首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Vaccine》2020,38(19):3537-3544
BackgroundVaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value.MethodsA new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets.ResultsI.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone.ConclusionsThe I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.  相似文献   

2.
《Vaccine》2020,38(39):6141-6152
Influenza vaccination is considered the most valuable means to prevent and control seasonal influenza infections, which causes various clinical symptoms, ranging from mild cough and fever to even death. Among various influenza vaccine types, the inactivated subunit type is known to provide improved safety with reduced reactogenicity. However, there are some drawbacks associated with inactivated subunit type vaccines, with the main ones being its low immunogenicity and the induction of Th2-biased immune responses. In this study, we investigated the role of a single-stranded RNA (ssRNA) derived from the intergenic region in the internal ribosome entry site of the Cricket paralysis virus as an adjuvant rather than the universal vaccine for a seasonal inactivated subunit influenza vaccine. The ssRNA adjuvant stimulated not only well-balanced cellular (indicated by IgG2a, IFN-γ, IL-2, and TNF-α) and humoral (indicated by IgG1 and IL-4) immune responses but also a mucosal immune response (indicated by IgA), a key protector against respiratory virus infections. It also increases the HI titer, the surrogate marker of influenza vaccine efficacy. Furthermore, ssRNA adjuvant confers cross-protective immune responses against heterologous influenza virus infection while promoting enhanced viral clearance. Moreover, ssRNA adjuvant increases the number of memory CD4+ and CD8+ T cells, which can be expected to induce long-term immune responses. Therefore, this ssRNA-adjuvanted seasonal inactivated subunit influenza vaccine might be the best influenza vaccine generating robust humoral and cellular immune responses and conferring cross-protective and long-term immunity.  相似文献   

3.
《Vaccine》2022,40(10):1472-1482
BackgroundIncreased influenza vaccine efficacy is needed in the elderly at high-risk for morbidity and mortality due to influenza infection. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets.MethodsA phase 1, randomized, double-blind, safety and immunogenicity, adjuvant dose escalation trial was conducted in persons aged 65 years and older. MAS-1 adjuvant dose volumes at 0.3 mL or 0.5 mL containing 9 µg per HA derived from licensed seasonal trivalent influenza vaccine (IIV, Fluzone HD 60 µg per HA, Sanofi Pasteur) were compared to high dose (HD) IIV (Fluzone HD). Safety was measured by reactogenicity, adverse events, and safety laboratory measures. Immunogenicity was assessed by serum hemagglutination inhibition (HAI) antibody titers.ResultsForty-five subjects, aged 65–83 years, were randomly assigned to receive 9 µg per HA in 0.3 mL MAS-1 (15 subjects) or HD IIV (15 subjects) followed by groups randomly assigned to receive 9 µg per HA in 0.5 mL MAS-1 (10 subjects) or HD IIV (5 subjects). Injection site tenderness, induration, and pain, and headache, myalgia, malaise and fatigue were common, resolving before day 14 post-vaccination. Clinically significant late-onset injection site reactions occurred in four of ten subjects at the 0.5 mL adjuvant dose. Safety laboratory measures were within acceptable limits. MAS-1-adjuvanted IIV enhanced mean antibody titers, mean-fold increases in antibody titer, and seroconversion rates against vaccine strains for at least 168 days post-vaccination and enhanced cross-reactive antibodies against some non-study vaccine influenza viruses.ConclusionMAS-1 adjuvant provided HA dose-sparing without safety concerns at the 0.3 mL dose, but the 0.5 mL dose caused late injection site reactions. MAS-1-adjuvanted IIV induced higher HAI antibody responses with prolonged durability including against historical strains, thereby providing greater potential vaccine efficacy in the elderly throughout an influenza season.Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.  相似文献   

4.
《Vaccine》2019,37(32):4533-4542
Both influenza A and B viruses cause outbreaks of seasonal influenza resulting in significant morbidity and mortality. There are two antigenically distinct lineages of influenza B virus, Yamagata lineage (YL) and Victoria lineage (VL). Since both B lineages have been co-circulating for years, more than 70% of influenza vaccines currently manufactured are quadrivalent consisting of influenza A (H1N1), influenza A (H3N2), influenza B (YL) and influenza B (VL) antigens. Although quadrivalent influenza vaccines tend to elevate immunity to both influenza B lineages, estimated overall vaccine efficacy against influenza B is still only around 42%. Thus, a more effective influenza B vaccine is needed.To meet this need, we generated BM2-deficient, single-replication (BM2SR) influenza B vaccine viruses that encode surface antigens from influenza B/Wisconsin/01/2010 (B/WI01, YL) and B/Brisbane/60/2008 (B/Bris60, VL) viruses. The BM2SR-WI01 and BM2SR-Bris60 vaccine viruses are replication-deficient in vitro and in vivo, and can only replicate in a cell line that expresses the complementing BM2 protein. Both BM2SR viruses were non-pathogenic to mice, and vaccinated animals showed elevated mucosal and serum antibody responses to both Yamagata and Victoria lineages in addition to cellular responses. Serum antibody responses included lineage-specific hemagglutinin inhibition antibody (HAI) responses as well as responses to the stem region of the hemagglutinin (HA). BM2SR vaccine viruses provided apparent sterilizing immunity to mice against intra- and inter-lineage drifted B virus challenge. The data presented here support the feasibility of BM2SR as a platform for next-generation trivalent influenza vaccine development.  相似文献   

5.
《Vaccine》2019,37(42):6208-6220
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.  相似文献   

6.
《Vaccine》2021,39(46):6805-6812
Adjuvants are essential for ensuring the efficacy of modern vaccines. Considering frequent local and systemic adverse reactions, research into the development of safer and more effective adjuvants is being actively conducted. In recent years, the novel concept of laser vaccine adjuvants, which use the physical energy of light, has been developed. For long, light has been known to affect the physiological functions in living organisms. Since the development of lasers as stable light sources, laser adjuvants have evolved explosively in multiple ways over recent decades. Future laser adjuvants would have the potential not only to enhance the efficacy of conventional vaccine preparations but also to salvage candidate vaccines abandoned during development because of insufficient immunogenicity or owing to their inability to be combined with conventional adjuvants. Furthermore, the safety and efficacy of non-invasive laser adjuvants make them advantageous for vaccine dose sparing, which would be favorable for the timely and equitable global distribution of vaccines. In this review, we first describe the basics of light–tissue interactions, and then summarize the classification of lasers, the history of laser adjuvants, and the mechanisms by which different lasers elicit an immune response.  相似文献   

7.
《Vaccine》2022,40(9):1271-1281
BackgroundNew influenza vaccines are needed to increase vaccine efficacy. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational low viscosity, free-flowing, water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets.MethodsA phase 1, double-blind, safety and immunogenicity, HA dose escalation, randomized clinical trial was conducted. MAS-1 adjuvant with 1, 3, 5 or 9 µg per HA derived from licensed seasonal trivalent high dose inactivated influenza vaccine (IIV, Fluzone HD 60 µg per HA) in a 0.3 mL dose were compared to standard dose IIV (Fluzone SD, 15 µg per HA). Safety was measured by reactogenicity, adverse events, and clinical laboratory tests. Serum hemagglutination inhibition (HAI) antibody titers were measured for immunogenicity.ResultsSeventy-two subjects, aged 18–47 years, received one dose of either 0.3 mL adjuvanted vaccine or SD IIV intramuscularly. Common injection site and systemic reactions post-vaccination were mild tenderness, induration, pain, headache, myalgia, malaise and fatigue. All reactions resolved within 14 days post-vaccination. Safety laboratory measures were not different between groups. Geometric mean antibody titers, geometric mean fold increases in antibody titer, seroconversion rates and seroprotection rates against vaccine strains were in general higher and of longer duration (day 85 and 169 visits) with MAS-1-adjuvanted IIV at all doses of HA compared with SD IIV. Adjuvanted vaccine induced higher antibody responses against a limited number of non-study vaccine influenza B and A/H3N2 viruses including ones from subsequent years.ConclusionMAS-1 adjuvant in a 0.3 mL dose volume provided HA dose-sparing effects without safety concerns and induced higher HAI antibody and seroconversion responses through at least 6 months, demonstrating potential to provide greater vaccine efficacy throughout an influenza season in younger adults. In summary, MAS-1 may provide enhanced, more durable and broader protective immunity compared with non-adjuvanted SD IIV.Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.  相似文献   

8.
《Vaccine》2020,38(43):6721-6729
The successful licensure of vaccines for biodefense is contingent upon the availability of well-established correlates of protection (CoP) in at least two animal species that can be applied to humans, without the need to assess efficacy in the clinic. In this report we describe a multivariate model that combines pre-challenge serum antibody endpoint titers (EPT) and values derived from an epitope profiling immune-competition capture (EPICC) assay as a predictor in mice of vaccine-mediated immunity against ricin toxin (RT), a Category B biothreat. EPICC is a modified competition ELISA in which serum samples from vaccinated mice were assessed for their ability to inhibit the capture of soluble, biotinylated (b)-RT by a panel of immobilized monoclonal antibodies (mAbs) directed against four immunodominant toxin-neutralizing regions on the enzymatic A chain (RTA) of RT. In a test cohort of mice (n = 40) vaccinated with suboptimal doses of the RTA subunit vaccine, RiVax®, we identified two mAbs, PB10 and SyH7, which had EPICC inhibition values in pre-challenge serum samples that correlated with survival following a challenge with 5 × LD50 of RT administered by intraperitoneal (IP) injection. Analysis of a larger cohort of mice (n = 645) revealed that a multivariate model combining endpoint titers and EPICC values for PB10 and SyH7 as predictive variables had significantly higher statistical power than any one of the independent variables alone. Establishing the correlates of vaccine-mediated protection in mice represents an important steppingstone in the development of RiVax® as a medical countermeasure under the United States Food and Drug Administration’s “Animal Rule.”  相似文献   

9.
《Vaccine》2021,39(34):4864-4870
Background and AimsInfluenza vaccination is recommended by the World Health Organisation for pregnant women, offering the dual benefit of protecting pregnant women and their newborn infants against influenza infection. Various factors can influence vaccine immunogenicity, with obesity being one factor implicated in varied responses. This study aimed to investigate the impact of body mass index (BMI) on vaccine responses following influenza vaccination during pregnancy.MethodsPregnant women attending the Women’s and Children’s Hospital in South Australia during 2014–2016 were invited to participate. Participant’s clinical and demographic factors were recorded prior to administration of licensed seasonal influenza vaccination. Blood samples were collected before and one month post-vaccination to measure antibody responses by haemagglutination inhibition (HI) assay. Seroprotection was defined as a post-vaccination HI titre ≥ 1:40. Regression models assessed associations with failure to achieve seroprotective antibodies to H1, H3, and B influenza strains.ResultsA total of 96 women were enrolled in the study at a median gestation of 22 weeks with a BMI range of 18–49 kg/m2. Paired sera samples were available for 90/96 (94%). Most pregnant women (72/90, 80%) demonstrated seroprotective antibody titres to all three influenza vaccine antigens (A(H1N1)pdm09, A(H3N2), B/Yamagata) following vaccination. Compared with women with BMI < 30 kg/m2, those with high BMI were less likely to fail to achieve seroprotective antibodies, however this was not statistically significant (RR 0.42, 95% CI 0.11–1.68; p = 0.22). A greater proportion of women vaccinated during their second (47/53, 93%) or third trimester (18/25, 72%) demonstrated seroprotection to all three vaccine antigens following vaccination compared with women vaccinated during their first trimester (7/12, 58%).ConclusionHigh BMI did not impair seroprotection levels following influenza vaccination in pregnant women. Gestation at vaccination may be an important consideration for optimising vaccine protection for pregnant women and their newborns. Further assessment of first trimester influenza vaccine responses is warranted.  相似文献   

10.
《Vaccine》2019,37(29):3902-3910
The identification of adjuvants that promote lasting antigen-specific immunity and augment vaccine efficacy are integral to the development of new protein-based vaccines. The Ebola virus-like particle (VLP) vaccine expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) was used in this study to evaluate the ability of TLR4 agonist glucopyranosyl lipid adjuvant (GLA) formulated in a stable emulsion (SE) to enhance immunogenicity and promote durable protection against mouse-adapted Ebola virus (ma-EBOV). Antibody responses and Ebola-specific T cell responses were evaluated post vaccination. Survival analysis after lethal ma-EBOV challenge was performed 4 weeks and 22 weeks following final vaccination. GLA-SE enhanced EBOV-specific immunity and resulted in long-term protection against challenge with ma-EBOV infection in a mouse model. Specifically, GLA-SE elicited Th1-skewed antibodies and promoted the generation of EBOV GP-specific polyfunctional T cells. These results provide further support for the utility of TLR4 activating GLA-SE-adjuvanted vaccines.  相似文献   

11.
12.
《Vaccine》2022,40(23):3182-3192
COVID-19 presents an ongoing global health crisis. Protein-based COVID-19 vaccines that are well-tolerated, safe, highly-protective and convenient to manufacture remain of major interest. We therefore sought to compare the immunogenicity and protective efficacy of a number of recombinant SARS-CoV-2 spike protein candidates expressed in insect cells. By comparison to a full length (FL) spike protein detergent-extracted nanoparticle antigen, the soluble secreted spike protein extracellular domain (ECD) generated higher protein yields per liter of culture and when formulated with either Alum-CpG55.2 or Advax-CpG55.2 combination adjuvants elicited robust antigen-specific humoral and cellular immunity in mice. In hamsters, the spike ECD when formulated with either adjuvant induced high serum neutralizing antibody titers even after a single dose. When challenged with the homologous SARS-CoV-2 virus, hamsters immunized with the adjuvanted spike ECD exhibited reduced viral load in day 1–3 oropharyngeal swabs and day 3 nasal turbinate tissue and had no recoverable infectious virus in day 3 lung tissue. The reduction in lung viral load correlated with less weight loss and lower lung pathology scores. The formulations of spike ECD with Alum-CpG55.2 or Advax-CpG55.2 were protective even after just a single dose, although the 2-dose regimen performed better overall and required only half the total amount of antigen. Pre-challenge serum neutralizing antibody levels showed a strong correlation with lung protection, with a weaker correlation seen with nasal or oropharyngeal protection. This suggests that serum neutralizing antibody levels may correlate more closely with systemic, rather than mucosal, protection. The spike protein ECD with Advax-CpG55.2 formulation (Covax-19® vaccine) was selected for human clinical development.  相似文献   

13.
《Vaccine》2019,37(29):3770-3778
We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.  相似文献   

14.
《Vaccine》2023,41(10):1684-1693
Oil-in-water emulsion-based adjuvants have demonstrated acceptable safety in many disease indications, while their adjuvant activities for vaccines still need to be improved. Recently, the strategy of combining adjuvants with multiple types of immunostimulants has been shown to enhance immune responses. In this study, astragalus polysaccharides were combined with simvastatin as an immunostimulant to construct a compound O/W emulsion adjuvant. The formulations were optimized according to the OVA-specific antibody responses induced in mice. For this reason, high (5 mg/mL), medium (2.5 mg/mL), and low (1.25 mg/mL) concentrations of astragalus polysaccharides and high (10 mg/mL), medium (1 mg/mL), and low (0.1 mg/mL) concentrations of simvastatin were selected. The final optimal formulation of the immunostimulant was a high concentration of astragalus polysaccharides combined with a medium concentration of simvastatin. The optimal compound O/W emulsion adjuvant could induce effective humoral and cellular immune responses that were stronger and more stable than those induced by aluminum adjuvant and Freund's adjuvant. The OVA/HAPS-MSim-OE induced dramatically strong and persistent IgG expressions and Th1-polarized immune responses. What’s more, the highest CD4+/CD8+lymphocyte ratios were observed in OVA/HAPS-MSim-OE group. In addition, compound O/W emulsion adjuvant groups significantly promoted the secretion of IFN-γ and IL-6, which also indicated that the compound O/W emulsion adjuvants could induce both enhanced Th1 and Th2-mediated immune responses but prefer the Th1-mediated ones. This study would contribute to an interesting and promising direction in the development of emulsion-based adjuvants.  相似文献   

15.
《Vaccine》2023,41(10):1735-1742
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.  相似文献   

16.
17.
《Vaccine》2023,41(38):5525-5534
BackgroundDS-5670a is a vaccine candidate for coronavirus disease 2019 (COVID-19) harnessing a novel modality composed of messenger ribonucleic acid (mRNA) encoding the receptor-binding domain (RBD) from the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encapsulated in lipid nanoparticles. Here, we report the safety, immunogenicity, and pharmacokinetic profile of DS-5670a from a phase 2 clinical trial in healthy adults who were immunologically naïve to SARS-CoV-2.MethodsThe study consisted of an open-label, uncontrolled, dose-escalation part and a double-blind, randomized, uncontrolled, 2-arm, parallel-group part. A total of 80 Japanese participants were assigned to receive intramuscular DS-5670a, containing either 30 or 60 µg of mRNA, as two injections administered 4 weeks apart. Safety was assessed by characterization of treatment-emergent adverse events (TEAEs). Immunogenicity was assessed by neutralization titers against SARS-CoV-2, anti-RBD immunoglobulin (Ig)G levels, and SARS-CoV-2 spike-specific T cell responses. Plasma pharmacokinetic parameters of DS-5670a were also evaluated.ResultsMost solicited TEAEs were mild or moderate with both the 30 and 60 µg mRNA doses. Four participants (10 %) in the 60 µg mRNA group developed severe redness at the injection site, but all cases resolved without treatment. There were no serious TEAEs and no TEAEs leading to discontinuation. Humoral immune responses in both dose groups were greater than those observed in human convalescent serum; the 60 µg mRNA dose produced better responses. Neutralization titers were found to be correlated with anti-RBD IgG levels (specifically IgG1). DS-5670a elicited antigen-specific T helper 1-polarized cellular immune responses.ConclusionsThe novel mRNA-based vaccine candidate DS-5670a provided favorable immune responses against SARS-CoV-2 with a clinically acceptable safety profile. Confirmatory trials are currently ongoing to evaluate the safety and immunogenicity of DS-5670a as the primary vaccine and to assess the immunogenicity when administered as a heterologous or homologous booster.Trial registry: https://jrct.niph.go.jp/latest-detail/jRCT2071210086.  相似文献   

18.
《Vaccine》2019,37(30):4081-4088
While vaccination is highly effective for the prevention of many infectious diseases, the number of adjuvants licensed for human use is currently very limited. The aim of this study was to evaluate the safety, efficacy, and to clarify the mechanism of a phosphorothioated interleukin (IL)-10-targeted antisense oligonucleotide (ASO) as an immune adjuvant in intradermal vaccination. The cytotoxicity of IL-10 ASO and its ability to promote T cell proliferation were assessed by Cell Counting Kit-8 (CCK-8) assay. The contents of IL-6, IL-8, TNF-α, IL-1β, and IL-10 in inoculated local tissue and the antigen-specific antibody titers in mouse serum samples were determined by ELISA. The target cells of IL-10 ASO were observed using immunofluorescent staining. The results showed that the specific antibody titer of ovalbumin (OVA), a model antigen, was increased 100-fold upon addition of IL-10 ASO as an adjuvant compared to that of OVA alone. IL-10 ASO showed an immunopotentiation efficacy similar to that of Freund’s incomplete adjuvant, with no detectable cell or tissue toxicity. In vitro and in vivo experiments confirmed that IL-10 ASO enhances immune responses by temporarily suppressing IL-10 expression from local dendritic cells and consequently promoting T cell proliferation. In conclusion, IL-10 ASO significantly enhances immune responses against co-delivered vaccine antigens with high efficacy and low toxicity. It has the potential to be developed into a safe and efficient immune adjuvant.  相似文献   

19.
《Vaccine》2021,39(33):4573-4576
Many Chinese breeding pigs are repeatedly vaccinated against classical swine fever virus (CSFV) and porcine epidemic diarrhea virus (PEDV), which cause fatal, highly contagious diseases. To reduce their high frequency vaccination-induced immune stress, we constructed a combined vaccine based on the E2 protein of CSFV and the S1 spike protein subunit of PEDV (named E2-S1). In mice, the E2-S1 vaccine elicited higher neutralizing antibody titers and IgG1/IgG2a ratios against CSFV and PEDV than those induced by individual E2 or S1 vaccines. Moreover, it elicited high IL-4 expression, but no IFN-γ expression. The results suggest that good compatibility exists between E2 and S1 antigens, and the E2-S1 vaccine can elicit a strong Th2-type cell-mediated humoral immune response. The E2-S1 recombinant fusion protein provides a novel vaccine candidate against both CSFV and PEDV, laying the foundation for future combination vaccines against swine diseases.  相似文献   

20.
《Vaccine》2022,40(32):4522-4530
The COVID-19 pandemic has spurred an unprecedented movement to develop safe and effective vaccines against the SARS-CoV-2 virus to immunize the global population. The first set of vaccine candidates that received emergency use authorization targeted the spike (S) glycoprotein of the SARS-CoV-2 virus that enables virus entry into cells via the receptor binding domain (RBD). Recently, multiple variants of SARS-CoV-2 have emerged with mutations in S protein and the ability to evade neutralizing antibodies in vaccinated individuals. We have developed a dual RBD and nucleocapsid (N) subunit protein vaccine candidate named RelCoVax® through heterologous expression in mammalian cells (RBD) and E. coli (N). The RelCoVax® formulation containing a combination of aluminum hydroxide (alum) and a synthetic CpG oligonucleotide as adjuvants elicited high antibody titers against RBD and N proteins in mice after a prime and boost dose regimen administered 2 weeks apart. The vaccine also stimulated cellular immune responses with a potential Th1 bias as evidenced by increased IFN-γ release by splenocytes from immunized mice upon antigen exposure particularly N protein. Finally, the serum of mice immunized with RelCoVax® demonstrated the ability to neutralize two different SARS-CoV-2 viral strains in vitro including the Delta strain that has become dominant in many regions of the world and can evade vaccine induced neutralizing antibodies. These results warrant further evaluation of RelCoVax® through advanced studies and contribute towards enhancing our understanding of multicomponent subunit vaccine candidates against SARS-CoV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号