首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Vaccine》2016,34(46):5531-5539
Numerous types of human papillomaviruses (HPVs) have been identified, and the global burden of diseases associated with HPV infection is remarkable, especially in developing regions. Thus a low-cost broad-spectrum prophylactic vaccine is urgently needed. The N-terminal amino acid 17–36 of HPV 16 L2 protein is confirmed to be a major cross-neutralizing epitope (RG-1 epitope). Monomeric proteins containing RG-1 epitopes and scaffold proteins, such as bacterial thioredoxin or modified IgG1 Fc fragment and L2 epitope fusion protein, induced cross-neutralizing antibodies, arousing the possibility of the development of low-cost monomeric vaccine in bacterial expression system. Here we show that a novel immunogen-scaffold protein containing a lipidated triple-repeat HPV 16RG-1 epitope and a hFcγRI specific single-chain antibody fragment (H22scFv), named LpE3H22, elicited high titers of cross-neutralizing antibodies against a broad range of mucosal and cutaneous HPV types when adjuvanted with MF59 and poly I:C. LpE3H22 was produced in E. coli expression system. In contrast to three repeats of RG-1 epitope (E3) and unlipidated fusion protein E3H22, vaccination of LpE3H22 induced robust cross-neutralizing antibody responses in hFcγRI transgenic mice. Furthermore, the neutralizing antibody response induced by LpE3H22 was significantly weaker in WT mice than in the Tg mice. The cross-neutralizing antibodies induced by LpE3H22 sustained for at least 10 months in Tg mice. Our results demonstrate that hFcγRI targeting and lipidation both contribute to the enhancement of immunogenicity of L2 antigen. Therefore, delivering the lipidated L2 antigen with H22scFv opens a new avenue for low-cost pan-HPV vaccine development.  相似文献   

2.
Yoon SW  Lee TY  Kim SJ  Lee IH  Sung MH  Park JS  Poo H 《Vaccine》2012,30(22):3286-3294
The human papillomavirus (HPV) minor capsid protein, L2, is a good candidate for prophylactic vaccine development because L2-specific antibodies have cross-neutralizing activity against diverse HPV types. Here, we developed a HPV mucosal vaccine candidate using the poly-γ-glutamic acid synthetase A (pgsA) protein to display a partial HPV-16 L2 protein (N-terminal 1-224 amino acid) on the surface of Lactobacillus casei (L. casei). The oral immunization with L. casei-L2 induced productions of L2-specific serum IgG and vaginal IgG and IgA in Balb/c mice. To examine cross-neutralizing activity, we used a sensitive high-throughput neutralization assay based on HPV-16, -18, -45, -58, and bovine papillomavirus 1 (BPV1) pseudovirions. Our results revealed that mice vaccinated with L. casei-L2 not only generated neutralizing antibodies against HPV-16, but they also produced antibodies capable of cross-neutralizing the HPV-18, -45, and -58 pseudovirions. Consistent with previous reports, vaccination with HPV-16 L1 virus-like particles (VLPs) failed to show cross-neutralizing activity. Finally, we found that oral administration of L. casei-L2 induced significant neutralizing activities against genital infection by HPV-16, -18, -45, and -58 pseudovirions encoding a fluorescence reporter gene. These results collectively indicate that oral administration of L2 displayed on L. casei induces systemic and mucosal cross-neutralizing effects in mice.  相似文献   

3.
Two conserved epitopes, located in the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 (HIV-1) gp41, are recognized by two HIV-1 broadly neutralizing antibodies 2F5 and 4E10, and are promising targets for vaccine design in efforts to elicit anti-HIV-1 broadly neutralizing antibodies. Since most HIV-1 infections initiate at mucosal surfaces, induction of mucosal neutralizing antibodies is necessary and of utmost importance to counteract HIV-1 infection. Here, we utilized a mucosal vaccine vector, bovine papillomavirus (BPV) virus-like particles (VLPs), as a platform to present HIV-1 neutralizing epitopes by inserting the extended 2F5 or 4E10 epitope or the MPER domain into D-E loop of BPV L1 respectively. The chimeric VLPs presenting MPER domain resembled the HIV-1 natural epitopes better than the chimeric VLPs presenting single epitopes. Oral immunization of mice with the chimeric VLPs displaying the 2F5 epitope or MPER domain elicited epitope-specific serum IgGs and mucosal secretory IgAs. The induced antibodies specifically recognized the native conformation of MPER in the context of HIV-1 envelope protein. The antibodies induced by chimeric VLPs presenting MPER domain are able to partially neutralize HIV-1 viruses from clade B and clade C.  相似文献   

4.
Kawana K  Kawana Y  Yoshikawa H  Taketani Y  Yoshiike K  Kanda T 《Vaccine》2001,19(11-12):1496-1502
A common cross-neutralization epitope for human papillomavirus types 6 and 16 (HPV 6 and 16) is present in the region of amino acids (aa) 108-120 of HPV-16 minor capsid protein, L2. We nasally immunized Balb/c mice with a synthetic peptide with the 13 aa HPV 16 L2 sequence, and examined the antibodies elicited. ELISA showed that the immunization induced predominantly IgG and IgA antibodies cross-binding to L1/L2-capsids of HPVs 6, 16, and 18 in sera and in vaginal secretions, respectively. The serum containing the IgG antibody and the vaginal wash containing the IgA antibody neutralized HPV 16 pseudovirions and HPV 11 authentic virions, as shown by surrogate infectivity assays. From their cross-binding activity for HPV 16 and 18, the peptide-induced antibodies can probably cross-neutralize most of the genital HPVs. The peptide-induced neutralizing activity in vaginal wash was comparable to that induced by nasally immunization with HPV 16 L1-capsids. Unlike Balb/c, C57BL/10, which has different MHC class II, did not respond to the peptide immunization, but aa substitutions in the peptide to fulfill the requirement for the C57BL/10 agretope rendered the modified peptides immunogenic. The results provide a basis for development of a peptide vaccine against broad-spectrum of genital HPVs for humans.  相似文献   

5.
《Vaccine》2018,36(30):4462-4470
Oncogenic high-risk human papillomavirus (HPV) infections cause a substantial number of genital and non-genital cancers worldwide. Approximately 70% of all cervical cancers are caused by the high-risk HPV16 and 18 types. The remaining 30% can be attributed to twelve other high-risk HPV-types. Highly efficacious 2-valent, 4-valent and 9-valent L1 protein based prophylactic HPV vaccines are available however with limited cross-protection. To further increase the coverage, development of a multivalent cross-protective HPV vaccine is currently focused on the conserved N-terminus of HPV’s L2 protein. We have developed a vaccine candidate based on the rare human adenovirus type 35 (HAdV35) vector that displays a concatemer of L2 protein epitopes from four different HPV-types via protein IX (pIX). A mix of two heterologous HAdV35 pIX-L2 display vectors present highly conserved linear epitopes of nine HPV-types. Each HAdV35 pIX-L2 display vector exhibits a good manufacturability profile. HAdV35 pIX-L2 display vaccine vectors were immunogenic and induced neutralizing antibodies against HPV-types included in the vaccine and cross-neutralizing antibodies against distant a HPV-type not included in the vaccine in mice. The HAdV35 pIX-L2 display vectors offer an opportunity for a multivalent HAdV-based prophylactic HPV vaccine.  相似文献   

6.
Peptides of the papillomavirus L2 minor capsid protein can induce antibodies (Ab) that neutralize a broad range of human papillomavirus (HPV) genotypes. Unfortunately, L2 is antigenically subdominant to L1 in the virus capsid. To induce a strong anti-L2 Ab response with cross-neutralizing activity to other mucosal types, chimeric virus-like particles (VLP) were generated in which HPV16 L2 neutralization epitopes (comprising L2 residues 69-81 or 108-120) are inserted within an immunodominant surface loop (between residues 133 and 134) of the L1 major capsid protein of bovine papillomavirus type 1 (BPV1). These chimeras self-assembled into pentameric capsomers, or complete VLP similar to wild type (wt) L1 protein. Immunization of rabbits with assembled particle preparations induced L2-specific serum Ab with titers 10-fold higher than those induced by cognate synthetic L2 peptides coupled to KLH. Antisera to both chimeric proteins partially neutralized HPV16 pseudovirions, confirming that both HPV16 L2 peptides define neutralization epitopes. When analyzed for the ability to cross-neutralize infection by authentic HPV11 virions, using detection of early viral RNA by RT-PCR-assays as the readout, immune serum to chimeric protein comprising L2 residues 69-81, but not 108-120, was partially neutralizing. In addition, mouse-antiserum induced by vaccinations with synthetic L2 peptide 108-120, but not 69-81, was partially neutralizing in this assay. Induction of cross-neutralization Ab by L2 epitopes displayed on chimeric VLP represents a possible strategy for the generation of broad-spectrum vaccines to protect against relevant mucosal HPV and associated neoplasia.  相似文献   

7.
《Vaccine》2015,33(29):3346-3353
An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2 to 25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37 °C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations.  相似文献   

8.
《Vaccine》2018,36(17):2273-2281
Hepatitis C virus (HCV) infection is a major public health problem despite effectual direct-acting antivirals (DAAs) therapy. Development of a prophylactic vaccine is essential to block spread of HCV infection. The HBV small surface antigen (HBsAg-S) can self-assemble into virus-like particles (VLPs), has higher immunogenicity and is used as a vaccine against HBV infections. Chimeric HBsAg-S proteins with foreign epitopes allow VLP formation and induce the specific humoral and cellular immune responses against the foreign proteins. In this study, we investigated the immune responses induced by chimeric VLPs with HCV neutralizing epitopes and HBV S antigen in mice. The chimeric HCV-HBV VLPs expressing neutralizing epitopes were prepared and purified. BALB/c mice were immunized with purified chimeric VLPs and the serum neutralizing antibodies were analyzed. We found that these chimeric VLPs induced neutralizing antibodies against HCV in mice. Additionally, the murine serum neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b and 2a genotypes. We also found that immunization with chimeric VLPs induced anti-HBsAg antibodies. This study provides a novel strategy for development of a HCV prophylactic neutralizing epitope vaccine and a HCV-HBV bivalent prophylactic vaccine.  相似文献   

9.
Amino acid (aa) 108-120 of L2 protein of human papillomavirus (HPV) type 16 contains a cross-neutralization epitope against genital HPV. We designed a placebo-controlled trial in healthy adults to evaluate the safety and immunogenicity of a synthetic peptide consisting of the aa 108-120 of HPV16 L2 (L2-108/120) region. A total of 13 volunteers were given nasal inoculations with 0.1 (n=5) or 0.5mg (n=5) doses of the peptides or placebo (n=3) without adjuvant at weeks 0, 4, and 12. Sera were collected before inoculation and at 6, 16 and 36 weeks. The inoculation caused no serious local and systemic complications. The inoculation generated anti-L2 antibodies binding to both HPV16 and 52 L1/L2-capsids in four of the five recipients in the 0.5mg group. Sera of the four recipients showed neutralizing activities against HPV16 and 52. Serological responses to the peptides were not found in the 0.1mg group and the placebo group recipients. This study suggests the L2-108/120 peptide is tolerable in humans and has the potential as a broad-spectrum prophylactic vaccine against genital HPV.  相似文献   

10.
《Vaccine》2019,37(27):3529-3534
The candidate pan-Human Papillomavirus (HPV) vaccine RG1-VLP are HPV16 major capsid protein L1 virus-like-particles (VLP) comprising a type-common epitope of HPV16 minor capsid protein L2 (RG1; aa17-36). Vaccinations have previously demonstrated efficacy against genital high-risk (hr), low-risk (lr) and cutaneous HPV.To compare RG1-VLP to licensed vaccines, rabbits (n = 3) were immunized thrice with 1 µg, 5 µg, 25 µg, or 125 µg of RG1-VLP or a 1/4 dose of Cervarix®. 5 µg of RG1-VLP or 16L1-VLP (Cervarix) induced comparable HPV16 capsid-reactive and neutralizing antibodies titers (62,500/12,500–62,500 or 1000/10,000). 25 µg RG1-VLP induced robust cross-neutralization titers (50–1000) against hrHPV18/31/33/45/52/58/26/70. To mimic reduced immunization schedules in adolescents, mice (n = 10) were immunized twice with RG1-VLP (5 µg) plus 18L1-VLP (5 µg). HPV16 neutralization (titers of 10,000) similar to Cervarix and Gardasil and cross-protection against hrHPV58 vaginal challenge was observed.RG1-VLP vaccination induces hrHPV16 neutralization comparable to similar doses of licensed vaccines, plus cross-neutralization to heterologous hrHPV even when combined with HPV18L1-VLP.  相似文献   

11.
Current human papilloma virus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain that lack vaccine coverage. The novel RG1-VLP (virus-like particle) vaccine candidate utilizes the HPV16-L1 subunit as a backbone to display an inserted HPV16-L2 17–36 a.a. “RG1” epitope; the L2 RG1 epitope is conserved across many HPV types and the generation of cross-neutralizing antibodies (Abs) against which has been demonstrated. In an effort to heighten the immunogenicity of the RG1-VLP vaccine, we compared in BALB/c mice adjuvant formulations consisting of novel bacterial enzymatic combinatorial chemistry (BECC)-derived toll-like receptor 4 (TLR4) agonists and the aluminum hydroxide adjuvant Alhydrogel. In the presence of BECC molecules, consistent improvements in the magnitude of Ab responses to both HPV16-L1 and the L2 RG1 epitope were observed compared to Alhydrogel alone. Furthermore, neutralizing titers to HPV16 as well as cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39 were augmented in the presence of BECC agonists as well. Levels of L1 and L2-specific Abs were achieved after two vaccinations with BECC/Alhydrogel adjuvant that were equivalent to or greater than levels achieved with 3 vaccinations with Alhydrogel alone, indicating that the presence of BECC molecules resulted in accelerated immune responses that could allow for a decreased dose schedule for VLP-based HPV vaccines. In addition, dose-sparing studies indicated that adjuvantation with BECC/Alhydrogel allowed for a 75% reduction in antigen dose while still retaining equivalent magnitudes of responses to the full VLP dose with Alhydrogel. These data suggest that adjuvant optimization of HPV VLP-based vaccines can lead to rapid immunity requiring fewer boosts, dose-sparing of VLPs expensive to produce, and the establishment of a longer-lasting humoral immunity.  相似文献   

12.
Human papillomavirus (HPV) L1 VLP-based vaccines are protective against HPV vaccine-related types; however, the correlates of protection have not been defined. We observed that vaccination with Cervarix™ induced cross-neutralizing antibodies for HPV types for which evidence of vaccine efficacy has been demonstrated (HPV31/45) but not for other types (HPV52/58). In addition, HPV31/45 cross-neutralizing titers showed a significant increase with number of doses (HPV31, p < 0.001; HPV45, p < 0.001) and correlated with HPV16/18 neutralizing titers, respectively. These findings raise the possibility that cross-neutralizing antibodies are effectors of cross-protection observed for the HPV16/18 vaccine.  相似文献   

13.
Vaccines targeting conserved epitopes in the HPV minor capsid protein, L2, can elicit antibodies that can protect against a broad spectrum of HPV types that are associated with cervical cancer and other HPV malignancies. Thus, L2 vaccines have been explored as alternatives to the current HPV vaccines, which are largely type-specific. In this study we assessed the immunogenicity of peptides spanning the N-terminal domain of L2 linked to the surface of a highly immunogenic bacteriophage virus-like particle (VLP) platform. Although all of the HPV16 L2 peptide-displaying VLPs elicited high-titer anti-peptide antibody responses, only a subset of the immunogens elicited antibody responses that were strongly protective from HPV16 pseudovirus (PsV) infection in a mouse genital challenge model. One of these peptides, mapping to HPV16 L2 amino acids 65–85, strongly neutralized HPV16 PsV but showed little ability to cross-neutralize other high-risk HPV types. In an attempt to broaden the protection generated through vaccination with this peptide, we immunized mice with VLPs displaying a peptide that represented a consensus sequence from high-risk and other HPV types. Vaccinated mice produced antibodies with broad, high-titer neutralizing activity against all of the HPV types that we tested. Therefore, immunization with virus-like particles displaying a consensus HPV sequence is an effective method to broaden neutralizing antibody responses against a type-specific epitope.  相似文献   

14.
Peptide mimics of epitopes for pathogen-specific antibodies present in patient sera can be selected based on the phage display technology. Such mimotopes potentially represent vaccine candidates in case they are able to induce neutralizing antibodies upon vaccination. Here we analyze the immunogenicity of different conjugates of epitope EC26-2A4 localizing to the membrane proximal external region (MPER) of the HIV-1 transmembrane protein gp41. The EC26-2A4 epitope, which overlaps with that of the broadly neutralizing monoclonal antibody (mAb) 2F5, was coupled to sequential oligopeptide carriers (SOC) or to palmitoyl acid for better immunogenicity. Upon prime-boost immunizations of mice, the peptide conjugates induced EC26-2A4 specific antibodies in all settings and mice sera neutralized HIV-1SF162.LS in standardized neutralization assays. Thus, the EC26-2A4 MPER epitope represents a promising vaccine candidate for further analysis in larger animals with respect to the breadth of the neutralizing antibodies induced.  相似文献   

15.
Dong XN  Chen YH 《Vaccine》2006,24(19):4029-4034
Our previous study proved that the N-terminal (aa693-711) of glycoprotein E2 contained sequential neutralizing epitopes. In this study, four candidate epitope-vaccines (EVs) were separately prepared and evaluated. Among them, epitope-vaccine EV-BC1a (BC1a: aa693-699) induced high level of epitope-specific neutralizing antibodies and exhibited similar protective capability with that induced by Chinese vaccine strain (C-strain). These results confirmed CKEDYRY (aa693-699) as a principal sequential neutralizing epitope on E2 N-terminal. Moreover, these findings also indicate that epitope-vaccine is a potent candidate strategy for marker vaccine against classical swine fever virus (CSFV).  相似文献   

16.
《Vaccine》2015,33(42):5553-5563
Vaccination with the minor capsid protein L2, notably the 17–36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17–36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum ± MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17–36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.  相似文献   

17.
The minor capsid protein L2 is a promising candidate for the construction of an anti-human papillomavirus (HPV) broadly protective vaccine for the prophylaxis of cervical cancer. However, L2-derived peptides are usually poorly immunogenic and extensive knowledge on the most relevant (cross)neutralizing epitope(s) is still needed. We systematically examined the immunogenicity and virus neutralization potential of six peptides encompassing the N-terminal (amino acids 1–120) region of HPV16 L2 (20–38; 28–42; 56–75; 64–81; 96–115; 108–120) using bacterial thioredoxin (Trx) as a novel peptide scaffold. Mice antisera generated by 19 different Trx-L2 peptide fusions bearing one or multiple copies of each peptide were analyzed. Internal fusion to thioredoxin conferred strong immunogenicity to all the tested peptides, with a trend toward an increased immunogenicity for the multipeptide vs. the monopeptide forms of the various antigens. All Trx-L2 peptides induced HPV16 neutralizing antibodies in some of the immunized mice, but neutralization titers differed by more than two orders of magnitude. Trx-L2(20–38) antisera were by far the most effective in HPV16 neutralization and did not differ significantly from those induced by a reference polypeptide covering the entire L2 (1–120) region. The same antisera were also the most effective when challenged against the non-cognate HPV 18, 58, 45 and 31 pseudovirions. The data identify L2(20–38) as the best (cross)neutralizing epitope among the six that were examined, and point to thioredoxin fusion derivatives of this peptide as excellent candidates for the formulation of a low-cost, broadly protective HPV vaccine.  相似文献   

18.
The sequence H236-256 of the measles virus (MV) hemagglutinin (H) contains the sequential epitope of the neutralizing and protective monoclonal antibody (mAb) BH129 with the minimal epitope E(245)L-QL(249). Using this mAb, we have recently developed 7mer mimotopes binding up to 135x better than the corresponding 7mer epitope H244-250. In this study, we combined T cell epitopes (TCE) with either highly crossreactive 7mer mimotopes, 13mer mimotopes or less crossreactive MV-derived B cell epitopes (BCE). Antigenicity of these TBB, TTB and TTBB peptides was determined with BH129 in a competition ELISA against MV. We found that chimeric peptides including mimotopes were up to 80x better binders to the mAb than peptides containing the original BCEs. All peptides irrespective of their antigenicity were used for immunization to compare their virus- crossreactive immunogenicity. Unexpectedly, none of the highly antigenic mimotope-based peptides induced MV-crossreactive antibodies. In contrast, a number of peptides with the viral BCE sequence that did not bind to the mAb, induced MV-crossreactive and even neutralizing antibodies.This report describes a striking example of disparity between antigenicity and crossreactive immunogenicity and casts considerable doubt on the predictive value of antigenicity in immunogenicity studies, considerably complicating the selection of potential vaccine candidates.  相似文献   

19.
Joshi H  Cheluvaraja S  Somogyi E  Brown DR  Ortoleva P 《Vaccine》2011,29(51):9423-9430
Immunogenicity varies between the human papillomavirus (HPV) L1 monomer assemblies of various sizes (e.g., monomers, pentamers or whole capsids). The hypothesis that this can be attributed to the intensity of fluctuations of important loops containing neutralizing epitopes for the various assemblies is proposed for HPV L1 assemblies. Molecular dynamics simulations were utilized to begin testing this hypothesis. Fluctuations of loops that contain critical neutralizing epitopes (especially FG loop) were quantified via root-mean-square fluctuation and features in the frequency spectrum of dynamic changes in loop conformation. If this fluctuation-immunogenicity hypothesis is a universal aspect of immunogenicity (i.e., immune system recognition of an epitope within a loop is more reliable when it is presented via a more stable delivery structure), then fluctuation measures can serve as one predictor of immunogenicity as part of a computer-aided vaccine design strategy.  相似文献   

20.
The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunized with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralizing antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号