首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The history of how we reached the goal of determining the mechanism of vasodilatation caused by non-adrenergic, non-cholinergic nerve stimulation in cerebral arteries was traced. We concluded from this project that electrical and chemical (by nicotine) stimulations evoke an increased influx of Ca2+ into nerve terminals and activate nitric oxide (NO) synthase, resulting in the synthesis and release of NO that stimulates the guanylate cyclase in smooth muscle, thereby causing the accumulation of cyclic GMP and eliciting muscle relaxation. Reviewed also are the neurally-induced inhibitory responses of extracranial arteries, intestines, etc. with respect to NO.  相似文献   

2.
Summary The molecular mechanism(s) underlying the vasodilator activity of CAS 936 (3-(cis-2,6-dimethylpiperidino)-N-(4-methoxybenzoyl)-sydnonimine) and its metabolites 3-(cis-2,6-dimethylpiperidino)-sydnonimine (C87 3754) and N-(cis-2,6-dimethylpiperidino)-N-nitroso-2-aminoacetonitril (C873786) was investigated. These compounds were tested for their relaxant activity in isolated rabbit arterial segments, activation of purified soluble guanylyl cyclase and release of nitric oxide (NO) in vitro and in vivo. C873754 and C873786 inhibited the noradrenalin-induced contraction and increased the cyclic GMP content of endothelium-denuded rabbit aortic and femoral segments, whereas CAS 936 was without effect. Similarly, both metabolites, but not CAS 936, activated purified soluble guanylyl cyclase (EC50 about 30 M) and released NO in buffered aqueous solutions, as detected by electron spin resonance (esr) spectrometry. Both in vitro and in vivo an accumulation of NO was detected by esr spectrometry in vascular tissues exposed to the metabolites of CAS 936, whereas a significant release of NO from CAS 936 was only detected in the isolated rabbit liver, but not in vascular tissue. It is conceivable, therefore, that the metabolites of CAS 936 appearing in the systemic circulation after hepatic biotransformation induce vasodilatation by release of NO and activation of soluble guanylyl cyclase in vascular smooth muscle. Moreover, the activation of soluble guanylyl cyclase in vitro by the metabolites of CAS 936 was significantly enhanced by co-incubation with certain particulate fractions from bovine aortic endothelial and smooth muscle cells. Thus, an enzymic release of NO from these metabolites in addition to their spontaneous decomposition may play a significant role for their vasodilator activity in vivo.Correspondence to A. Mülsch at the above address  相似文献   

3.
Mechanisms underlying celiprolol-induced vasodilatation were analyzed in isolated porcine coronary arteries. Celiprolol induced dose-related relaxation of the artery rings with endothelium, an effect which was suppressed by N(G)-nitro-L-arginine methylester (L-NAME), nitric oxide (NO) scavenger, guanylate cyclase inhibitor, endothelium denudation, and removal of Ca(2+). L-NAME contracted, and superoxide dismutase relaxed, the arteries only when the endothelium was preserved. Neither superoxide dismutase nor beta-adrenoceptor antagonists changed celiprolol-induced relaxations. Celiprolol increased the cyclic GMP content in the tissue. The release of NO from endothelium, estimated by the extracellular production of cyclic GMP in arteries incubated in medium containing guanylate cyclase and GTP, was augmented by celiprolol, and L-NAME abolished this action of celiprolol. It is concluded that celiprolol elicits relaxation by acting on sites other than beta-adrenoceptors in the endothelium and by releasing NO, which activates soluble guanylate cyclase in smooth muscle and produces cyclic GMP. Scavenging of superoxide anions from the endothelium does not seem to account for the induced relaxation.  相似文献   

4.
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.  相似文献   

5.
1. Vascular endothelial and smooth muscle cells generate nitric oxide (NO) via different nitric oxide synthase (NOS) isozymes. Activation of the endothelial constitutive NOS (ecNOS) contributes to the maintenance of cardiovascular homeostasis, whereas expression of the endotoxin- and cytokine-inducible pathway (iNOS) within the vascular smooth muscle is thought to be responsible for the cardiovascular collapse which occurs during septic shock and antitumour therapy with cytokines. Since the cytoskeleton is involved in the activation of certain genes and in some effects of endotoxin in macrophages, we investigated the role of microtubules and microfilaments in the activation of the NO pathway in cultured vascular cells. 2. Depolymerization of microtubules by either nocodazole or colchicine prevented lipopolysaccharide (LPS)- and interleukin-1 beta-induction of NO-dependent cyclic GMP accumulation. Steady state levels of iNOS mRNA, assessed by Northern blot and RT-PCR, and iNOS protein, assessed by Western blotting, were also decreased by either colchicine or nocodazole treatment. 3. Taxol enhanced microtubule polymerization alone, and prevented microtubule depolymerization elicited by nocodazole and colchicine. Associated with its effect on microtubule assembly, taxol prevented the inhibitory effects of nocodazole and colchicine on cyclic GMP accumulation and iNOS mRNA levels. 4. Disruption of microfilaments by cytochalasins had no inhibitory effect on the activation of the inducible NO pathway. 5. In contrast to cytokine-stimulated smooth muscle cells, modulation of either microtubule or microfilament assembly did not affect the constitutive NO pathway in endothelial cells, as endothelial cell- and NO-dependent cyclic GMP accumulation in endothelial-smooth muscle co-cultures remained unchanged. 6. Our findings demonstrate that microtubules play a prominent role in the activation of the inducible NO pathway in response to inflammatory mediators in smooth muscle cells but not of the constitutive synthesis of NO in endothelial cells.  相似文献   

6.
7.
1 In this study we examined the endothelium-dependent effect of YC-1 - a benzyl indazole derivative which directly activates soluble guanylyl cyclase (sGC) - on vascular relaxation and nitric oxide (NO) and guanosine-3',5'-cyclic monophosphate (cyclic GMP) in endothelial cells. 2 In preconstricted rat aortic rings with intact endothelium, YC-1 produced a concentration-dependent relaxation. However, the concentration response curve was shifted rightward to higher concentrations of YC-1, when (i) the aortas were pre-treated with L-NG-nitroarginine methylester (L-NAME) or (ii) the endothelium was removed. 3 Incubation of bovine aortic endothelial cells (BAEC) with YC-1 produced a concentration-dependent NO synthesis and release as assessed using a porphyrinic microsensor. Pre-incubating cells with L-NAME or with 8-bromo-cyclic GMP decreased this effect indicating that the YC-1 stimulation of NO synthesis is due to an activation of nitric oxide synthase, but not to an elevation of cyclic GMP. No direct effect of YC-1 on recombinant endothelial constitutive NO synthase activity was observed. 4 The YC-1 stimulated NO release was reduced by 90%, when extracellular free calcium was diminished. 5 In human umbilical vein endothelial cells (HUVEC), YC-1 stimulated intracellular cyclic GMP production in a concentration- and time-dependent manner. Stimulation of cyclic GMP was greater with a maximum concentration of YC-1 compared to calcium ionophore A23187. Similar effects were observed in BAEC and rat microvascular coronary endothelial cells (RMCEC). 6 When HUVEC and RMCEC were pre-treated with L-NG-nitroarginine (L-NOARG), the maximum YC-1 stimulated cyclic GMP increase was reduced by >/=50%. 7 These results indicate, that beside being a direct activator of sGC, YC-1 stimulates a NO-synthesis and release in endothelial cells which is independent of elevation of cyclic GMP but strictly dependent on extracellular calcium. The underlying mechanism needs to be determined further.  相似文献   

8.
The effects of isosorbide 5-mononitrate (5-ISMN) on vascular smooth muscle tone and cyclic GMP levels in isolated rabbit aorta and vena cava were compared. 5-ISMN induced concentration-dependent relaxation of noradrenaline-contracted strips of aorta and vena cava. 5-ISMN was over 100 times more potent in eliciting relaxation in vena cava than in aorta. Unlike 5-ISMN, 8-bromo cyclic GMP produced concentration-dependent relaxation with similar potency in both strips. The relaxation induced in both strips by 5-ISMN but not by 8-bromo cyclic GMP was inhibited by pretreatment with 5 X 10(-5) M methylene blue. The 5-ISMN-induced changes in tone of both strips were closely associated with those in cyclic GMP levels. 5-ISMN increased the cyclic GMP levels of both strips in a concentration-dependent manner. 5-ISMN was also considerably more potent in increasing cyclic GMP levels in vena cava than in aorta. This 5-ISMN-induced increases in cyclic GMP levels of both strips were inhibited by pretreatment with methylene blue. These results suggest that cyclic GMP could be involved in the 5-ISMN-induced relaxation of smooth muscle from both aorta and vena cava. Furthermore, the finding that 5-ISMN was more active on vena cava than on aorta both to cause relaxation and increase cyclic GMP levels indicates that cyclic GMP-mediated vasodilatation may be responsible for the pharmacological action of 5-ISMN in vivo.  相似文献   

9.
1. To assess the involvement of endothelial alpha(2)-adrenoceptors in the clonidine-induced vasodilatation, the mesenteric artery of Sprague Dawley rats was cannulated and perfused with Tyrode solution (2 ml min(-1)). We measured perfusion pressure, nitric oxide (NO) in the perfusate using chemiluminescence, and tissue cyclic GMP by RIA. 2. In phenylephrine-precontracted mesenteries, clonidine elicited concentration-dependent vasodilatations associated to a rise in luminal NO. One hundred nM rauwolscine or 100 microM L(omega)-nitro-L-arginine antagonized the clonidine-induced vasodilatation. Guanabenz, guanfacine, and oxymetazoline mimicked the clonidine-induced vasorelaxation. 3. In non-contracted mesenteries, 100 nM clonidine elicited a maximal rise of NO (123+/-13 pmol); associated to a peak in tissue cyclic GMP. Endothelium removal, L(omega)-nitro-L-arginine, or rauwolscine ablated the rise in NO. One hundred nM aminoclonidine, guanfacine, guanabenz, UK14,304 and oxymetazoline mimicked the clonidine-induced surge of NO. Ten microM ODQ obliterated the clonidine-induced vasorelaxation and the associated tissue cyclic GMP accumulation; 10 - 100 nM sildenafil increased tissue cyclic GMP accumulation without altering the clonidine-induced NO release. 4. alpha(2)-Adrenergic blockers antagonized the clonidine-induced rise in NO. Consistent with a preferential alpha(2D)-adrenoceptor activation, the K(B)s for yohimbine, rauwolscine, phentolamine, WB-4101, and prazosin were: 6.8, 24, 19, 165, and 1489 nM, respectively. 5. Rat pretreatment with 100 mg kg(-1) 6-hydroxydopamine reduced 95% tissue noradrenaline and 60% neuropeptide Y. In these preparations, 100 nM clonidine elicited a rise of 91.9+/-15.5 pmol NO. Perfusion with 1 microM guanethidine or 1 microM guanethidine plus 1 microM atropine did not modify the NO surge evoked by 100 nM clonidine. 6. Clonidine and congeners activate endothelial alpha(2D)-adrenoceptors coupled to the L-arginine pathway, suggesting that the antihypertensive action of clonidine involves an endothelial vasorelaxation mediated by NO release, in addition to presynaptic mechanisms.  相似文献   

10.
1. Guanosine 3':5'-cyclic monophosphate (cyclic GMP) release and vascular tone was measured in the isolated kidney of the rat perfused at constant flow with Krebs-Henseleit solution. The effects of 3 vasodilators, acetylcholine (ACh), atrial natriuretic factor (ANF) and sodium nitroprusside (SNP) on the renal release of cyclic GMP and vascular tone were examined. The ability of the endothelial-derived relaxing factor (EDRF) inhibitors, haemoglobin and gossypol, to modify vasodilatation and vasodilator-induced changes in cyclic GMP releases from the kidney was also investigated. 2. Renal cyclic GMP release was elevated 8 fold by ANF (0.01 microM), 5 fold by SNP (1 microM) and 3 fold by ACh (0.3 microM). 3. For ACh, both the increase in renal cyclic GMP release and the vasodilatation were reduced by the EDRF inhibitors, haemoglobin (1 microM) and gossypol (15 microM). For SNP, neither the increase in renal cyclic GMP release nor vasodilatation were inhibited by gossypol (15 microM). 4. For ANF, neither the increase in cyclic GMP release from the kidney nor its vasodilator activity were affected by haemoglobin (1 microM). 5. EDRF inhibitors reduced the basal release of cyclic GMP from 0.32 +/- 0.06 pmol min-1 to 0.18 +/- 0.03 pmol min-1, gossypol being more effective than haemoglobin. 6. The results are consistent with the ability of ACh to induce EDRF-mediated vasodilatation in the isolated perfused kidney of the rat. Basal EDRF release appears to contribute approximately 50% to the basal release of cyclic GMP from this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Vascular smooth muscle relaxation elicited by various endogenous substances results from their interaction with vascular endothelial cells to trigger the formation of endothelium-derived relaxing factor (EDRF). EDRF from pulmonary and peripheral arteries and veins and from cultured and freshly harvested aortic endothelial cells has been identified pharmacologically and chemically as nitric oxide (NO) or a labile nitroso compound. Endothelium-derived NO (EDNO) and authentic NO activate the cytoplasmic form of guanylate cyclase by heme-dependent mechanisms and thereby stimulate intra-cellular cyclic GMP accumulation in cells including vascular smooth muscle and platelets. Cyclic GMP functions as a second messenger to cause vascular smooth muscle relaxation and inhibition of platelet aggregation and adhesion to vascular endothelial surfaces. EDNO is synthesized from L-arginine and perhaps arginine-containing peptides by an unidentified calcium-requiring process coupled to the occupation of extracellular endothelial receptors. The biological actions of EDNO are terminated by spontaneous oxidation to NO2 and NO3 . The biological half-life of the very lipophilic EDNO is only 3–5 sec and this allows EDNO to function locally as an autacoid. Nitroglycerin and other organic nitrate esters elicit endothelium-independent relaxation after entering vascular smooth muscle cells and undergoing denitration and formation of NO. The pharmacological actions of nitroglycerin are therefore essentially the same as those of EDNO, and the endogenous NO receptor is the heme group bound to soluble guanylate cyclase. EDNO may serve a biological role to modulate local blood flow and platelet function.  相似文献   

12.
1. The effects of the nitric oxide (NO) donors, 3-morpholino-sydnonimine (SIN-1), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside on basal and electrically evoked release of [3H]-acetylcholine were studied in myenteric plexus longitudinal muscle preparations of the guinea-pig small intestine preincubated with [3H]-choline. 2. The NO donors concentration-dependently increased basal release of [3H]-acetylcholine. The increase in release was calcium-dependent and was prevented in the presence of tetrodotoxin. Superoxide dismutase (150 u ml-1) potentiated the effect of SIN-1. The selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ, 0.01-1 microM), antagonized the facilitatory effect of SNAP. 8-Bromo cyclic GMP and the cyclic GMP-specific phosphodiesterase inhibitor, zaprinast (both 0.1-1 mM), also enhanced basal [3H]-acetylcholine release. The effect of 10 microM SNAP was significantly enhanced in the presence of zaprinast. 3. The NO donors concentration-dependently inhibited the electrically evoked release of [3H]-acetylcholine, whereas 8-bromo cyclic GMP and zaprinast enhanced the evoked release. The inhibition of acetylcholine release by SNAP was not affected by ODQ (0.01-1 microM). 4. It is concluded that NO stimulates basal acetylcholine release from myenteric neurones through activation of guanylyl cyclase. In addition, NO inhibits the depolarization evoked release of acetylcholine by a presynaptic mechanism unrelated to cyclic GMP. The data imply that NO is not only an inhibitory transmitter to intestinal smooth muscles but also a modulator of cholinergic neurotransmission in the myenteric plexus.  相似文献   

13.
The effect of cyclic GMP was investigated using guinea-pig tracheal smooth muscle. 8-Bromo-cyclic GMP showed a dose-dependent relaxation of spontaneous tension of tracheal smooth muscle. Administration of sodium nitroprusside induced dose-dependent relaxation of tracheal smooth muscle as well as an increase in tissue levels of cyclic GMP. Nicorandil, N-(2-hydroxyethyl) nicotinamide nitrate showed dose-dependent relaxation of tracheal smooth muscle and an increase in cyclic GMP levels in the tissue. N-(2-aminoethyl) nicotinamide dihydrochloride, which is a nicorandil derivative and differs minimally in its molecular structure (-NH2 vs -NO2), had neither a relaxant effect on tracheal smooth muscle nor did it increase the level of cyclic GMP in the tissue. The rise cyclic GMP levels preceded the relaxation of tracheal smooth muscle induced by sodium nitroprusside. These results suggest that cyclic GMP is one of the relaxant factors and that nitro-derivatives exhibit their relaxant effect on the smooth muscle mediated by an increase in cyclic GMP level.  相似文献   

14.
15.
1. Cyclic guanosine monophosphate (cyclic GMP)-mediated mechanism plays an important role in vasodilatation and blood pressure regulation. We investigated the effects of high salt intake on the nitric oxide (NO) - cyclic GMP signal transduction pathway regulating relaxation in aortas of spontaneously hypertensive rats (SHR). 2. Four-week-old SHR and normotensive Wistar-Kyoto rats (WKY) received a normal salt diet (0.3% NaCl) or a high salt diet (8% NaCl) for 4 weeks. 3. In aortic rings from SHR, endothelium-dependent relaxations in response to acetylcholine (ACh), adenosine diphosphate (ADP) and calcium ionophore A23187 were significantly impaired by the high salt intake. The endothelium-independent relaxations in response to sodium nitroprusside (SNP) and nitroglycerin were also impaired, but that to 8-bromo-cyclic GMP remained unchanged. On the other hand, high salt diet had no significant effects on the relaxations of aortic rings from WKY. 4. In aortas from SHR, the release of NO stimulated by ACh was significantly enhanced, whereas the production of cyclic GMP induced by either ACh or SNP was decreased by the high salt intake. 5. Western blot analysis showed that the protein level of endothelial NO synthase (eNOS) was slightly increased, whereas that of soluble guanylate cyclase (sGC) was dramatically reduced by the high salt intake. 6. These results indicate that in SHR, excessive dietary salt can result in downregulation of sGC followed by decreased cyclic GMP production, which leads to impairment of vascular relaxation in responses to NO. It is notable that chronic high salt intake impairs the sGC/cyclic GMP pathway but not the eNOS/NO pathway.  相似文献   

16.
Pranidipine, a long acting 1,4-dihydropyridine calcium channel blocker, prolongs nitric oxide (NO)-mediated relaxation of rat aorta; it prolongs acetylcholine-induced relaxation in presence of endothelium as well as nitroglycerin-induced relaxation in absence of endothelium. In rat aorta the effect of pranidipine on NO-mediated relaxation is cyclic guanosine monophosphate (cGMP)-independent, but in guinea pig carotid artery the same effect of pranidipine is cGMP-dependent. It has been reported that in co-cultured human endothelial and smooth muscle cells pranidipine, at a higher concentration (10(-6) M), enhances vasorelaxant effect of NO by blocking NO decomposition. The enhancement of NO action by pranidipine differs from the direct NO-releasing action of other 1,4-dihydropyridines. It is expected that enhancement of NO-induced vasodilatation will lead to a venodilator action in vivo and less peripheral edema. The target organ protective effects of pranidipine are also reviewed in this article.  相似文献   

17.
1. We examined whether endogenous inhibitors of NO synthesis are involved in the augmentation of intimal hyperplasia in rabbits with hyperglycaemia induced by alloxan. 2. Four weeks after the endothelial denudation of carotid artery which had been performed 12 weeks after alloxan, the intimal hyperplasia was greatly augmented with hyperglycaemia. The degree of hyperplasia was assessed using three different parameters of histopathological findings as well as changes in luminal area and intima: media ratio. 3. There were positive and significant correlations between intima:media ratio, plasma glucose, and concentrations of N(G)-monomethyl-L-arginine (L-NMMA) and N(G), N(G)-dimethyl-L-arginine (ADMA) in endothelial cells, that is, the intima:media ratio became greater as plasma glucose and endothelial L-NMMA and ADMA were increased. Furthermore, endothelial L-NMMA and ADMA were increased in proportion to the increase in plasma glucose. 4. In contrast, there were inverse and significant correlations between cyclic GMP production by carotid artery strips with endothelium and plasma glucose, between cyclic GMP production and endothelial L-NMMA and ADMA, and between the intima:media ratio and cyclic GMP production. 5. Exogenously applied L-NMMA and ADMA inhibited cyclic GMP production in a concentration-dependent manner. IC50 values were determined to be 12.1 microM for the former and 26.2 microM for the latter. The cyclic GMP production was abolished after the deliberate removal of endothelium from the artery strips. 6. These results suggest that the augmentation of intimal hyperplasia with hyperglycaemia is closely related to increased accumulation of L-NMMA and ADMA with hyperglycaemia, which would result in an accelerated reduction in NO production/release by endothelial cells.  相似文献   

18.
Various oxime derivatives were evaluated as nitric oxide (NO) donors in arteries. Relaxation of rat aortic rings was used for bioassay of NO production, and electron paramagnetic resonance spectroscopy for demonstration of NO elevation. In rings with or without endothelium or adventitia, hydroxyguanidine and hydroxyurea were almost inactive, whereas formamidoxime, acetaldoxime, acetone oxime, acetohydroxamic acid and formaldoxime elicited relaxation. Active compounds increased NO levels in endothelium-denuded rings. Formaldoxime was the most potent agent for both relaxation and NO elevation in aortic rings, and it also increased NO in human aortic smooth muscle cells. In endothelium-denuded rings, relaxation was inhibited by a NO scavenger (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and by inhibitors of soluble guanylyl-cyclase (1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one) or cyclic GMP-dependent protein kinases (Rp-8-bromo cyclic GMP monophosphorothioate). Neither N(omega)-nitro-l-arginine methylester (a NO synthases inhibitor) nor proadifen (a cytochrome P450 inhibitor) decreased the effect of oxime derivatives. However, 7-ethoxyresorufin (7-ER, an inhibitor of P4501A(1) which can also inhibit various NADPH-dependent reductases) abolished the relaxant effect of these compounds, without affecting the one of glyceryl trinitrate (GTN) or 2-(N,N-diethylamino)-diazenolate-2-oxide. 7-ER also abolished formaldoxime-induced NO increase in aortic rings. In rings tolerant to GTN, formaldoxime-induced relaxation and NO elevation were not different from those obtained in control rings. In conclusion, some oxime derivatives release NO by 7-ER-sensitive pathways in aortic smooth muscle, thus eliciting vasorelaxation. Pathways of NO formation are likely distinct from NO synthases and from those responsible for GTN biotransformation. Oxime derivatives could be useful for NO delivery in arteries in which endothelial NO synthase activity is impaired.  相似文献   

19.
We have measured cyclic GMP accumulation in co-cultures of bovine aortic endothelial cells and rat smooth muscle cells as an index of endothelium-derived relaxing factor (EDRF) production. Adenosine deaminase (EC 3.5.4.4, Sigma type VI) produced a 5- to 10-fold increase in the basal and bradykinin-stimulated cyclic GMP content of co-cultures but had no effect on smooth muscle cells alone. Cyclic GMP accumulation in response to adenosine deaminase was not blocked by adenosine deaminase inhibitors or affected by adenosine, the products of adenosine deamination (inosine and ammonia), or adenosine receptor antagonists. Since superoxide anion is known to destroy EDRF and nitric oxide (NO) (which is similar or identical to EDRF in composition), we tested for superoxide dismutase (SOD, EC 1.15.1.1) in single lots of eight commercial sources of adenosine deaminase by measuring inhibition of the superoxide-mediated reduction of cytochrome c. SOD activity was found in all sources of adenosine deaminase, but varied widely. One lot of Sigma type VI enzyme contained 0.08 units SOD/unit adenosine deaminase. The EC50 values of purified SOD (0.23 units/mL) and Sigma type VI adenosine deaminase (2.1 units/mL) needed to increase the cyclic GMP content of co-cultures differed by a similar factor, 0.11. Thus, the SOD activity in adenosine deaminase is sufficient to account for its effect on cyclic GMP accumulation. One lot of Boehringer Mannheim adenosine deaminase contained much less SOD contamination (0.006 units SOD/unit adenosine deaminase) and produced much less accumulation of cyclic GMP in co-cultures. Cyclic GMP accumulations in response to adenosine deaminase and SOD were both abolished by the NO synthetase inhibitor NG-monomethyl-L-arginine (0.1 mM), consistent with the idea that these enzymes act by stabilizing EDRF. Adenosine deaminase and the SOD activity contaminating it were found to have similar molecular masses of 33-34 kD as assessed by gel permeation chromatography. When run under reducing conditions to dissociate homodimeric SOD into monomers, a 16.6 kD peptide which co-migrates with purified cupro-zinc SOD was visible in silver-stained sodium dodecyl sulfate-polyacrylamide gels of the Sigma type VI but not the Boehringer Mannheim adenosine deaminase. We conclude that commercial sources of adenosine deaminase are variably contaminated by SOD. Since EDRF is synthesized by many tissues, the use of adenosine deaminase contaminated with SOD may produce numerous effects not attributable to the deamination of adenosine.  相似文献   

20.
Cyclic GMP has been proposed as an intracellular mediator of neuronally-induced relaxation in lower esophageal sphincter (LES) smooth muscle. If cyclic GMP is indeed an intracellular messenger, then agents that activate enteric neurons of the sphincter [e.g. the ganglionic nicotinic receptor agonist dimethylphenylpiperazinium (DMPP)] also should cause a relaxation that is associated with an increase in cyclic GMP content. In isolated smooth muscle strips of canine LES, DMPP produced a rapid relaxation that was accompanied by a significant (P less than 0.05) increase in cyclic GMP content with no change in cyclic AMP content. Pretreatment of tissues with either tetrodotoxin or hexamethonium antagonized both the DMPP-induced relaxation and the associated increase in cyclic GMP. The combination of phentolamine and meclofenamic acid also antagonized both the relaxation and the elevation of cyclic GMP produced by DMPP. Electrical field stimulation (EFS)-induced relaxation and elevation in cyclic GMP was unaltered by meclofenamic acid and phentolamine. In conclusion, DMPP (like neuronal electrical activation) relaxed isolated canine LES through an enteric neuronal inhibitory pathway. The presence of phentolamine and meclofenamic acid did not affect EFS-induced effects, but blocked both the relaxation and the increase in cyclic GMP produced by DMPP, suggesting a more complicated pathway for DMPP in the release of inhibitory transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号