首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Vaccine》2016,34(14):1688-1695
Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. Conclusion: MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza.  相似文献   

2.
《Vaccine》2021,39(33):4628-4640
Current influenza vaccines rely on inducing antibody responses to the rapidly evolving hemagglutinin (HA) and neuraminidase (NA) proteins, and thus need to be strain-matched. However, predictions of strains that will circulate are imperfect, and manufacturing of new vaccines based on them takes months. As an alternative, universal influenza vaccines target highly conserved antigens. In proof of concept studies of universal vaccine candidates in animal models challenge is generally conducted only a short time after vaccination, but protective immunity lasting far longer is important for the intended public health impact. We address the challenge of providing long-term protection. We demonstrate here broad, powerful, and long-lasting immune protection for a promising universal vaccine candidate. A single intranasal dose of recombinant adenoviruses (rAd) expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) was used. Extending our previous studies of this type of vaccine, we show that antibody and T-cell responses persist for over a year without boosting, and that protection against challenge persists a year after vaccination and remains broad, covering both group 1 and 2 influenza A viruses. In addition, we extend the work to influenza B. Immunization with influenza B nucleoprotein (B/NP)-rAd also gives immune responses that last a year without boosting and protect against challenge with influenza B viruses of mismatched HA lineages. Despite host immunity to adenoviral antigens, effective readministration is possible a year after primary vaccination, as shown by successful immunization to a transgene product the animals had not seen before. Protection against challenge with divergent and highly pathogenic A/H7N9 virus was weaker but was enhanced by a second dose of vaccine. Thus, this mucosal vaccination to conserved influenza antigens confers very long-lasting immune protection in animals against a broad range of influenza A and B viruses.  相似文献   

3.
Kodihalli S  Kobasa DL  Webster RG 《Vaccine》2000,18(23):2592-2599
The cross-species transfer of a H5N1 influenza virus from birds to humans, and the systemic spread of this virus in mice, has accelerated the efforts to devise protective strategies against lethal influenza viruses. DNA vaccination with the highly conserved nucleoprotein gene appears to provide cross protection against influenza A viruses in murine models. Whether such vaccines would protect human hosts against different influenza A viruses, including strains with pandemic potential, is unclear. Our aim in this study is to evaluate the ability of a combination DNA vaccine consisting of two plasmids encoding the HA genes from two different subtypes and a DNA vaccine encoding the viral nucleoprotein gene from a H5 virus to induce protection against highly lethal infection caused by H5 and H7 influenza viruses in chickens. Chickens given a single dose of plasmids expressing H5 and H7 hemagglutinins protected the birds from infection by either subtype. However, birds immunized with nucleoprotein DNA and challenged with either A/Ck/Vic/1/85(H7N7) or A/Ty/Ir/1/83 (H5N8) showed definite signs of infection, suggesting inadequate immunity against viral infection. Fifty percent of the nucleoprotein DNA immunized birds survived infection by influenza A/Ty/Ir/1/83 (H5N8) virus (virus of same subtype) while 42% survived infection by influenza A/Ck/Vic/1/85/(H7N7) virus (virus of a different subtype). These studies demonstrate that immunization with DNA encoding a type-specific gene may not be effective against either homologous or heterologous strains of virus, particularly if the challenge virus causes a highly lethal infection. However, the combination of HA subtype vaccines are effective against lethal infection caused by viruses expressing any of the HA subtypes used in the combination preparation.  相似文献   

4.
《Vaccine》2016,34(26):2926-2933
Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines.  相似文献   

5.
《Vaccine》2018,36(19):2712-2720
Since preexisting immunity and enhanced infection rates in a clinical trial of an HIV vaccine have raised some concerns on adenovirus (Ad) serotype 5-based vaccines, we evaluated the subgroup D adenovirus serotype Ad19a for its suitability as novel viral vector vaccine against mucosal infections. In BALB/c mice, we compared the immunogenicity and efficacy of E1/E3-deleted Ad19a vectors encoding the influenza A virus (IAV)-derived antigens hemagglutinin (HA) and nucleoprotein (NP) to the most commonly used Ad5 vectors. The adenoviral vectors were applied intranasally and induced detectable antigen-specific T cell responses in the lung and in the spleen as well as robust antibody responses. A prior DNA immunization significantly improved the immunogenicity of both vectors and resulted in full protection against a lethal infection with a heterologous H3N2 virus. Nevertheless, the Ad5-based vectors were slightly superior in reducing viral replication in the lung which corresponded to higher NP-specific T cell responses measured in the lungs.  相似文献   

6.
Sipo I  Knauf M  Fechner H  Poller W  Planz O  Kurth R  Norley S 《Vaccine》2011,29(8):1690-1699
The recent H1N1 influenza pandemic and the inevitable delay between identification of the virus and production of the specific vaccine have highlighted the urgent need for new generation influenza vaccines that can preemptively induce broad immunity to different strains of the virus. In this study we have produced AAV-based vectors expressing the A/Mexico/4603/2009 (H1N1) hemagglutinin (HA), nucleocapsid (NP) and the matrix protein M1 and have evaluated their ability to induce specific immune response and protect mice against homologous and heterologous challenge. Each of the vaccine vectors elicited potent cellular and humoral immune responses in mice. Although immunization with AAV-M1 did not improve survival after challenge with the homologous strain, immunization with the AAV-H1 and AAV-NP vectors resulted in survival of all mice, as did inoculation with a combination of all three vectors. Furthermore, trivalent vaccination also conferred partial protection against challenge with the highly heterologous and virulent A/PR/8/34 strain of H1N1 influenza.  相似文献   

7.
Takada A  Matsushita S  Ninomiya A  Kawaoka Y  Kida H 《Vaccine》2003,21(23):3212-3218
It has been known that influenza A virus infection induces a cross-protective immunity against infection by viruses with different subtypes of viral envelope proteins, hemagglutinin (HA) and neuraminidase (NA). This heterosubtypic immunity is generally mediated by cytotoxic T lymphocytes (CTL) reactive to specific epitopes in the viral internal proteins, such as nucleoprotein and matrix protein. By contrast, immunization with inactivated virus antigens has been thought to be unable to generate heterosubtypic immunity, since inactivated antigens do not usually induce CTL responses. However, we show that intranasal immunization with formalin-inactivated intact virus, but not ether-split vaccines, induced a broad spectrum of heterosubtypic protective immunity in mice. The protection may be mediated by the mucosal immune response, most likely secretory IgA antibodies to the viral proteins. This approach may overcome limitations in the efficacy of inactivated influenza vaccines and confer potent immunity to humans against viruses with new pandemic potential.  相似文献   

8.
Changes in influenza viruses require regular reformulation of strain-specific influenza vaccines. Vaccines based on conserved antigens provide broader protection. Influenza matrix protein 2 (M2) is highly conserved across influenza A subtypes. To evaluate its efficacy as a vaccine candidate, we vaccinated mice with M2 peptide of a widely shared consensus sequence. This vaccination induced antibodies that cross-reacted with divergent M2 peptide from an H5N1 subtype. A DNA vaccine expressing full-length consensus-sequence M2 (M2-DNA) induced M2-specific antibody responses and protected against challenge with lethal influenza. Mice primed with M2-DNA and then boosted with recombinant adenovirus expressing M2 (M2-Ad) had enhanced antibody responses that crossreacted with human and avian M2 sequences and produced T-cell responses. This M2 prime-boost vaccination conferred broad protection against challenge with lethal influenza A, including an H5N1 strain. Vaccination with M2, with key sequences represented, may provide broad protection against influenza A.  相似文献   

9.
《Vaccine》2015,33(49):6988-6996
Vaccination is at present the most efficient way of preventing influenza infections. Currently used inactivated influenza vaccines can induce virus-neutralizing antibodies that are protective against a particular influenza strain, but hamper the induction of cross-protective T-cell responses to later infections. Thus, influenza vaccines need to be updated annually in order to confer protection against circulating influenza strains. This study aims at developing an efficient vaccine that can induce broader protection against influenza. For this purpose, we have used the highly conserved nucleoprotein (NP) from an influenza A virus subtype H7N7 strain, and inserted it into a vaccine format that targets an antigen directly to relevant antigen presenting cells (APCs). The vaccine format consists of bivalent antigenic and targeting units, linked via an Ig-based dimerization unit. In this study, NP was linked to MIP-1α, a chemokine that targets the linked antigen to chemokine receptors 1, 3 and 5 expressed on various APCs. The vaccine protein was indirectly delivered by DNA. Mice were vaccinated intradermally with plasmids, in combination with electroporation to enhance cellular uptake of DNA. We found that a single DNA vaccination was sufficient for induction of both antibody and T cell responses in BALB/c mice. Targeting of nucleoprotein to chemokine receptors enhanced T cell responses but not antibody responses. Moreover, a single dose of MIP1α-NP conferred protection in BALB/c mice against a lethal challenge with an H1N1 influenza virus. The observed cross-protection was mediated by CD8+ T cells.  相似文献   

10.
《Vaccine》2022,40(32):4412-4423
In response to immune pressure, influenza viruses evolve, producing drifted variants capable of escaping immune recognition. One strategy for inducing a broad-spectrum immune response capable of recognizing multiple antigenically diverse strains is to target conserved proteins or protein domains. To that end, we assessed the efficacy and immunogenicity of mRNA vaccines encoding either the conserved stem domain of a group 1 hemagglutinin (HA), a group 2 nucleoprotein (NP), or a combination of the two antigens in mice, as well as evaluated immunogenicity in naïve and influenza seropositive nonhuman primates (NHPs). HA stem-immunized animals developed a robust anti-stem antibody binding titer, and serum antibodies recognized antigenically distinct group 1 HA proteins. These antibodies showed little to no neutralizing activity in vitro but were active in an assay measuring induction of antibody-dependent cellular cytotoxicity. HA-directed cell-mediated immunity was weak following HA stem mRNA vaccination; however, robust CD4 and CD8 T cell responses were detected in both mice and NHPs after immunization with mRNA vaccines encoding NP. Both HA stem and NP mRNA vaccines partially protected mice from morbidity following lethal influenza virus challenge, and superior efficacy against two different H1N1 strains was observed when the antigens were combined. In vivo T cell depletion suggested that anti-NP cell-mediated immunity contributed to protection in the mouse model. Taken together, these data show that mRNA vaccines encoding conserved influenza antigens, like HA stem and NP in combination, induce broadly reactive humoral responses as well as cell-mediated immunity in mice and NHPs, providing protection against homologous and heterologous influenza infection in mice.  相似文献   

11.
We analyzed humoral and cellular immune responses against vaccine antigens and the new A(H1N1) virus in healthy adults before and after immunization with the 2007/2008 commercially available trivalent subunit MF59-adjuvanted influenza vaccine during the Fall 2007, prior to the emergence of the new virus. Antibody titers were significantly boosted only against the three vaccine antigens. Seasonal vaccination boosted pre-existing cellular responses upon stimulation of peripheral blood mononuclear cells not only with the homologous three vaccine antigens, but also with the heterologous new 2009 A(H1N1) and with a highly conserved peptide present in the stalk region of hemagglutinin (HA). These results show that cross-reactive cell responses against the new virus were present before the circulation of the virus and were boosted by seasonal vaccination. The cross-reactivity of cellular responses might, at least in part, explain the low pathogenicity of the new pandemic virus. The finding of cellular immunity, that can be increased by seasonal vaccination, against the conserved HA peptide, underline the potential use, in human vaccines, of conserved peptides of the stalk region of HA characterized by broad immunogenicity in experimental systems.  相似文献   

12.
Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP + M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP + M1 and a secondary vaccination with MVA-NP + M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry.  相似文献   

13.
DNA electroporation is a powerful vaccine strategy that could be rapidly adapted to address emerging viruses. We therefore compared cellular and humoral immune responses in mice vaccinated with DNA expression plasmids encoding either the wildtype or a codon-optimized sequence of hemagglutinin from the novel swine origin H1N1 influenza virus. While expression of HA from the wildtype sequence was hardly detectable, the H1N1 hemagglutinin was well expressed from the codon-optimized sequence. Despite poor expression of the wildtype sequence, both plasmids induced similar levels of CD4+ T-cell responses. However, CD8+ T-cell and antibody responses were substantially higher after immunization with the codon-optimized DNA vaccine. Thus, efficient induction of immune effector mechanisms against HA of the novel H1N1 influenza virus requires codon-optimization of the DNA vaccines. Since DNA vaccines and several viral vector vaccines employ the same cellular RNA-Polymerase II dependent expression pathway, the poor expression levels from wildtype HA sequences might also limit the induction of immune effector mechanisms by such viral vector vaccines.  相似文献   

14.
Killed viral vaccines are known to induce primarily antibody responses. By contrast DNA vaccination using naked DNA encoding viral antigens induces both humoral and cellular immune responses. Various approaches have been used to construct DNA vaccines with build-in adjuvanticity. We hypothesized that sequences encoding a common epitope of influenza A virus hemagglutinin jointed to sequences encoding a single-chain variable fragment (scFv) antibody fragment to a costimulatory B cell surface receptor would result in the in vivo expression of a chimeric viral peptide with increased immunogenicity. Such a hybrid DNA molecule was constructed by us, encoding a T and B cell epitope-containing influenza hemagglutinin peptide and a scFv antibody fragment binding to mouse complement receptors I and II (CR1 and CR2). A single immunization with a plasmid containing the described construct induced a strong anti-influenza cytotoxic response lasting for more than six months and a weak antibody response.  相似文献   

15.
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8+ T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.  相似文献   

16.
《Vaccine》2017,35(2):238-247
Influenza viruses are responsible for substantial morbidity and mortality during seasonal epidemics. Vaccination is the most effective method to prevent infection, however due to antigenic drift of the viral surface protein hemagglutinin (HA), annual influenza virus vaccination is required. In addition to seasonal viruses, certain (avian) influenza A viruses of other subtypes, like H5N1 or H7N9, cause sporadic zoonotic infections. Therefore, the availability of game-changing novel vaccines that induce “universal” immune responses to a wide variety of influenza A virus subtypes is highly desirable. The quest for universal influenza vaccines has fueled the interest in broadly-reactive antibodies specific for the stalk of hemagglutinin (HA) and biological activities of antibodies other than direct virus neutralization, like antibody-dependent cellular cytotoxicity (ADCC). In the present study, we investigated the ADCC response upon influenza virus vaccination and infection in humans using a robust ADCC assay that is based on the use of recombinant HA and a continuous NK cell line that expresses FcγRIII (CD16). This assay offers advantages over existing methods, like ease to perform and possibilities to standardize. We showed that HA-specific ADCC mediating antibodies are induced by vaccination with adjuvanted trivalent seasonal and monovalent H1N1pdm09 inactivated vaccines, and by infection with H1N1pdm09 virus. In addition, the use of chimeric influenza HA with a H1 stem but antigenically irrelevant head domain derived from an avian virus allowed detection of H1-stalk-specific ADCC mediating antibodies. This assay will facilitate the assessment of ADCC mediating serum antibodies after (universal) influenza vaccination or infection and may define ADCC activity as a correlate of (cross-) protection in the future.  相似文献   

17.
Development of an influenza vaccine that provides cross-protective immunity remains a challenge. Candidate vaccines based on a recombinant modified vaccinia Ankara (MVA) viral vector expressing antigens from influenza (MVA/Flu) viruses were constructed. A vaccine candidate, designated MVA/HA1/C13L/NP, that expresses the hemagglutinin from pandemic H1N1 (A/California/04/09) and the nucleoprotein (NP) from highly pathogenic H5N1 (A/Vietnam/1203/04) fused to a secretory signal sequence from vaccinia virus was highly protective. The vaccine elicited strong antibody titers to homologous H1N1 viruses while cross-reactive antibodies to heterologous viruses were not detectable. In mice, this MVA/HA1/C13L/NP vaccine conferred complete protection against lethal challenge with A/Vietnam/1203/04 (H5N1), A/Norway/3487-2/09 (pandemic H1N1) or A/Influenza/Puerto Rico/8/34 (seasonal H1N1) and partial protection (57.1%) against challenge with seasonal H3N2 virus (A/Aichi/68). The protective efficacy of the vaccine was not affected by pre-existing immunity to vaccinia. Our findings highlight MVA as suitable vector to express multiple influenza antigens that could afford broad cross-protective immunity against multiple subtypes of influenza virus.  相似文献   

18.
The combination of rapid evolution and high mortality in human cases of infections has raised concerns that the H5N1 avian influenza virus may become a new, possibly severe, pandemic virus. Vaccination is likely to be the most efficient strategy to mitigate the impact of the next influenza pandemic. The present study evaluates B and T cell immune responses generated by the H5N1 viral antigens, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), or the M2 ion channel in parallel, expressed from a DNA vaccine vehicle. Protection studies of immunized mice challenged with 100 LD50 of homologous or heterologous H5N1 viruses indicate that HA afforded better protection than the NA, NP or M2 DNA vaccines. The antibody response was also higher in HA-vaccinated mice as determined by hemagglutination inhibition (HI) and neutralizing antibodies (NAB) assays. Interestingly, the T cell response was higher against HA than against NA, NP or M2 and was detectable at low doses of the DNA–HA vaccine capable of inducing complete protection, despite the absence of a detectable B cell response. This study emphasizes the need to evaluate the relationship between both arms of the adaptive immune responses in regards to protective efficacy against influenza virus.  相似文献   

19.
Equine influenza A (H3N8) virus infection is a leading cause of respiratory disease in horses, resulting in widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, often requiring the development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against diverse subtypes and require frequent boosts. Research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity. Here, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication by homologous H3N8 virus in horses. Furthermore, we demonstrate that needle-free delivery is as efficient and effective as conventional parenteral injection using a needle and syringe. These findings suggest that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against equine influenza.  相似文献   

20.
《Vaccine》2018,36(6):873-880
Existing Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics. One solution is to design vaccines that target conserved protein domains of influenza, which remain largely unchanged over time and are likely to be found in emergent variants. We present a virus-like particle (VLP), built using the hepatitis B virus tandem core platform, as an IAV vaccine candidate containing multiple conserved antigens. Hepatitis B core protein spontaneously assembles into a VLP that is immunogenic and confers immunogenicity to proteins incorporated into the major insertion region (MIR) of core monomers. However, insertion of antigen sequences may disrupt particle assembly preventing VLP formation or result in unstable particles. We have overcome these problems by genetically manipulating the hepatitis B core to express core monomers in tandem, ligated with a flexible linker, incorporating different antigens at each of the MIRs. Immunisation with this VLP, named Tandiflu1, containing 4 conserved antigens from matrix protein 2 ectodomain and hemagglutinin stalk, leads to production of cross-reactive and protective antibodies. The polyclonal antibodies induced by Tandiflu1 can bind IAV Group 1 hemagglutinin types H1, H5, H11, H9, H16 and a conserved epitope on matrix protein 2 expressed by most strains of IAV. Vaccination with Tandiflu1 results in 100% protection from a lethal influenza challenge with H1N1 IAV. Serum transfer from vaccinated animals is sufficient to confer protection from influenza-associated illness in naïve mice. These data suggest that a Tandem Core based IAV vaccine might provide broad protection against common and emergent H1 IAV strains responsible for seasonal and pandemic influenza in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号