIV against standard-dose and high-dose inactivated influenza vaccines (IIV and IIV-HD, respectively) in ferrets NIV elicited HAI and MN responses exceeding those induced by IIV-HD against homologous A(H3N2) by 7 fold, A(H1N1) by 26 fold, and B strain viruses by 2 fold. NIV also induced MN responses against all historic A/H3N2 strains tested, spanning more than a decade of viral evolution from the 2000–2017 influenza seasons whereas IIV and IIV-HD induced HAI and MN responses were largely directed against the homologous A(H3N2), A(H1N1), and B virus strains. NIV induced superior protection compared to IIV and IIV-HD in ferrets challenged with a homologous or 10-year drifted influenza A(H3N2) strain. HAI positive and HAI negative neutralizing monoclonal antibodies derived from mice immunized with NIV were active against homologous and drifted influenza A(H3N2) strains. Taken together these observations suggest that NIV can induce responses to one or more highly conserved HA head and stem epitopes and result in highly neutralizing antibodies against both homologous and drift strains.  相似文献   

12.
《Vaccine》2015,33(4):500-506
Since inactivated influenza vaccines mainly confer protective immunity by inducing strain-specific antibodies to the viral hemagglutinin, these vaccines only afford protection against infection with antigenically matching influenza virus strains. Due to the continuous emergence of antigenic drift variants of seasonal influenza viruses and the inevitable future emergence of pandemic influenza viruses, there is considerable interest in the development of influenza vaccines that induce broader protective immunity. It has long been recognized that influenza virus-specific CD8+ T cells directed to epitopes located in the relatively conserved internal proteins can cross-react with various subtypes of influenza A virus. This implies that these CD8+ T cells, induced by prior influenza virus infections or vaccinations, could afford heterosubtypic immunity. Furthermore, influenza virus-specific CD4+ T cells have been shown to be important in protection from infection, either via direct cytotoxic effects or indirectly by providing help to B cells and CD8+ T cells. In the present paper, we review the induction of virus-specific T cell responses by influenza virus infection and the role of virus-specific CD4+ and CD8+ T cells in viral clearance and conferring protection from subsequent infections with homologous or heterologous influenza virus strains. Furthermore, we discuss vector-based vaccination strategies that aim at the induction of a cross-reactive virus-specific T cell response.  相似文献   

13.
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8+ T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.  相似文献   

14.
The goal of the present study was to design a vaccine that would provide universal protection against infection of humans with diverse influenza A viruses. Accordingly, protein sequences from influenza A virus strains currently in circulation (H1N1, H3N2), agents of past pandemics (H1N1, H2N2, H3N2) and zoonotic infections of man (H1N1, H5N1, H7N2, H7N3, H7N7, H9N2) were evaluated for the presence of amino acid sequences, motifs, that are predicted to mediate peptide epitope binding with high affinity to the most frequent HLA-DR allelic products. Peptides conserved among diverse influenza strains were then synthesized, evaluated for binding to purified HLA-DR molecules and for their capacity to induce influenza-specific immune recall responses using human donor peripheral blood mononuclear cells (PBMC). Accordingly, 20 epitopes were selected for further investigation based on their conservancy among diverse influenza strains, predicted population coverage in diverse ethnic groups and capacity to recall influenza-specific responses. A DNA plasmid encoding the epitopes was constructed using amino acid spacers between epitopes to promote optimum processing and presentation. Immunogenicity of the DNA vaccine was measured using HLA-DR4 transgenic mice and the TriGrid™ in vivo electroporation device. Vaccination resulted in peptide-specific immune responses, augmented HA-specific antibody responses and protection of HLA-DR4 transgenic mice from lethal PR8 influenza virus challenge. These studies demonstrate the utility of this vaccine format and the contribution of CD4+ T cell responses to protection against influenza infection.  相似文献   

15.
An immuno-informatics study was conducted to determine possible pre-existing T cellular immunity to the recently emerged swine-origin triple reassortant H3N2 variant (S-OtrH3N2v-2011) which acquired the matrix gene of influenza A (H1N1)pdm09. Given the genetic origin of S-OtrH3N2v-2011, our study focused on the hemagglutinin (HA) and matrix1 (M1) proteins to identify common and conserved T cell epitopes. We compared HA CD4+ T cell epitopes of S-OtrH3N2v-2011 with seasonal H3N2 (1968-2011)-HA proteins. M1 CD4+ and CD8+ T cell epitopes of S-OtrH3N2v-2011 were compared with the M1 proteins of seasonal H1N1 (1977-2009) and A (H1N1)pdm09 (2009-2011) subtypes. The results revealed a high conservancy of epitopes localized particularly on HA2 and the entire M1 protein. The overall cross reactivity of predicted CD4+ T cell epitopes with previously experimentally defined (Immuno Epitope Database) CD4+ T epitopes of HA and M1 proteins was ~51%. CD8+ T cell cross-reactivity of ~74% was documented for M1 protein. Analysis suggests possible pre-existing CD4+ T cell immunity to S-OtrH3N2v-2011 in the human population.  相似文献   

16.
The outbreak of the novel swine-origin H1N1 influenza in the spring of 2009 took epidemiologists, immunologists, and vaccinologists by surprise and galvanized a massive worldwide effort to produce millions of vaccine doses to protect against this single virus strain. Of particular concern was the apparent lack of pre-existing antibody capable of eliciting cross-protective immunity against this novel virus, which fueled fears this strain would trigger a particularly far-reaching and lethal pandemic. Given that disease caused by the swine-origin virus was far less severe than expected, we hypothesized cellular immunity to cross-conserved T cell epitopes might have played a significant role in protecting against the pandemic H1N1 in the absence of cross-reactive humoral immunity. In a published study, we used an immunoinformatics approach to predict a number of CD4+ T cell epitopes are conserved between the 2008-2009 seasonal H1N1 vaccine strain and pandemic H1N1 (A/California/04/2009) hemagglutinin proteins. Here, we provide results from biological studies using PBMCs from human donors not exposed to the pandemic virus to demonstrate that pre-existing CD4+ T cells can elicit cross-reactive effector responses against the pandemic H1N1 virus. As well, we show our computational tools were 80-90% accurate in predicting CD4+ T cell epitopes and their HLA-DRB1-dependent response profiles in donors that were chosen at random for HLA haplotype. Combined, these results confirm the power of coupling immunoinformatics to define broadly reactive CD4+ T cell epitopes with highly sensitive in vitro biological assays to verify these in silico predictions as a means to understand human cellular immunity, including cross-protective responses, and to define CD4+ T cell epitopes for potential vaccination efforts against future influenza viruses and other pathogens.  相似文献   

17.
《Vaccine》2016,34(4):466-473
Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone, influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone.  相似文献   

18.
The use of viral vectors as vaccine candidates has shown promise against a number of pathogens. However, preexisting immunity to these vectors is a concern that must be addressed when deciding which viruses are suitable for use. A number of properties, including the existence of antigenically distinct subtypes, make influenza viruses attractive candidates for use as viral vectors. Here, we evaluate the ability of influenza viral vectors containing inserts of foreign pathogens to elicit antibody and CD8+ T cell responses against these foreign antigens in the presence of preexisting immunity to influenza virus in mice. Specifically, responses to an H3N1-based vector expressing a 90 amino acid polypeptide derived from the protective antigen (PA) of Bacillus anthracis or an H1N1-based vector containing a CD8+ T cell epitope from the glycoprotein (GP) of lymphocytic choriomeningitis virus were evaluated following infections with either homosubtypic or heterosubtypic influenza viruses. We found that mice previously infected with influenza viruses, even those expressing HA and NA proteins of completely different subtypes, were severely compromised in their ability to mount an immune response against the inserted epitopes. This inhibition was demonstrated to be mediated by CD8+ T cells, which recognize multiple strains of influenza viruses. These CD8+ T cells were further shown to protect mice from a lethal challenge by a heterologous influenza subtype. The implication of these data for the use of influenza virus vectors and influenza vaccination in general are discussed.  相似文献   

19.
《Vaccine》2016,34(26):2926-2933
Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines.  相似文献   

20.
Parida R  Shaila MS  Mukherjee S  Chandra NR  Nayak R 《Vaccine》2007,25(43):7530-7539
The existing vaccines against influenza are based on the generation of neutralizing antibody primarily directed against surface proteins - hemagglutinin and neuraminidase. In this work, we have computationally defined conserved T cell epitopes of proteins of influenza virus H5N1 to help in the design of a vaccine with haplotype specificity for a target population. The peptides from the proteome of H5N1 virus which are predicted to bind to different HLAs, do not show similarity with peptides of human proteome and are also identified to be generated by proteolytic cleavage. These peptides could be made use of in the design of either a DNA vaccine or a subunit vaccine against influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号