首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finley M  Fairman D  Liu D  Li P  Wood A  Cho S 《Brain research》2004,1001(1-2):125-132
To determine whether hippocampal pyramidal neurons retain authentic functional properties in mature organotypic culture, hippocampal slice cultures were established from young adult rats (P20-21). Cultures maintained 7 days in vitro retained tight organization of neuronal layers, as opposed to the widening restructure of pyramidal neurons often observed in perinatal slices. CA3 and CA1 pyramidal neurons fired action potentials in response to current injection and exhibited spontaneous and evoked synaptic currents, indicating intact neuronal function and normal hippocampal neural circuitry. We also tested neuronal sensitivity of slice cultures to ischemic injury. Acute ischemic paradigm resulted in selective death of pyramidal neurons in the CA1 region, which was prevented by treatment with an NMDA-antagonist, MK-801. Robust efflux of excitatory and inhibitory amino acid neurotransmitters was detected during ischemia, consistent with changes shown in acute slices. In summary, hippocampal organotypic cultures prepared from young adult rats maintained neuronal architecture and synaptic activity in vitro and can be used in parallel with an acute slice system to model mature brain tissue to examine ischemic pathophysiology and neuroprotective treatment.  相似文献   

2.
PURPOSE: We examined here whether a very short period of epileptiform activity could produce lasting modifications of synaptic strength and network properties in the rat hippocampus in vitro. METHODS: Synaptic transmission at CA3-CA1 and at CA3-CA3 pyramidal cell synapses was monitored in hippocampal slice cultures before and after a very brief episode of epileptiform activity (20-180 s) induced with bicuculline methochloride. RESULTS: We show here that a brief period of epileptiform activity induces long-lasting potentiation of glutamatergic transmission at CA3-CA1 and at CA3-CA3 pyramidal cell synapses. This potentiation also was observed at synapses formed by pairs of monosynaptically connected neurons. It was dependent on N-methyl-d-aspartate (NMDA) receptors, occluded classic long-term potentiation, and could be depotentiated by low-frequency stimulation at 3 Hz. Recruitment of polysynaptic pathways within area CA3 was facilitated after epileptiform activity indicating that the induced potentiation enhanced overall hippocampal network excitability. CONCLUSIONS: These changes in synaptic transmission may contribute to the genesis of epilepsy and to seizure-associated memory deficits.  相似文献   

3.
The anatomical and physiological properties of GABAergic inhibitory neurotransmission were investigated in organotypic slice cultures of rat hippocampus. Interneurons and terminal-like elements containing GABA-like immunoreactivity were numerous in tissue kept for 13 - 26 days in culture and showed a similar morphology and distribution to those known from investigations on the hippocampal formation in situ. Furthermore, after 8 - 30 days in culture, spontaneous and evoked IPSPs were observed in all CA3 pyramidal cells tested, resulting from an increase in chloride conductance, and were shown to be mediated by activation of GABA receptors. No functional decrement in the efficacy of GABAergic inhibitory synaptic transmission following chronic isolation and long-term maintenance in vitro was noticed. In particular, neither the magnitude of the synaptic conductance underlying the inhibitory postsynaptic currents nor its reversal potential varied with time in culture. Taken together, the present physiological and immunohistochemical data show that GABAergic inhibition is well expressed in organotypic hippocampal slice cultures and is maintained over periods of at least 4 weeks in vitro.  相似文献   

4.
Homeostatic plasticity is a phenomenon whereby synaptic strength is scaled in the context of the activity that the network receives. Here, we have analysed excitatory and inhibitory synapses in a model of homeostatic plasticity where rat organotypic hippocampal slice cultures were deprived of excitatory synaptic input by the NMDA and AMPA/KA glutamate receptor antagonists, AP5 and CNQX. We show that chronic excitatory synapse deprivation generates an excitable CA3 network where enhanced amplitude and frequency of spontaneous excitatory post-synaptic potentials were associated with increased glutamate receptor subunit expression and increased number and size of synapsin 1 and VGLUT1 positive puncta. Intact spontaneous inhibitory post-synaptic potentials coincided with persistent expression of the GABA-A receptor alpha subunit and GAD65 and an enhancement of parvalbumin-positive puncta. In this model of homeostatic plasticity, scaling up of synaptic excitation and maintenance of fast synaptic inhibition promote an excitable, but stable, CA3 network.  相似文献   

5.
Our aim was to determine if chronic blockade of GABAergic inhibitory synaptic activity, monitored electrophysiologically at the neuronal level, would affect synapse formation and ultrastructure in dissociated fetal rat cerebral cortex cultures. This was achieved by adding picrotoxin to the serum-free growth medium in a dose that induced continuous epileptiform discharges throughout the culture period. Light and electron microscopic analysis suggested an accelerated synaptic network formation in the experimental cultures during the first 2 weeks in vitro. The elimination of excess synapses (mainly on spines), which normally takes place during the fourth week in vitro, occurred 1 week earlier in the presence of picrotoxin. Finally, the experimental cultures showed smaller spine synapses throughout the entire culture period. Because these effects were opposite those induced by chronic tetrodotoxin-blockade of spontaneous bioelectric activity in a previous study, the underlying causal factor could be the respective intensification and suppression of neuronal activity in the two experiments. An appropriate balance between excitatory and inhibitory synaptic drive seems therefore to be important for normal maturation of neocortical circuitry.  相似文献   

6.
Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long‐term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural synaptic plasticity and changes in local protein synthesis evidenced by polyribosomes were systematically evaluated at both excitatory and inhibitory synapses on CA1 dendrites from mature rats following induction of LTP with theta‐burst stimulation (TBS). Recent work suggests dendritic segments can act as functional units of plasticity. To test whether structural synaptic plasticity is similarly coordinated, we reconstructed from serial section transmission electron microscopy all of the spines and synapses along representative dendritic segments receiving control stimulation or TBS‐LTP. At 5 min after TBS, polyribosomes were elevated in large spines suggesting an initial burst of local protein synthesis, and by 2 h only those spines with further enlarged synapses contained polyribosomes. Rapid induction of synaptogenesis was evidenced by an elevation in asymmetric shaft synapses and stubby spines at 5 min and more nonsynaptic filopodia at 30 min. By 2 h, the smallest synaptic spines were markedly reduced in number. This synapse loss was perfectly counterbalanced by enlargement of the remaining excitatory synapses such that the summed synaptic surface area per length of dendritic segment was constant across time and conditions. Remarkably, the inhibitory synapses showed a parallel synaptic plasticity, also demonstrating a decrease in number perfectly counterbalanced by an increase in synaptic surface area. Thus, TBS‐LTP triggered spinogenesis followed by loss of small excitatory and inhibitory synapses and a subsequent enlargement of the remaining synapses by 2 h. These data suggest that dendritic segments coordinate structural plasticity across multiple synapses and maintain a homeostatic balance of excitatory and inhibitory inputs through local protein‐synthesis and selective capture or redistribution of dendritic resources. ©2010 Wiley‐Liss, Inc.  相似文献   

7.
Purpose: Despite the consistent observation that γ‐aminobutyric acid A (GABAA) receptors mediate excitatory responses at perinatal stages, the role of the GABAergic system in the generation of neonatal epileptiform activity remains controversial. Therefore, we analyzed whether tonic and phasic GABAergic transmission had differential effects on neuronal excitability during early development. Methods: We performed whole cell patch‐clamp and field potential recordings in the CA3 region of hippocampal slices from immature (postnatal day 4–7) rats to analyze the effect of specific antagonists and modulators of tonic and phasic GABAergic components on neuronal excitability. Key Findings: The GABAergic antagonists gabazine (3 μm ) and picrotoxin (100 μm ) induced epileptiform discharges, whereas activation of GABAA receptors attenuated epileptiform discharges. Under low‐Mg2+ conditions, 100 nm gabazine and 1 μm picrotoxin were sufficient to provoke epileptiform activity in 63.2% (n = 19) and 53.8% (n = 26) of the slices, respectively. Whole‐cell patch‐clamp experiments revealed that these concentrations significantly reduced the amplitude of phasic GABAergic postsynaptic currents but had no effect on tonic currents. In contrast, 1‐μm 4,5,6,7‐tetrahydroisoxaz‐olo[5,4‐c]‐pyridin‐3‐ol (THIP) induced a tonic current of ?12 ± 2.5 pA (n = 6) and provoked epileptiform discharges in 57% (n = 21) of the slices. Significance: We conclude from these results that in the early postnatal rat hippocampus a constant phasic synaptic activity is required to control excitability and prevent epileptiform activity, whereas tonic GABAergic currents can mediate excitatory responses. Pharmacologic intervention at comparable human developmental stages should consider these ambivalent GABAergic actions.  相似文献   

8.
Expression of neurotrophins (NTs) and their receptors is elevated in the adult CNS under several neuropathological conditions. We have investigated the anatomical and electrophysiological consequences of chronic NT-3 or NT-4/5 treatment on established organotypic hippocampal slice cultures maintained in vitro for > 14 days. Both NT-3 and NT-4/5 increased spontaneous, action potential-dependent excitatory synaptic activity (sEPSCs), but only NT-3 increased inhibitory synaptic activity (sIPSCs) in CA3 pyramidal cells. Both NTs strongly promoted spontaneous synaptic bursting activity. Spontaneous bursts of EPSCs were observed after either NT treatment but only NT-3-treated cultures exhibited an increase in spontaneous bursts of IPSCs. In addition, sIPSC bursts were eliminated by blocking glutamatergic excitation. The frequency of miniature inhibitory postsynaptic currents, but not miniature excitatory postsynaptic currents, was also increased by both NT-3 and NT-4/5. Furthermore, NT-3 and NT-4/5 induced an up-regulation of the growth-associated protein GAP-43, suggesting that neurotrophins may be able to induce axonal reorganization in established neuronal networks. CA1 pyramidal cells exhibited slight alterations in dendritic branching after NT-4/5, but not NT-3 treatment. We conclude that chronic treatment with NT-3 or NT-4/5 can affect an established hippocampal network by elevating spontaneous inhibitory and excitatory synaptic activity and inducing coordinated pre- and postsynaptic structural changes.  相似文献   

9.
Kynurenic acid, a tryptophan metabolite, inhibits excitatory synaptic transmission in the rat hippocampal slice and the isolated immature rat spinal cord, but does not affect membrane potential or input resistance of hippocampal CA1 pyramidal cells. Kynurenic acid also antagonizes responses induced in the dentate gyrus by excitatory amino acids, particularly N-methyl-DL-aspartate and the endogenous excitant quinolinic acid. These results indicate that kynurenic acid antagonizes synaptic transmission probably by blocking postsynaptic transmitter receptors at putative amino acid mediated synapses.  相似文献   

10.
Development of rabbit hippocampus: physiology   总被引:2,自引:0,他引:2  
The postnatal development of the CA1 region of rabbit hippocampus was studied using intracellular techniques in the in vitro slice preparation. Recordings from immature hippocampal neurons revealed spiking activity and functional synaptic contacts, even in the newborn animal. Resting potentials and time constants in such cells were similar to those of mature cells; input resistance was higher and action potential duration longer in the immature rabbits. These cell properties reach adult values by 2-3 weeks. Presumed calcium spikes, as well as sodium spikes, were elicited in animals as young as 1 day, so that it was not possible to determine whether calcium or sodium spikes occur earlier. Synaptic potentials recorded in immature CA1 neurons were long duration depolarizing events associated with a large conductance increase. The postsynaptic potentials (PSPs) were shown to be predominantly excitatory in nature, and could be potentiated by repetitive stimulation at slow rates and low intensities. Such stimulation in many cases could trigger seizure-like activity. Inhibitory PSPs in CA1 neurons were rare in animals less than 1-2 weeks old. Increased occurrence of hyperpolarizing inhibitory PSPs was correlated in time with the appearance of interneuron cell types in physiological recordings. These data reinforce the indication from morphological studies that inhibition is late in developing in rabbit hippocampus.  相似文献   

11.
Zhou FW  Roper SN 《Epilepsia》2012,53(5):850-859
Purpose: Memory impairment is a common comorbidity in people with epilepsy‐associated malformations of cortical development. We studied spatial memory performance and hippocampal synaptic plasticity in an animal model of cortical dysplasia. Methods: Embryonic day 17 rats were exposed to 2.25 Gy external radiation. One‐month‐old rats were tested for spatial recognition memory. After behavioral testing, short‐term and long‐term synaptic plasticity in the hippocampal CA1 region was studied in an in vitro slice preparation. Key Findings: Behavioral assessments showed impaired hippocampal CA1‐dependent spatial recognition memory in irradiated rats. Neurophysiologic assessments showed that baseline synaptic transmission was significantly enhanced, whereas paired‐pulse facilitation, long‐term potentiation, and long‐term depression of the field excitatory postsynaptic potential (fEPSP) slope at Schaffer collateral/commissural fiber‐CA1 synapses were significantly reduced in the irradiated rats. Histologic observations showed dysplastic cortex and dispersed hippocampal pyramidal neurons. Significance: This study has shown that prenatally irradiated rats with cortical dysplasia exhibit a severe impairment of spatial recognition memory accompanied by disrupted short‐term and long‐term synaptic plasticity and may help to guide development of potential therapeutic interventions for this important problem.  相似文献   

12.
Cultured hippocampal neurons and immature organotypic slice cultures overcome temporal limitations of acute hippocampal slices and have been useful for investigating long-lasting plasticity. Difficulties with culturing adult neurons have restricted such studies to preparations from embryonic, perinatal, and juvenile tissue. By improving the methods for culturing and maintaining hippocampal-entorhinal cortex slices obtained from mature rats (P25-30), we show that their use in long-term electrophysiological investigations is feasible. Our cultured slices maintained an intact and functional trisynaptic cascade, normal synaptic function, and reliable long-term recording stability for at least 14 days in vitro. The electrophysiological properties and, in particular, the induction of long-term potentiation (LTP) in our mature organotypic slices were highly sensitive to dissection and tissue culture techniques. We present data describing the extracellular stimulation requirements for LTP-induction and its long-lasting maintenance (>4 h) at the Schaffer-collateral-CA1 synapse, and show that such changes in synaptic efficiency are NMDA receptor dependent. Our hippocampal-entorhinal cortex cultures from mature tissue can retain the electrophysiological properties required for long-term plasticity for several weeks in vitro.  相似文献   

13.
The neural cell adhesion molecule NCAM and its associated polysialic acid (PSA) play important roles in synaptic plasticity in the CA1 and/or CA3 regions of the hippocampus in vitro. Here, we address the question of whether NCAM and PSA are involved in regulation of synaptic transmission and plasticity also in vivo at synapses formed by entorhinal cortex axons in the dentate gyrus of mice anaesthetized with urethane. We show that basal synaptic transmission, measured as the slope of field excitatory postsynaptic potentials, was reduced strongly in mice lacking ST8SiaII/STX, the enzyme involved in polysialylation of NCAM in stem cell-derived immature granule cells, but not in mice deficient either in the NCAM glycoprotein or the enzyme ST8SiaIV/PST involved in polysialylation of NCAM in mature neurons. Strikingly, only mice deficient in NCAM, but not in PST or STX, were impaired in long-term potentiation (LTP) induced by theta-burst stimulation, suggesting that LTP in the dentate gyrus depends on the NCAM glycoprotein alone rather than on its associated PSA. As also patterns of synaptic activity during and immediately after induction of LTP were impaired in NCAM-deficient mice, it is likely that induction of LTP requires NCAM. These data are the first to describe that NCAM is necessary for induction of synaptic plasticity in identified synapses in vivo and suggest that polysialylation of NCAM expressed by immature granule cells in the dentate gyrus supports development of basal excitatory synaptic transmission in this region.  相似文献   

14.
We compared excitatory synaptic transmission between hippocampal pyramidal cells in dissociated hippocampal cell cultures and in area CA3 of hippocampal slice cultures derived from wild-type mice and mice with a genetic deletion of the presynaptic growth associated protein GAP-43. The basal frequency and amplitude of action potential-dependent and -independent spontaneous excitatory postsynaptic currents were similar in both groups. The probability that any two CA3 pyramidal cells in wild-type or GAP-43 knockout (-/-) slice cultures were synaptically connected was assessed with paired recordings and was not different. Furthermore, unitary synaptic responses were similar in the two genotypes. Bath application of phorbol 12,13-diacetate (0.6-3 microM) elicited a comparable increase in the frequency of miniature excitatory synaptic currents in wild-type and GAP-43 (-/-) cultures. This effect was blocked by the protein kinase C inhibitor, bisindolylmaleimide I (1.2 microM). Finally, 3 microM phorbol 12,13-diacetate potentiated the amplitude of unitary synaptic currents to a comparable extent in wild-type and GAP-43 (-/-) slice cultures. We conclude that GAP-43 is not required for normal excitatory synaptic transmission or the potentiation of presynaptic glutamate release mediated by activation of protein kinase C in the hippocampus.  相似文献   

15.
Pioneering work suggests that a synaptic active zone protein, RIM1, regulates both short- and long-term glutamatergic presynaptic plasticity at certain synapses. In short-term plasticity, RIM1 accelerates the priming of synaptic vesicles for fusion; by contrast, in long-term potentiation of mossy fiber synapses in the hippocampal CA3 region, phosphorylated RIM1 acts through an unknown molecular pathway to enhance release of the excitatory neurotransmitter glutamate.  相似文献   

16.
Two types of spontaneous filed potentials were recorded in rat hippocampal slices after addition of 4-aminopyridine (4-AP; 50 microM). One consisted of brief, epileptiform discharges that occurred at 0.6 +/- 0.2 sec-1 in the CA3 and CA1 areas. The other type occurred less frequently (0.036 +/- 0.013 sec-1) and was recorded in CA1, CA3, and dentate areas. It corresponded in all regions to an intracellular long-lasting depolarization (LLD; duration, 300-1200 msec; peak amplitude, 2-15 mV) that was abolished by bicuculline methiodide; therefore, it was mediated by GABAA receptors. Sectioning experiments and the occurrence of propagation failures indicated that LLDs could be initiated by any area of the slice. Furthermore, the propagation of LLDs did not follow any consistent or predictable pattern along known anatomical hippocampal pathways. Finally, neither the occurrence nor the propagation of LLDs was affected when excitatory synaptic transmission was blocked by NMDA and non-NMDA receptor antagonists. In the presence of antagonists of glutamatergic receptors, LLDs disappeared after the omission of Ca2+ or the addition of Cd2+ to the perfusing solution, suggesting that synaptic transmission was required for their generation. These data indicate that 4-AP discloses both interictal epileptiform discharges and LLDs in the rat hippocampus. The first type of activity is presumably related to certain properties of CA3 pyramidal neurons and the neuronal circuit, whereas LLDs originate from the spontaneous, periodic activity of GABAergic interneurons located in any area of the hippocampus, and can propagate to the other areas by the use of nonsynaptic mechanisms. We propose that 4-AP reveals a novel type of interaction among GABAergic interneurons that is based on the accumulation and the dispersion of K+.  相似文献   

17.
Neuropeptide Y (NPY) reduces excitatory synaptic transmission between stratum radiatum and CA1 pyramidal cells in rat hippocampal slice in vitro by a presynaptic action. To understand NPY's role in the control of excitability in hippocampus, its actions on excitatory and inhibitory synaptic transmission were examined, using intracellular, sharp microelectrode, and tight-seal, whole cell recordings from principal neurons in areas CA1, CA3, and dentate. Bath application of 1 μM NPY reversibly inhibited excitatory postsynaptic potentials (EPSPs) evoked in CA1 pyramidal cells from either stratum radiatum or stratum oriens by about 50%. Neuropeptide Y also inhibited EPSPs at mossy fiber-CA3, stratum oriens-CA3, and CA3-CA3 synapses by between 45% and 55%. As in CA1, the action of NPY was presynaptic. By contrast, NPY did not inhibit EPSPs evoked in dentate granule cells from either perforant path or commissural inputs. Neuropeptide Y did not alter postsynaptic membrane properties in any cell type. Although NPY attenuated the orthodromically evoked (stratum radiatum) inhibitory postsynaptic potentials in CA1 pyramidal cells by about the same amount as it inhibited the EPSPs, it did not affect the IPSPs evoked in the same cells by antidromic stimulation from alveus. Inhibitory postsynaptic potentials evoked in pharmacological isolation in CA1, CA3, or dentate were also not significantly affected by NPY. The evidence supports the hypothesis that NPY acts at feedforward excitatory synapses to presynaptically reduce the amplitude of excitation as it travels through hippocampal circuits. By contrast, synaptically mediated inhibition is not directly affected by NPY. Neuropeptide Y is the only known endogenous substance that selectively reduces feedforward excitatory transmission without causing changes in other properties of the hippocampal circuitry.  相似文献   

18.
Organotypic cultures of rat hippocampal slices were maintained for periods of up to 12 weeks in vitro. Cultures adopted a two-dimensional architecture whilst retaining the subfields characteristic of intact hippocampal slices. Coventional intracellular onset of spontaneous long-lasting epileptiform activity. Epileptiform activity characteristic of both interictal and ictal events (paroxysmal depolarising shifts, tonic/clonic phases and afterdischarges) was observed in the absence of pharmacological manipulation or of orthodromic stimulation. Epileptiform activity was abolished in the presence of high Mg2+ concentration or tetrodotoxin, agents known to block synaptic transmission. In addition, the frequency of epileptiform events was independent of membrane potential and the amplitude of the paroxysmal depolarising shift (PDS) displayed a near linear relationship with membrane potential. The PDS could be reversed at potentials approaching synaptic equilibrium potential. The N-methyl-D-aspartate (NMDA)-receptor antagonist DL-2-amino-5-phosphonovalerate (DL-APV) dose-dependently reduced both the amplitude and duration of the spontaneous paroxysmal shift, having no effect on the initiation of the event or the resting membrane parameters of the neurone. DL-APV also attenuated a late component of the synaptically evoked excitatory postsynaptic potentials (epsp) not observed in non-epileptiform neurones. Application of GABAA receptor antagonists bicuculline or picrotoxin converted interictal events to ictus. In the presence of these agents, ictal events were up to 90 s in duration. These results suggest that long-term culturing of hippocampal explants leads to an alteration in the balance of excitatory and inhibitory synaptic activity. This allows the expression of an excitatory amino acid depolarisation acting through NMDA receptors which contributes to the generation and maintenance of spontaneous epileptiform activity which is synaptic in origin.  相似文献   

19.
Kainic acid lesions of hippocampal subfields CA3–CA4 produced dramatic synchronous afterdischarge activity in subfield CA1 when studied 2–4 weeks post-lesion in the in vitro slice preparation. This epileptiform discharge was correlated with a loss of intrinsic firing-induced afterhyperpolarizations and synaptic IPSPs. Two to 4 months post-lesion, intrinsic afterpotentials and synaptic inhibition appeared normal in most cells studied.  相似文献   

20.
Okada M  Corfas G 《Hippocampus》2004,14(3):337-344
The growth factor neuregulin 1 (NRG1) has been proposed to contribute to the formation and maturation of neuromuscular and interneuronal synapses by upregulating the expression of specific neurotransmitter receptor subunits. In the present report, we show that, in the hippocampus, NRG1 is expressed in a pattern suggesting that it regulates synapse development in the CA1 region. However, in contrast to what has been shown in other synapses, NRG1 reduces the expression of gamma-aminobutyric acid (GABA)A receptors alpha subunits in hippocampal slices, and the mean amplitude of GABAergic miniature inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal neurons, without affecting IPSC kinetics or frequency. These effects of NRG1 occur without concomitant changes in glutamate receptors and other synaptic proteins. We propose that the role of NRG1 in the formation and maturation in the hippocampal inhibitory synapse is downregulation, rather than upregulation, of receptor subunit expression. These results suggest that NRG1 may contribute to the reduction in GABAergic synaptic activity in hippocampal CA1 pyramidal neurons that normally occurs during early postnatal development, and that alterations in NRG1 signaling in the hippocampus may contribute to schizophrenia and epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号