首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Vaccine》2023,41(8):1447-1456
Mucosal vaccines offer several advantages over transdermal vaccines, including the ability to acquire systemic and mucosal immunities. Smoking is a huge public health threat and major risk factor for various diseases that exacerbate or prolong respiratory symptoms and conditions. However, its impact on the efficacy of mucosal vaccines remains partially explored. Thus, this study investigates the effects of smoking on mucosal vaccine reactivity by assessing the induction of Th1 immunity, a vital response in infection defense. Cigarette smoke condensate was prepared as a substitute for mainstream smoke. We intranasally administered diphtheria toxoid as an antigen and natural CpG oligonucleotide G9.1, which enhances the Th1-type antibody (Ab) response in a plasmacytoid dendritic cells (pDCs) dependent manner, as an adjuvant to mice to assess the effect of cigarette smoke condensate on Ab responses. The mechanism of its effect was evaluated using human peripheral blood mononuclear cells and their pDC-rich fraction cultured with or without G9.1. In mice, cigarette smoke condensate tended to decrease diphtheria toxoid-specific Ab response, with a higher reduction in Th1-type IgG2 Ab response than in Th2-type IgG1 Ab response. In human peripheral blood mononuclear cells, cigarette smoke condensate significantly reduced the induction of IFN-α production by G9.1. Moreover, G9.1-induced increases in the CD83 expression in pDCs and the CD80 expression in DCs were suppressed via treatment with cigarette smoke condensate. Among the mechanisms suggested were decreased expression of toll-like receptor 9 mRNA, decreased expression of mRNA for IFN regulatory factor 7, and increased CpG methylation of its promoter region. The analysis of Tbet and GATA3 expressions revealed that cigarette smoke condensate exhibits Th1-directed immunostimulatory activity at a steady state but becomes more Th2-directed under G9.1 stimulation. In conclusion, smoking could reduce mucosal vaccine responses by decreasing pDC activation and, consequently, Th1-dominant immunity.  相似文献   

2.
《Vaccine》2022,40(5):714-725
Middle East respiratory syndrome (MERS) is a threat to public health worldwide. A vaccine against the causative agent of MERS, MERS-coronavirus (MERS-CoV), is urgently needed. We previously identified a peptide ligand, Co4B, which can enhance antigen (Ag) delivery to the nasal mucosa and promote Ag-specific mucosal and systemic immune responses following intranasal immunization. MERS-CoV infects via the respiratory route; thus, we conjugated the Co4B ligand to the MERS-CoV spike protein receptor-binding domain (S-RBD), and used this to intranasally immunize C57BL/6 and human dipeptidyl peptidase 4-transgenic (hDPP4-Tg) mice. Ag-specific mucosal immunoglobulin (Ig) A and systemic IgG, together with virus-neutralizing activities, were highly induced in mice immunized with Co4B-conjugated S-RBD (S-RBD-Co4B) compared to those immunized with unconjugated S-RBD. Ag-specific T cell-mediated immunity was also induced in the spleen and lungs of mice intranasally immunized with S-RBD-Co4B. Intranasal immunization of hDPP4-Tg mice with S-RBD-Co4B reduced immune cell infiltration into the tissues of virus-challenged mice. Finally, S-RBD-Co4B-immunized mice exhibited were better protected against infection, more likely to survive, and exhibited less body weight loss. Collectively, our results suggest that S-RBD-Co4B could be used as an intranasal vaccine candidate against MERS-CoV infection.  相似文献   

3.
《Vaccine》2020,38(39):6141-6152
Influenza vaccination is considered the most valuable means to prevent and control seasonal influenza infections, which causes various clinical symptoms, ranging from mild cough and fever to even death. Among various influenza vaccine types, the inactivated subunit type is known to provide improved safety with reduced reactogenicity. However, there are some drawbacks associated with inactivated subunit type vaccines, with the main ones being its low immunogenicity and the induction of Th2-biased immune responses. In this study, we investigated the role of a single-stranded RNA (ssRNA) derived from the intergenic region in the internal ribosome entry site of the Cricket paralysis virus as an adjuvant rather than the universal vaccine for a seasonal inactivated subunit influenza vaccine. The ssRNA adjuvant stimulated not only well-balanced cellular (indicated by IgG2a, IFN-γ, IL-2, and TNF-α) and humoral (indicated by IgG1 and IL-4) immune responses but also a mucosal immune response (indicated by IgA), a key protector against respiratory virus infections. It also increases the HI titer, the surrogate marker of influenza vaccine efficacy. Furthermore, ssRNA adjuvant confers cross-protective immune responses against heterologous influenza virus infection while promoting enhanced viral clearance. Moreover, ssRNA adjuvant increases the number of memory CD4+ and CD8+ T cells, which can be expected to induce long-term immune responses. Therefore, this ssRNA-adjuvanted seasonal inactivated subunit influenza vaccine might be the best influenza vaccine generating robust humoral and cellular immune responses and conferring cross-protective and long-term immunity.  相似文献   

4.
《Vaccine》2020,38(3):699-704
ObjectiveThis study aimed to investigate whether systemic immunization with a 13-valent pneumococcal conjugate vaccine (PCV13) followed by intranasal (IN) immunization with phosphorylcholine (PC) can boost immune response against Streptococcus pneumoniae.Materials and methodsTwo weeks after the intraperitoneal (IP) injection of PCV13, mice were divided into two groups (mice requiring another IP injection of PCV13 and mice requiring PC-keyhole limpet hemocyanin IN immunization in combination with cholera toxin as a mucosal adjuvant) to compare the magnitude of systemic and mucosal immune responses against S. pneumoniae and PC.ResultsSerum immunoglobulin (Ig) G antibody titer against the vaccine strains of S. pneumoniae was similar between the PCV13 systemic immunization group and PC IN immunization group, while the serum IgG antibody titer against PC was significantly higher in the PC IN immunization group. PC-specific IgA antibody titer in the nasal lavage and PC-specific IgA-producing cell number in the nasal mucosa were also significantly higher in the PC IN immunization group. Induction of PC-specific IgA in the PC IN immunization group enhanced the clearance of bacteria from the middle ear.ConclusionAdditional IN immunization with PC after PCV13 immunization, which is currently conducted under a periodic vaccination program, can produce a booster effect comparable to that achieved by additional systemic immunization as well as PC-specific mucosal immune response, thereby providing protection against S. pneumoniae serotypes not contained in PCV13.  相似文献   

5.
《Vaccine》2019,37(32):4533-4542
Both influenza A and B viruses cause outbreaks of seasonal influenza resulting in significant morbidity and mortality. There are two antigenically distinct lineages of influenza B virus, Yamagata lineage (YL) and Victoria lineage (VL). Since both B lineages have been co-circulating for years, more than 70% of influenza vaccines currently manufactured are quadrivalent consisting of influenza A (H1N1), influenza A (H3N2), influenza B (YL) and influenza B (VL) antigens. Although quadrivalent influenza vaccines tend to elevate immunity to both influenza B lineages, estimated overall vaccine efficacy against influenza B is still only around 42%. Thus, a more effective influenza B vaccine is needed.To meet this need, we generated BM2-deficient, single-replication (BM2SR) influenza B vaccine viruses that encode surface antigens from influenza B/Wisconsin/01/2010 (B/WI01, YL) and B/Brisbane/60/2008 (B/Bris60, VL) viruses. The BM2SR-WI01 and BM2SR-Bris60 vaccine viruses are replication-deficient in vitro and in vivo, and can only replicate in a cell line that expresses the complementing BM2 protein. Both BM2SR viruses were non-pathogenic to mice, and vaccinated animals showed elevated mucosal and serum antibody responses to both Yamagata and Victoria lineages in addition to cellular responses. Serum antibody responses included lineage-specific hemagglutinin inhibition antibody (HAI) responses as well as responses to the stem region of the hemagglutinin (HA). BM2SR vaccine viruses provided apparent sterilizing immunity to mice against intra- and inter-lineage drifted B virus challenge. The data presented here support the feasibility of BM2SR as a platform for next-generation trivalent influenza vaccine development.  相似文献   

6.
《Vaccine》2019,37(42):6232-6239
Clostridium perfringens is a major cause of food poisoning worldwide, with its enterotoxin (CPE) being the major virulence factor. The C-terminus of CPE (C-CPE) is non-toxic and is the part of the toxin that binds to epithelial cells via the claudins in tight junctions; however, C-CPE has low antigenicity. To address this issue, we have used protein engineering technology to augment the antigenicity of C-CPE and have developed a C-CPE-based vaccine against C. perfringens-mediated food poisoning. Moreover, C-CPE has properties that make it potentially useful for the development of vaccines against other bacterial toxins that cause food poisoning. For example, we hypothesized that the ability of C-CPE to bind to claudins could be harnessed to deliver vaccine antigens directly to mucosa-associated lymphoid tissues, and we successfully developed a nasally administered C-CPE-based vaccine delivery system that promotes antigen-specific mucosal and systemic immune responses. In addition, our group has revealed the roles that the nasal mucus plays in lowering the efficacy of C-CPE-based nasal vaccines. Here, we review recent advances in the development of C-CPE-based vaccines against the major bacterial toxins that cause food poisoning and discuss our C-CPE-based nasal vaccine delivery system.  相似文献   

7.
《Vaccine》2022,40(6):934-944
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.  相似文献   

8.
《Vaccine》2020,38(19):3537-3544
BackgroundVaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value.MethodsA new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets.ResultsI.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone.ConclusionsThe I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.  相似文献   

9.
《Vaccine》2021,39(37):5295-5301
Strong quantitative and functional antibody responses to the quadrivalent human papillomavirus (HPV) vaccine were reported in mid-adult aged men, but there are limited data on the avidity of the antibody response and the memory B-cell response following vaccination. Although circulating antibodies induced by vaccination are believed to be the main mediators of protection against infection, evaluation of avidity of antibodies and memory B cell responses are critical for a better understanding of the vaccine immunogenicity mechanisms. Both the modified enzyme-linked immunosorbent assay (ELISA) and the enzyme-linked immunosorbent spot (ELISpot) assay are tools to measure the humoral and cellular immune responses post vaccination to characterize vaccine immunogenicity. The avidity of HPV-16 and HPV-18 specific IgG in the serum of mid-adult aged men (N = 126) who received three quadrivalent HPV vaccine doses was examined using a modified ELISA. HPV-16 memory B-cell responses were assessed via ELISpot at month 0 (prior to vaccination) and 1-month post-dose three of the vaccine (month 7). The quadrivalent vaccine induced an increase in HPV-16 and HPV-18 antibody avidity at month 7. HPV-18 avidity levels moderately correlated with anti-HPV-18 antibody titers, but no association was observed for HPV-16 antibody titers and avidity levels. The HPV-16-specific memory B-cell response was induced following three vaccine doses, however, no association with anti-HPV-16 antibody avidity was observed. Three doses of quadrivalent HPV vaccine increased antibody affinity maturation for HPV-16/18 and increased the frequency of anti-HPV-16 memory B-cells in mid-adult aged men.  相似文献   

10.
《Vaccine》2019,37(42):6208-6220
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.  相似文献   

11.
《Vaccine》2021,39(34):4864-4870
Background and AimsInfluenza vaccination is recommended by the World Health Organisation for pregnant women, offering the dual benefit of protecting pregnant women and their newborn infants against influenza infection. Various factors can influence vaccine immunogenicity, with obesity being one factor implicated in varied responses. This study aimed to investigate the impact of body mass index (BMI) on vaccine responses following influenza vaccination during pregnancy.MethodsPregnant women attending the Women’s and Children’s Hospital in South Australia during 2014–2016 were invited to participate. Participant’s clinical and demographic factors were recorded prior to administration of licensed seasonal influenza vaccination. Blood samples were collected before and one month post-vaccination to measure antibody responses by haemagglutination inhibition (HI) assay. Seroprotection was defined as a post-vaccination HI titre ≥ 1:40. Regression models assessed associations with failure to achieve seroprotective antibodies to H1, H3, and B influenza strains.ResultsA total of 96 women were enrolled in the study at a median gestation of 22 weeks with a BMI range of 18–49 kg/m2. Paired sera samples were available for 90/96 (94%). Most pregnant women (72/90, 80%) demonstrated seroprotective antibody titres to all three influenza vaccine antigens (A(H1N1)pdm09, A(H3N2), B/Yamagata) following vaccination. Compared with women with BMI < 30 kg/m2, those with high BMI were less likely to fail to achieve seroprotective antibodies, however this was not statistically significant (RR 0.42, 95% CI 0.11–1.68; p = 0.22). A greater proportion of women vaccinated during their second (47/53, 93%) or third trimester (18/25, 72%) demonstrated seroprotection to all three vaccine antigens following vaccination compared with women vaccinated during their first trimester (7/12, 58%).ConclusionHigh BMI did not impair seroprotection levels following influenza vaccination in pregnant women. Gestation at vaccination may be an important consideration for optimising vaccine protection for pregnant women and their newborns. Further assessment of first trimester influenza vaccine responses is warranted.  相似文献   

12.
《Vaccine》2023,41(31):4480-4487
The species and tissue specificities of HPV (human papillomavirus) for human infection and disease complicates the process of prophylactic vaccine development in animal models. HPV pseudoviruses (PsV) that carry only a reporter plasmid have been utilized in vivo to demonstrate cell internalization in mouse mucosal epithelium. The current study sought to expand the application of this HPV PsV challenge model with both oral and vaginal inoculation and to demonstrate its utility for testing vaccine-mediated dual-site immune protection against several HPV PsV types. We observed that passive transfer of sera from mice vaccinated with the novel experimental HPV prophylactic vaccine RG1-VLPs (virus-like particles) conferred HPV16-neutralizing as well as cross-neutralizing Abs against HPV39 in naïve recipient mice. Moreover, active vaccination with RG1-VLPs also conferred protection to challenge with either HPV16 or HPV39 PsVs at both vaginal and oral sites of mucosal inoculation. These data support the use of the HPV PsV challenge model as suitable for testing against diverse HPV types at two sites of challenge (vaginal vault and oral cavity) associated with the origin of the most common HPV-associated cancers, cervical cancer and oropharyngeal cancer.  相似文献   

13.
《Vaccine》2019,37(31):4364-4369
Duck hepatitis A virus (DHAV) is the major pathogen of duck viral hepatitis, which has caused great economic losses to duck breeding industry. As an effective delivery tool for protein antigens, Lactococcus lactis (L. lactis) has been successfully used to stimulate mucosal and systemic immune response. In this study, a recombinant L. lactis named NZ3900-VP1 was constructed, which could express VP1 protein of DHAV type 3 (DHAV-3) by using a nisin-controlled expression (NICE) system. The animal experiment in both mice and ducklings were performed to detect the immune response and protection effect of oral vaccination by the recombinant L. lactis. The results showed that oral vaccination with L. lactis NZ3900-VP1 significantly induced specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) of DHAV-3 in mice and ducklings, and cytokines including interleukin-2 (IL-2), interferon gamma (IFN-γ), interleukin-10 (IL-10) and interleukin-4 (IL-4). Notably, the ducklings vaccinated with L. lactis NZ3900-VP1 were effectively protected when facing natural infestation of DHAV-3, which indicated that the recombinant L. lactis could serve as an effective vaccine to prevent DHAV-3 infection in ducklings.  相似文献   

14.
《Vaccine》2020,38(5):1001-1008
BackgroundQuadrivalent live attenuated influenza vaccine (LAIV4) showed reduced effectiveness against the A/H1N1 component in the 2013–2014 and 2015–2016 influenza seasons. The most likely cause of reduced LAIV effectiveness against A(H1N1)pdm09 strains was poor intranasal replication.ObjectivesTo compare the immunogenicity and shedding of a new A/H1N1 strain (A/Slovenia), to a A/H1N1 strain known to have reduced effectiveness (A/Bolivia).Patients/methodsThis was a randomized, double-blind, multicenter study. Children aged 24–<48 months of age were randomized 1:1:1 to receive two doses of LAIV4 2017–2018 (LAIV4A/Slovenia), or LAIV4 2015–2016 or trivalent LAIV (LAIV3) 2015–2016 formulations (LAIV4A/Bolivia or LAIV3A/Bolivia, respectively) on days 1 and 28. The primary endpoint was strain-specific hemagglutination inhibition (HAI) antibody seroresponse at 28 days post each dose, and secondary endpoints included immunogenicity, shedding, and safety. Solicited symptoms, adverse events (AEs), and serious AEs (SAEs) were recorded. Pre-specified statistical testing was limited to the primary endpoint of HAI antibody responses.ResultsA total of 200 children were randomized (median age 35.3 months; 53% male; 57% had previously received influenza vaccine). Significantly higher HAI antibody responses for the A/Slovenia strain were observed after Dose 1 and Dose 2. Neutralizing antibodies and nasal immunoglobulin A antibody responses were higher for A/Slovenia versus A/Bolivia. More children shed the A/Slovenia vaccine strain than the A/Bolivia strain on Days 4–7 after Dose 1. No deaths, SAEs, or discontinuations from vaccine occurred.ConclusionsThe new A(H1N1)pdm09 A/Slovenia LAIV strain demonstrated improved immunogenicity compared with a previous strain with reduced effectiveness and induced immune responses comparable to a highly efficacious pre-pandemic H1N1 LAIV strain. These results support the use of LAIV4 containing A/Slovenia as a vaccine option in clinical practice.  相似文献   

15.
《Vaccine》2022,40(23):3182-3192
COVID-19 presents an ongoing global health crisis. Protein-based COVID-19 vaccines that are well-tolerated, safe, highly-protective and convenient to manufacture remain of major interest. We therefore sought to compare the immunogenicity and protective efficacy of a number of recombinant SARS-CoV-2 spike protein candidates expressed in insect cells. By comparison to a full length (FL) spike protein detergent-extracted nanoparticle antigen, the soluble secreted spike protein extracellular domain (ECD) generated higher protein yields per liter of culture and when formulated with either Alum-CpG55.2 or Advax-CpG55.2 combination adjuvants elicited robust antigen-specific humoral and cellular immunity in mice. In hamsters, the spike ECD when formulated with either adjuvant induced high serum neutralizing antibody titers even after a single dose. When challenged with the homologous SARS-CoV-2 virus, hamsters immunized with the adjuvanted spike ECD exhibited reduced viral load in day 1–3 oropharyngeal swabs and day 3 nasal turbinate tissue and had no recoverable infectious virus in day 3 lung tissue. The reduction in lung viral load correlated with less weight loss and lower lung pathology scores. The formulations of spike ECD with Alum-CpG55.2 or Advax-CpG55.2 were protective even after just a single dose, although the 2-dose regimen performed better overall and required only half the total amount of antigen. Pre-challenge serum neutralizing antibody levels showed a strong correlation with lung protection, with a weaker correlation seen with nasal or oropharyngeal protection. This suggests that serum neutralizing antibody levels may correlate more closely with systemic, rather than mucosal, protection. The spike protein ECD with Advax-CpG55.2 formulation (Covax-19® vaccine) was selected for human clinical development.  相似文献   

16.
《Vaccine》2023,41(2):365-371
PurposeAdministration of three doses of Pfizer-BioNTech BNT162b2 COVID-19 mRNA vaccine was completed in Japan in the spring of 2022. This study aimed to evaluate the antibody responses, and kinetics of three doses of vaccine in healthcare workers (HCWs).Patients and methodsWe conducted a longitudinal cohort study with HCWs, who had no history of COVID-19 or serologic evidence of SARS-CoV-2 infection, from a single hospital. Immunoglobulin G (IgG) titers of anti-SARS-CoV-2 spike protein (SP) and nucleocapsid protein (NP) titers were measured using an automated chemiluminescent enzyme immunoassay system.ResultsA total of 636 HCWs participated in the study. The anti-SP IgG titers decreased slowly after the second dose of the BNT162b2 vaccine in all participants, and robust antibody response was observed after the third dose of the vaccine. The peak anti-SP IgG titer after the third dose was approximately 4.1-fold higher than that after the first and second doses, and the rate of decrease in the anti-SP IgG titer after the third dose was significantly more gradual, than that after the second dose. After the second dose of vaccine, the antibody response was weaker in older participants than in younger participants, and in males than in females respectively, whereas the response to the third dose of vaccine did not differ significantly by sex or age. Adverse events following immunization were generally mild to moderate.ConclusionThe third dose of the BNT162b2 vaccine induced a significant and sustained increase in anti-SP IgG titers, and was generally safe and well-tolerated.  相似文献   

17.
《Vaccine》2020,38(27):4263-4272
BackgroundDespite appreciable immunogenicity in malaria-naive populations, many candidate malaria vaccines are considerably less immunogenic in malaria-exposed populations. This could reflect induction of immune regulatory mechanisms involving Human Leukocyte Antigen G (HLA-G), regulatory T (Treg), and regulatory B (Breg) cells. Here, we addressed the question whether there is correlation between these immune regulatory pathways and both plasmablast frequencies and vaccine-specific IgG concentrations.MethodsFifty Gabonese adults with lifelong exposure to Plasmodium spp were randomized to receive three doses of either 30 µg or 100 µg GMZ2-CAF01, or 100 µg GMZ2-alum, or control vaccine (rabies vaccine) at 4-week intervals. Only plasma and peripheral blood mononuclear cells isolated from blood samples collected before (D0) and 28 days after the third vaccination (D84) of 35 participants were used to measure sHLA-G levels and anti-GMZ2 IgG concentrations, and to quantify Treg, Breg and plasmablast cells. Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites (PfSPZ Challenge).ResultsThe sHLA-G concentration increased from D0 to D84 in all GMZ2 vaccinated participants and in the control group, whereas Treg frequencies increased only in those receiving 30 µg or 100 µg GMZ2-CAF01. The sHLA-G level on D84 was associated with a decrease of the anti-GMZ2 IgG concentration, whereas Treg frequencies on D0 or on D84, and Breg frequency on D84 were associated with lower plasmablast frequencies. Importantly, having a D84:D0 ratio of sHLA-G above the median was associated with an increased risk of P. falciparum infection after sporozoites injection.ConclusionRegulatory immune responses are induced following immunization. Stronger sHLA-G and Treg immune responses may suppress vaccine induced immune responses, and the magnitude of the sHLA-G response increased the risk of Plasmodium falciparum infection after CHMI. These findings could have implications for the design and testing of malaria vaccine candidates in semi-immune individuals.  相似文献   

18.
Salmonella enterica serovar Typhimurium is a major food-borne pathogen that can cause self-limited gastroenteritis or life-threatening invasive diseases in humans. There is no licensed S. Typhimurium vaccine for humans to date. In this study, we attempted to construct a live attenuated vaccine strain of S. Typhimurium based on three genes, namely, the two global regulator genes fnr and arcA and the flagellin subunit gene fliC. The S. Typhimurium three-gene mutant, named SLT39 (ΔfnrΔarcAΔfliC), exhibited a high level of attenuation with a colonization defect in mouse tissues and approximately 104-fold decreased virulence compared with that of the wild-type strain. To evaluate the immunogenicity and protection efficacy of STL39, mice were inoculated twice with a dose of 107 CFU or 108 CFU at a 28-day interval, and the immunized mice were challenged with a lethal dose of the wild-type S. Typhimurium strain one month post second immunization. Compared with mock immunization, SLT39 immunization with either dose elicited significant serum total IgG, IgG1 and IgG2a and faecal IgA responses against inactivated S. Typhimurium antigens at a comparable level post second immunization, whereas the 108 CFU group induced higher levels of duodenal and caecal IgA than the 107 CFU group. Furthermore, the bacterial loads in mouse tissues, including Peyer’s patches, spleen and liver, significantly decreased in the two SLT39 immunization groups compared to those in the control group post challenge. Additionally, all mice in the SLT39 (108 CFU) group and 80% of the mice in the SLT39 (107 CFU) group survived the lethal challenge, suggesting full protection and 80% protection efficacy, respectively. Thus, the S. Typhimurium fnr, arcA and fliC mutant proved to be a potential attenuated live vaccine candidate for prevention of homologous infection.  相似文献   

19.
《Vaccine》2021,39(24):3270-3278
BackgroundEpidemiological studies suggest that influenza vaccine effectiveness decreases with repeated administration. We examined antibody responses to influenza vaccination among healthcare workers (HCWs) by prior vaccination history and determined the incidence of influenza infection.MethodsHCWs were vaccinated with the 2016 Southern Hemisphere quadrivalent influenza vaccine. Serum samples were collected pre-vaccination, 21–28 days and 7 months post-vaccination. Influenza antibody titres were measured at each time-point using the haemagglutination inhibition (HI) assay. Immunogenicity was compared by prior vaccination history.ResultsA total of 157 HCWs completed the study. The majority were frequently vaccinated, with only 5 reporting no prior vaccinations since 2011. Rises in titres for all vaccine strains among vaccine-naïve HCWs were significantly greater than rises observed for HCWs who received between 1 and 5 prior vaccinations (p < 0.001, respectively). Post-vaccination GMTs against influenza A but not B strains decreased as the number of prior vaccinations increased from 1 to 5. There was a significant decline in GMTs post-season for both B lineages. Sixty five (41%) HCWs reported at least one influenza-like illness episode, with 6 (4%) identified as influenza positive.ConclusionsVarying serological responses to influenza vaccination were observed among HCWs by prior vaccination history, with vaccine-naïve HCWs demonstrating greater post-vaccination responses against A(H3N2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号