首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A parenteral inactivated rotavirus vaccine (IRV) in development could address three problems with current live oral rotavirus vaccines (ORV): their lower efficacy in low and middle-income countries (LMICs), lingering concerns about their association with intussusception, and their requirement for a separate supply chain with large volume cold storage. Adding a new parenteral IRV to the current schedule of childhood immunizations would be more acceptable if it could be combined with another injectable vaccine such as inactivated polio vaccine (IPV). Current plans for polio eradication call for phasing out oral polio vaccine (OPV) and transitioning to IPV, initially in LMICs as a single dose booster after two doses of OPV and ultimately as a two dose schedule. Today in many LMICs, IPV is administered as a standalone vaccine, which involves a separate cold chain and is relatively costly. We therefore tested in two animal models formulations of IPV with IRV to determine whether co-administration might interfere with the immune response to each product and spare antigen dose for both vaccines. Our results demonstrate that IRV when adjuvanted with alum and administered alone or in combination with IPV did not impair the immune responses to either rotavirus or poliovirus serotypes 1, 2 and 3. Similarly, IPV when formulated and administered alone or together with IRV induced comparable levels of neutralizing antibody to poliovirus type 1, 2 and 3. Furthermore, comparable antibody titers were observed in animals vaccinated with low, middle or high dose of IPV or IRV in combination. This dose sparing and the lack of interference between IPV and IRV administered together represent another step to support the further development of this novel combination vaccine for children.  相似文献   

2.
Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV.  相似文献   

3.
Oral polio vaccine (OPV) will likely be insufficient to completely eradicate polio due to its propensity to mutate into neurovirulent forms and its inability to produce adequate immunity in certain areas of the world. Inactivated polio vaccine (IPV), a killed vaccine which therefore cannot mutate, may be more effective than OPV in certain populations, and will likely be required for global polio eradication. However, the high cost of IPV is prohibitive in many areas of the world. Intradermal administration has the potential to lower the dose, and thus the cost, of IPV. This article reviews the clinical studies to date on intradermal fractional dose polio vaccination. We conclude that intradermal IPV vaccination shows potential as a means to reduce the cost and increase the ease of administration of IPV, but that additional research is needed to determine the optimal fractional dose, timing, and role of adjuvants in intradermal IPV vaccination as well as the clinical significance of different antibody titers above the threshold for seroconversion.  相似文献   

4.
《Vaccine》2020,38(1):10-14
Several live vaccines may have beneficial non-specific effects (NSEs) reducing mortality more than can be explained by the prevention of the target infection, a phenomenon which has been linked to innate immune training. Most randomised controlled trials (RCTs) of oral polio vaccine (OPV) and measles vaccine (MV) have shown a large reduction in mortality that must have been at least partly nonspecific because it was much larger than the reduction explained by prevention of the target disease. Hence, stopping a live vaccine after disease-eradication could have negative health effects if the potential beneficial NSEs are not considered. We reviewed one eradicated disease, smallpox, and two infections likely to be eradicated in coming decades, polio and measles. No study was made of unintended effects of stopping smallpox vaccination when it happened in 1980. We have subsequently documented in both Guinea-Bissau and Denmark that smallpox-vaccinated individuals continued to have a survival advantage long after smallpox had been eradicated. The few studies which have examined the effect of OPV on survival all suggest strong beneficial NSEs; in RCTs, OPV compared with inactivated polio vaccine (IPV) has been associated with non-specific reductions in morbidity. RCTs, natural experiments and observational studies have found strong beneficial NSEs for MV. Hence, the imminent eradication of polio and the planned stop of OPV in 2024 and the subsequent eradication of measles infection and the possible stop to live MV could have negative effects for child survival. Before live vaccines are phased out, potential unintended effects of stopping these vaccines should be thoroughly studied.  相似文献   

5.
《Vaccine》2015,33(35):4307-4312
Polio is expected to be eradicated within only a few years from now. Upon polio eradication, the use of oral polio vaccines, which can cause circulating and virulent vaccine derived polio viruses, will be stopped. From this moment onwards, inactivated polio vaccines (IPV) will be used for worldwide vaccination against polio. An increased demand for IPV is thus anticipated. As a result, process development studies regarding the IPV production process, developed in the 1960s, have intensified. Studies on yield optimization aiming at costs reduction as well as the use of alternative polio viruses, which are more biosafe for manufacturing, are actual. Here our strategy to setup a new IPV production process using attenuated Sabin polio virus strains is presented. Moreover, aspects on reduction of the costs of goods and the impact of process optimization on sIPV costs are reviewed.  相似文献   

6.
Poliovirus transmission is controlled globally through world-wide use of a live attenuated oral polio vaccine (OPV). However, the imminence of global poliovirus eradication calls for a switch to the inactivated polio vaccine (IPV). Given the limited manufacturing capacity and high cost of IPV, this switch is unlikely in most developing and undeveloped countries. Adjuvantation is an effective strategy for antigen sparing. In this study, we evaluated the adjuvanticity of CpG oligodeoxynucleotides (CpG-ODN) for an experimental IPV produced from Sabin strains of poliovirus. Our results showed that CpG-ODN, alone or in combination with alum, can significantly enhance both the humoral and cellular immune responses to IPV in mice, and, consequently, the antigen dose could be reduced substantially. Therefore, our study suggests that the global use of IPV could be facilitated by using CpG-ODN or other feasible adjuvants.  相似文献   

7.
This literature review identifies the factors that influence the decision to introduce inactivated polio vaccine (IPV) in developing countries as opposed to the policy of vaccine cessation. Attenuated viruses in the oral polio vaccine (OPV) can replicate, revert to neurovirulence and become transmissible circulating vaccine-derived polioviruses (cVDPVs), preventing use of the vaccine in the post-eradication era. This literature review identifies (1) risks of complete cessation of vaccination, (2) barriers and (3) solutions for the introduction of IPV in developing countries. The reviewed literature favours to circumvent the so-called “OPV paradox” by global introduction of IPV.  相似文献   

8.
《Vaccine》2015,33(37):4683-4690
The phased replacement of oral polio vaccine (OPV) with inactivated polio vaccine (IPV) is expected to significantly complicate mass vaccination campaigns, which are an important component of the global polio eradication endgame strategy. To simplify mass vaccination with IPV, we developed microneedle patches that are easy to administer, have a small package size, generate no sharps waste and are inexpensive to manufacture. When administered to rhesus macaques, neutralizing antibody titers were equivalent among monkeys vaccinated using microneedle patches and conventional intramuscular injection for IPV types 1 and 2. Serologic response to IPV type 3 vaccination was weaker after microneedle patch vaccination compared to intramuscular injection; however, we suspect the administered type 3 dose was lower due to a flawed pre-production IPV type 3 analytical method. IPV vaccination using microneedle patches was well tolerated by the monkeys. We conclude that IPV vaccination using a microneedle patch is immunogenic in rhesus macaques and may offer a simpler method of IPV vaccination of people to facilitate polio eradication.  相似文献   

9.
脊髓灰质炎(脊灰)是由脊灰病毒引起的急性肠道传染病,人是脊灰病毒的唯一宿主。1988年世界卫生组织提出2000年在全球范围内消灭脊灰,目前仅有阿富汗、印度、尼日利亚、巴基斯坦4个国家有脊灰野毒株本土病例报告。随着无脊灰目标的逐渐实现,口服脊髓灰质炎减毒活疫苗(OPV)的缺点逐渐凸现,如OPV在热带地区效力低,可引起疫苗相关麻痹脊灰(VAPP)及免疫抑制者长期排毒等,因此,继续使用OPV不能最终消灭脊灰。1996年,美国免疫实践咨询委员会推荐通过先使用脊灰灭活疫苗(IPV)再使用OPV的连续接种程序来增加IPV的使用,IPV的大量使用消除了活疫苗病毒的散播,也消除了VAPP。2008年,我国提出脊灰疫苗的免疫策略可借鉴国外成功的经验,逐步采用IPV替代OPV。目前已有学者进行了前瞻性研究,证实在中国以IPV替代OPV是可行的。  相似文献   

10.
《Vaccine》2017,35(20):2647-2653
Polio is on the brink of eradication. Improved inactivated polio vaccines (IPV) are needed towards complete eradication and for the use in the period thereafter. Vaccination via mucosal surfaces has important potential advantages over intramuscular injection using conventional needle and syringe, the currently used delivery method for IPV. One of them is the ability to induce both serum and mucosal immune responses: the latter may provide protection at the port of virus entry.The current study evaluated the possibilities of polio vaccination via mucosal surfaces using IPV based on attenuated Sabin strains. Mice received three immunizations with trivalent sIPV via intramuscular injection, or via the intranasal or sublingual route. The need of an adjuvant for the mucosal routes was investigated as well, by testing sIPV in combination with the mucosal adjuvant cholera toxin.Both intranasal and sublingual sIPV immunization induced systemic polio-specific serum IgG in mice that were functional as measured by poliovirus neutralization. Intranasal administration of sIPV plus adjuvant induced significant higher systemic poliovirus type 3 neutralizing antibody titers than sIPV delivered via the intramuscular route. Moreover, mucosal sIPV delivery elicited polio-specific IgA titers at different mucosal sites (IgA in saliva, fecal extracts and intestinal tissue) and IgA-producing B-cells in the spleen, where conventional intramuscular vaccination was unable to do so. However, it is likely that a mucosal adjuvant is required for sublingual vaccination. Further research on polio vaccination via sublingual mucosal route should include the search for safe and effective adjuvants, and the development of novel oral dosage forms that improve antigen uptake by oral mucosa, thereby increasing vaccine immunogenicity. This study indicates that both the intranasal and sublingual routes might be valuable approaches for use in routine vaccination or outbreak control in the period after complete OPV cessation and post-polio eradication.  相似文献   

11.
《Vaccine》2016,34(27):3068-3075
BackgroundOral polio vaccine (OPV) and rotavirus vaccine (RV) exhibit poorer performance in low-income settings compared to high-income settings. Prior studies have suggested an inhibitory effect of concurrent non-polio enterovirus (NPEV) infection, but the impact of other enteric infections has not been comprehensively evaluated.MethodsIn urban Bangladesh, we tested stools for a broad range of enteric viruses, bacteria, parasites, and fungi by quantitative PCR from infants at weeks 6 and 10 of life, coincident with the first OPV and RV administration respectively, and examined the association between enteropathogen quantity and subsequent OPV serum neutralizing titers, serum rotavirus IgA, and rotavirus diarrhea.ResultsCampylobacter and enterovirus (EV) quantity at the time of administration of the first dose of OPV was associated with lower OPV1-2 serum neutralizing titers, while enterovirus quantity was also associated with diminished rotavirus IgA (−0.08 change in log titer per tenfold increase in quantity; P = 0.037), failure to seroconvert (OR 0.78, 95% CI: 0.64–0.96; P = 0.022), and breakthrough rotavirus diarrhea (OR 1.34, 95% CI: 1.05–1.71; P = 0.020) after adjusting for potential confounders. These associations were not observed for Sabin strain poliovirus quantity.ConclusionIn this broad survey of enteropathogens and oral vaccine performance we find a particular association between EV carriage, particularly NPEV, and OPV immunogenicity and RV protection. Strategies to reduce EV infections may improve oral vaccine responses.ClinicalTrials.gov Identifier: NCT01375647.  相似文献   

12.
《Vaccine》2016,34(16):1975-1985
During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains.  相似文献   

13.
Patel M  Steele AD  Parashar UD 《Vaccine》2012,30(Z1):A30-A35
In recent years, two live, oral rotavirus vaccines have been successfully tested in developing and industrialized countries, and both vaccines are now recommended by the World Health Organization for all children worldwide. Both immunogenicity and efficacy of these rotavirus vaccines has been lower in developing compared to industrialized settings. We reviewed the data on the effect of trivalent OPV on the immunogenicity and efficacy of two rotavirus vaccines currently recommended by the WHO. While rotavirus vaccines have not affected immune responses to OPV, in general, the immune responses (i.e., antibody levels) to rotavirus vaccination were lower when rotavirus vaccines were co-administered with OPV. Limited data suggests that the interference is greater after the first dose of OPV, presumably because the first dose is associated with greatest intestinal replication of vaccine polio virus strains, and this interference is largely overcome with subsequent rotavirus vaccine doses. Despite the lower immunogenicity, one large efficacy study in middle income Latin American countries showed no decrease in protective efficacy of rotavirus vaccine in infants receiving concurrent OPV. While these data are encouraging and support simultaneous administration of rotavirus vaccines and OPV, additional evidence should be gathered as rotavirus vaccines are used more widely in developing country settings, where OPV is routinely used, rather than inactivated polio vaccine.  相似文献   

14.
《Vaccine》2020,38(11):2572-2577
There are limited long-term data on seroprevalence of neutralising antibody (nAb) to the three poliovirus serotypes following the switch from oral polio vaccine (OPV) to inactivated polio vaccine (IPV). In Australia, combination vaccines containing IPV replaced OPV in late 2005. Using serum and plasma specimens collected during 2012 and 2013, we compared prevalence of nAb to poliovirus type 1 (PV1), type 2 (PV2) and type 3 (PV3) in birth cohorts with differing IPV and OPV eligibility from an Australian population-based sample. In the total sample of 1673 persons aged 12 months to 99 years, 85% had nAb against PV1, 83% PV2 and 67% PV3. In the cohort 12 to <18 years (eligible for 4 OPV doses, last dose 8–14 years prior), a significantly lower proportion had nAb than in the 7 to <12 year cohort (eligible for 3 OPV doses and an IPV booster, last dose 3–8 years prior) for all poliovirus types: [PV1: 87.1% vs. 95.9% (P = 0.01), PV2: 80.4% vs. 92.9% (P = 0.003) and PV3: 38.1% vs. 84.0% (P < 0.0001)]. These data suggest individual-level immunity may be better maintained when an OPV primary schedule is boosted by IPV, and support inclusion of an IPV booster in travel recommendations for young adults who previously received only OPV.  相似文献   

15.
The eradication of poliovirus from the majority of the world has been achieved through the use of two vaccines: the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine (OPV). Both vaccines are effective at preventing paralytic poliomyelitis, however, they also have significant differences. Most importantly for this work is the risk of revertant virus from OPV, the greater cost of IPV, and the low mucosal immunity induced by IPV. We and others have previously described the use of an alphavirus-based adjuvant that can induce a mucosal immune response to a co-administered antigen even when delivered at a non-mucosal site. In this report, we describe the use of an alphavirus-based adjuvant (GVI3000) with IPV. The IPV-GVI3000 vaccine significantly increased systemic IgG, mucosal IgG and mucosal IgA antibody responses to all three poliovirus serotypes in mice even when administered intramuscularly. Furthermore, GVI3000 significantly increased the potency of IPV in rat potency tests as measured by poliovirus neutralizing antibodies in serum. Thus, an IPV-GVI3000 vaccine would reduce the dose of IPV needed and provide significantly improved mucosal immunity. This vaccine could be an effective tool to use in the poliovirus eradication campaign without risking the re-introduction of revertant poliovirus derived from OPV.  相似文献   

16.
A controlled study was conducted in Karachi, Pakistan to compare humoral and mucosal immune responses against polioviruses in infants who received oral poliovirus vaccine (OPV) at birth and at 6, 10, and 14 weeks according to the Expanded Program on Immunization (EPI) with infants who received either three doses of inactivated poliovirus vaccine (IPV) at 6, 10, and 14 weeks together with OPV or one additional dose of IPV at 14 weeks together, with the last dose of OPV. A total of 1429 infants were enrolled; 24-week serum specimens were available for 898 infants (63%). They all received a challenge dose of OPV type 3 at 24 weeks of age. The addition of three doses of IPV to three doses of OPV induced a significantly higher percentage of seropositive children at 24 weeks of age for polio 1 (97% versus 89%, P<0.001) and polio 3 (98% versus 92%) compared to the EPI schedule. However, the one supplemental dose of IPV at 14 weeks did not increase the serological response at 24 weeks. Intestinal immunity against the challenge dose was similar in the three groups. Combined schedules of OPV and IPV in the form of diphtheria-pertussis-tetanus-IPV vaccine (DPT-IPV) may be useful to accelerate eradication of polio in developing countries.  相似文献   

17.
《Vaccine》2019,37(49):7233-7239
BackgroundThe RV3-BB human neonatal rotavirus vaccine was developed to provide protection from severe rotavirus disease from birth. The aim of this study was to investigate the potential for mutual interference in the immunogenicity of oral polio vaccine (OPV) and RV3-BB.MethodsA randomized, placebo-controlled trial involving 1649 participants was conducted from January 2013 to July 2016 in Central Java and Yogyakarta, Indonesia. Participants received three doses of oral RV3-BB, with the first dose given at 0–5 days (neonatal schedule) or ~8 weeks (infant schedule), or placebo. Two sub-studies assessed the immunogenicity of RV3-BB when co-administered with either trivalent OPV (OPV group, n = 282) or inactivated polio vaccine (IPV group, n = 333). Serum samples were tested for antibodies to poliovirus strains 1, 2 and 3 by neutralization assays following doses 1 and 4 of OPV.ResultsSero-protective rates to poliovirus type 1, 2 or 3 were similar (range 0.96–1.00) after four doses of OPV co-administered with RV3-BB compared with placebo. Serum IgA responses to RV3-BB were similar when co-administered with either OPV or IPV (difference in proportions OPV vs IPV: sIgA responses; neonatal schedule 0.01, 95% CI −0.12 to 0.14; p = 0.847; infant schedule −0.10, 95% CI −0.21 to −0.001; p = 0.046: sIgA GMT ratio: neonatal schedule 1.23, 95% CI 0.71–2.14, p = 0.463 or infant schedule 1.20, 95% CI 0.74–1.96, p = 0.448).ConclusionsThe co-administration of OPV with RV3-BB rotavirus vaccine in a birth dose strategy did not reduce the immunogenicity of either vaccine. These findings support the use of a neonatal RV3-BB vaccine where either OPV or IPV is used in the routine vaccination schedule.  相似文献   

18.
1988年,全球消灭脊髓灰质炎(脊灰)倡议行动启动以来,取得了重大进展。2012年,全球报告脊灰223例,较2011年减少〉60%,本土脊灰流行国家减少为尼日利亚、巴基斯坦和阿富汗,脊灰野病毒(Wild Poliovirus,WPV)病例数下降到历史最低水平。但WPV传播仍未被阻断,无脊灰国家/地区仍面临输入WPV的风险。同时,有些国家正面临使用口服脊灰减毒活疫苗(Oral Poliomyelitis Attenuated Live Vaccine,OPV)所致疫苗衍生脊灰病毒的风险。目前,不同国家/地区评估各自的脊灰发病风险,依据OPV、脊灰病毒灭活疫苗(Inactivated Poliovirus Vaccine,IPV)的风险和收益,不同国家/地区采用不同的免疫策略:仅使用IPV、序贯使用IPV/OPV和仅使用OPV。2013年,世界卫生组织《全球消灭脊灰终结战略计划》中提出,2014年全球阻断WPV传播,2015年所有国家应至少使用1剂IPV,停用OPV中的Ⅱ型组分;2018年完成消灭WPV证实后,停用OPV。现对OPV和IPV的应用现状以及免疫策略进行简述。  相似文献   

19.
《Vaccine》2015,33(16):1909-1915
One option for achieving global polio eradication is to replace the oral poliovirus vaccine (OPV), which has the risk of reversion to wild-type virulence, with the inactivated poliovirus vaccine (IPV) vaccine. Adjuvants and alternate routes of immunization are promising options that may reduce antigen dose in IPV vaccinations, potentially allowing dose sparing and cost savings. Use of adjuvants and alternate routes of immunization could also help promote mucosal immunity, potentially mimicking the protection against intestinal virus shedding seen with OPV. In the current study, we examined the impact of combining the novel adjuvant dmLT with trivalent IPV for dose sparing, induction of mucosal immunity and increasing longevity of anti-poliovirus (PV) responses in a mouse model following either intradermal (ID) or intramuscular (IM) delivery.We found that non-adjuvanted ID delivery was not superior to IM delivery for fractional dose sparing, but was associated with development of mucosal immunity. Vaccination with IPV + dmLT promoted serum anti-PV neutralizing antibodies with fractional IPV doses by either IM or ID delivery, achieving at least five-fold dose sparing above non-adjuvanted fractional doses. These responses were most noticeable with the PV1 component of the trivalent vaccine. dmLT also promoted germinal center formation and longevity of serum anti-PV neutralizing titers. Lastly, dmLT enhanced mucosal immunity, as defined by fecal and intestinal anti-PV IgA secretion, when included in IPV immunization by ID or IM delivery. These studies demonstrate that dmLT is an effective adjuvant for either IM or ID delivery of IPV. Inclusion of dmLT in IPV immunizations allows antigen dose sparing and enhances mucosal immunity and longevity of anti-PV responses.  相似文献   

20.
Hovi T 《Vaccine》2001,19(17-19):2268-2272
The use of the inactivated poliovirus vaccine (IPV) will increase before and probably also after the global eradication of the wild type poliovirus. Before eradication, the switch from the use of oral poliovirus vaccine (OPV) to IPV has been due to the better safety record of IPV. Introduction of IPV in the regular immunisation schedules is made easier by the development of several combination vaccines, including IPV. Maternal antibodies and young age, often considered problematic for early initiation of IPV schedules, did not compromise optimal maintenance of seropositivity during infancy or long-term persisting antibody levels in our studies. OPV-derived, potentially pathogenic and transmissible poliovirus strains, excreted by some individuals for years, may present a problem for a blunt stopping of all polio immunisations after eradication. Our recent results suggest that locally excreted IgA might have a role in the elimination of poliovirus infection in the intestinal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号