首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Background: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors.Methods: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature.Results: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate.Conclusions: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.  相似文献   

2.
3.
CFTR function is required for normal mucociliary clearance (MCC) and cough-assisted clearance (CC). Lumacaftor-ivacaftor is approved for use in people with cystic fibrosis (CF) carrying two copies of F508del-CFTR. In this observational study performed at four study sites, we characterized the effect of lumacaftor-ivacaftor on mucociliary and cough clearance and related this to other clinical and research endpoints after one month of treatment. Twenty-five adolescents and adults were enrolled. No effect on whole lung MCC was observed, but CC was significantly increased. Sweat chloride improved by 18 mEq/L in this group, indicating a modest restoration of CFTR activity, but no demonstrable change in FEV1 or lung clearance index was observed. We speculate that the modest effect of lumacaftor-ivacaftor on CFTR function was insufficient to yield an improvement in MCC.  相似文献   

4.
Deletion of phenylalanine at position 508, F508del, the most frequent mutation among Cystic fibrosis (CF) patients, destabilizes the protein, thus causing both a folding and a trafficking defect, resulting in a dramatic reduction in expression of CFTR. In vitro treatment with lumacaftor produces an enhancement of anion transport in cells. We studied the permeability properties of the CFTR mutant F508del treated with the corrector lumacaftor, showing that the rescued protein has selectivity properties different than the wild type CFTR, showing an augmented bicarbonate permeability. This difference would indicate a diverse conformation of the rescued F508del-CFTR, that is plausibly reflected on an improper regulation of the airway surface liquid, lessening the efficacy of the corrector. Our findings rather support the idea that a combination of correctors would be required to address the CFTR-dependent bicarbonate permeability.  相似文献   

5.
BackgroundIn cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation.MethodsGenetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated.ResultsOrganoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation.ConclusionsIn vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.  相似文献   

6.
7.
BackgroundTRPC6 has been proposed to be responsible for the abnormal OAG-dependent Ca2 + influx in cystic fibrosis (CF) cells and we hypothesized that it interacts with CFTR. Here, we investigated how this functional complex operates in CF and non-CF epithelial cells.MethodsChinese hamster ovary (CHO) cells stably transfected with pNut vector containing wild type CFTR (CHO-WT), F508del-CFTR (CHO-F508del) or G551D-CFTR(CHO-G551D) were used. Calcium channel activity was recorded using Fluo-4 probe and CFTR activity was measured by iodide efflux technique in the presence of CFTR activators (forskolin, genistein) and VX-770, CFTR inhibitor (GPinh5a) and TRPC non-selective modulators (OAG, SKF96365).ResultsCFTR down regulates OAG Ca2 + response and OAG Ca2 + influx increases CFTR chloride efflux. Furthermore, we observed potentiation of G551D-CFTR activity when combining VX-770 and OAG.ConclusionTaking advantage of the functional coupling between OAG-dependent Ca2 + influx and CFTR, a combination of OAG and VX-770 could be a therapeutic strategy for homozygote patients bearing the G551D-CFTR mutation.  相似文献   

8.
BackgroundThe most common cystic fibrosis-associated mutation, the deletion of phenylalanine 508 (F508del), results in channels with poor membrane expression and impaired function. VX-770, a clinically approved drug for treatment of CF patients carrying the G551D mutation, and VX-809, a corrector shown in vitro to increase membrane expression of mutant channels, are currently undergoing clinical trials, but functional data at the molecular level is still lacking.MethodsThe effect of VX-770 and VX-809 on the multiple functional defects of F508del-CFTR was assessed via excised inside-out patch-clamp experiments.ResultsVX-770 completely restores the low opening-rate of F508del-CFTR, with smaller open-time increase, in temperature-corrected and VX-809-treated channels. The shorter locked-open time of hydrolysis-deficient F508del-CFTR is also prolonged by VX-770. VX-809 does not improve channel function by itself as previously reported.ConclusionsThe results from these studies can be interpreted as an equilibrium shift toward the open-channel conformation of F508del-CFTR channels.  相似文献   

9.
Deletion of Phe at position 508 (F508del) in CFTR is the commonest cause of Cystic Fibrosis; this mutation affects the fate of the protein, since most of the F508del-CFTR is retained in the endoplasmic reticulum, ubiquitylated and degraded. CFTR is subjected to different post-translational modifications (PTMs) and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of F508del-CFTR. Recently, it has been suggested the presence of a PTM signature (phosphorylation, methylation and ubiquitylation) in the regulatory insertion element of the CFTR, named PTM-code, which is associated with CFTR maturation and F508del-CFTR recovery. However, the real contribution of these PTMs is still to be deciphered. Here, by using a mutational approach, we show that the PTM-code is dispensable for the functional recovery of F508del-CFTR and therefore its regulation would not be essential in the light of a therapeutical approach.  相似文献   

10.
BACKGROUND: Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) causes dysregulation of multiple ion channels, water channels, and acid-base transporters in epithelia. As such, we hypothesized that dysregulation of many critical ion channels and transporters may cause defects in human airway epithelial cell volume regulation. METHODS: Cell volume, regulatory volume decrease, and its regulation was assessed in real-time via Coulter Counter Multisizer III-driven electronic cell sizing in non-CF, CF, and CFTR-complemented CF human airway epithelial cells. SPQ halide fluorescence assay of hypotonicity-induced chloride efflux provided indirect validation of the cell volume assays. RESULTS: CFTR, via autocrine ATP signaling, governs human airway epithelial cell volume regulation. Non-CF cells and wild-type (WT)-CFTR-transfected CF cells had normal regulatory volume decrease (RVD) responses that were attenuated by blockade of autocrine and paracrine purinergic signaling. In contrast, parental IB3-1 CF cells or IB3-1 cells expressing CFTR mutants (DeltaF508, G551D, and S1455X) failed to RVD. CF cell RVD was rescued by agonists to P2Y G protein-coupled receptors and, more robustly, by agonists to P2X purinergic receptor channels. CONCLUSIONS: Loss of CFTR and CFTR-driven autocrine ATP signaling may underlie defective cell volume regulation and dysregulated ion, water, and acid-base transport in CF airway epithelia.  相似文献   

11.
Airway disease in cystic fibrosis (CF) is characterised by a continuous cycle of chronic infection and inflammation dominated by a neutrophilic infiltrate. This inflammation is characterised by an increased production of pro-inflammatory cytokines in the lung. The relationship between the abnormal CFTR gene product and the development of inflammation and progression of lung disease in CF is not fully understood. This review article studied the mechanisms of pulmonary inflammation in CF, the profiles of cytokines and inflammatory mediators in the lung in CF, the mechanisms that predispose to chronic Pseudomonas aeruginosa infection, cytokine involvement in diseases other than CF and reviewed current therapeutic strategies for CF. Imbalances of cytokine secretion are now better understood due to recent advances in understanding CF at a molecular level and it is increasingly thought that the normal inflammatory process is deranged in CF early in the course of the disease and may occur in the absence of detectable infection. However, the relationship between this unbalanced cytokine production, the mutations in CFTR and its actual consequence for pathogenesis need further investigation.  相似文献   

12.
In most epithelial tissues Cl(-) transport relies on the cystic fibrosis transmembrane conductance regulator (CFTR) which has dual function as a Cl(-) channel and as a regulator of other ion channels. More than 900 different mutations in the CFTR gene are the cause for defective transport of Cl(-) and Na(+) and impaired secretion or absorption of electrolytes in cystic fibrosis. However, the CFTR mutation delta F508 is the most common reason for the frequently inherited disease among the Caucasian population. Maturation and processing of delta F508-CFTR is defective which leads to expression of only very little but functional CFTR in the cell membrane. Understanding the processing and trafficking of CFTR may give a clue to the question as to how the expression and residual function of delta F508-CFTR can be enhanced, and may lead to the development of new pharmacological tools for the treatment of cystic fibrosis.  相似文献   

13.
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.  相似文献   

14.
Cystic fibrosis (CF) is the result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF-related diabetes affects 50% of adult CF patients. How CFTR deficiency predisposes to diabetes is unknown. Herein, we examined the impact of the most frequent cftr mutation in humans, deletion of phenylalanine at position 508 (ΔF508), on glucose homeostasis in mice. We compared ΔF508 mutant mice with wild-type (WT) littermates. Twelve-week-old male ΔF508 mutants had lower body weight, improved oral glucose tolerance, and a trend toward higher insulin tolerance. Glucose-induced insulin secretion was slightly diminished in ΔF508 mutant islets, due to reduced insulin content, but ΔF508 mutant islets were not more sensitive to proinflammatory cytokines than WT islets. Hyperglycemic clamps confirmed an increase in insulin sensitivity with normal β-cell function in 12- and 18-week-old ΔF508 mutants. In contrast, 24-week-old ΔF508 mutants exhibited insulin resistance and reduced β-cell function. β-Cell mass was unaffected at 11 weeks of age but was significantly lower in ΔF508 mutants versus controls at 24 weeks. This was not associated with gross pancreatic pathology. We conclude that the ΔF508 CFTR mutation does not lead to an intrinsic β-cell secretory defect but is associated with insulin resistance and a β-cell mass deficit in aging mutants.  相似文献   

15.
BackgroundLeft ventricular (LV) abnormalities have been reported in cystic fibrosis (CF); however, it remains unclear if loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes heart defects independent of lung disease.MethodsUsing gut-corrected F508del CFTR mutant mice (ΔF508), which do not develop human lung disease, we examined in vivo heart and aortic function via 2D transthoracic echocardiography and LV catheterization.ResultsΔF508 mouse hearts showed LV concentric remodeling along with enhanced inotropy (increased + dP/dt, fractional shortening, decreased isovolumetric contraction time) and greater lusitropy (? dP/dt, Tau). Aortas displayed increased stiffness and altered diastolic flow. β-adrenergic stimulation revealed diminished cardiac reserve (attenuated + dP/dt,? dP/dt, LV pressure).ConclusionsIn a mouse model of CF, CFTR mutation leads to LV remodeling with alteration of cardiac and aortic functions in the absence of lung disease. As CF patients live longer, more active lives, their risk for cardiovascular disease should be considered.  相似文献   

16.
Trikafta, the combination of elexacaftor (VX-445), tezacaftor (VX-661) and ivacaftor (VX-770), was approved for therapy of cystic fibrosis (CF) patients with at least one allele of the CFTR mutation F508del. While the corrector function of VX-445 is well established, here we investigated the putative potentiator activity of VX-445 alone and in combination with VX-770. Acute addition of VX-445 increased the VX-770-potentiated F508del- and G551D-CFTR current by ~24% and >70%, respectively, in human bronchial and nasal epithelia. Combinatorial profiling and cluster analysis of G551D- and G1244E-CFTR channel activation with potentiator pairs indicated a distinct VX-445 mechanism of action that is, at least, additive to previously identified potentiator classes, including the VX-770. Since VX-770 only partially normalizes the G551D-CFTR channel function and adult G551D patients still experience progressive loss of lung function, VX-445+VX-770 combination therapy could provide clinical benefit to CF patients with the G551D and other dual potentiator responsive mutants.  相似文献   

17.
BACKGROUND: Most patients with cystic fibrosis (CF) have a DeltaF508 mutation resulting in abnormal retention of mutant gene protein (DeltaF508-CFTR) within the cell. This study was undertaken to investigate DeltaF508-CFTR trafficking in native cells from patients with CF with the aim of discovering pharmacological agents that can move DeltaF508-CFTR to its correct location in the apical cell membrane. METHOD: Nasal epithelial cells were obtained by brushing from individuals with CF. CFTR location was determined using immunofluorescence and confocal imaging in untreated cells and cells treated with sildenafil. The effect of sildenafil treatment on CFTR chloride transport function was measured in CF15 cells using an iodide efflux assay. RESULTS: In most untreated CF cells DeltaF508-CFTR was mislocalised within the cell at a site close to the nucleus. Exposure of cells to sildenafil (2 hours at 37 degrees C) resulted in recruitment of DeltaF508-CFTR to the apical membrane and the appearance of chloride transport activity. Sildenafil also increased DeltaF508-CFTR trafficking in cells from individuals with CF with a single copy DeltaF508 (DeltaF508/4016ins) or with a newly described CF trafficking mutation (R1283M). CONCLUSIONS: The findings provide proof of principle for sildenafil as a DeltaF508-CFTR trafficking drug and give encouragement for future testing of sildenafil and related PDE5 inhibitors in patients with CF.  相似文献   

18.
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients.We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.  相似文献   

19.
BackgroundAssessment of approved drugs and developmental drug candidates for rare cystic fibrosis (CF)-causing variants of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) requires abundant material from relevant models.MethodsIsogenic cell lines harboring CFTR variants in the native genomic context were created through the development and utilization of a footprint-less, CRISPR/Cas9 gene editing pipeline in 16HBE14o- immortalized bronchial epithelial cells.ResultsIsogenic, homozygous cell lines for three CFTR variants (F508del and the two most common CF-causing nonsense variants, G542X and W1282X) were established and characterized. The F508del model recapitulates the known molecular pathology and pharmacology. The two models of nonsense variants (G542X and W1282X) are sensitive to Nonsense Mediated mRNA Decay (NMD) and responsive to reference compounds that inhibit NMD and promote ribosomal readthrough.ConclusionsWe present a versatile, efficient gene editing pipeline that can be used to create CFTR variants in the native genomic context and the utilization of this pipeline to create homozygous cell models for the CF-causing variants F508del, G542X, and W1282X. The resulting cell lines provide a virtually unlimited source of material with specific pathogenic mutations that can be used in a variety of assays, including functional assays.  相似文献   

20.
Cystic fibrosis (CF) is an autosomal inherited disorder caused by over 800 different mutations in the CFTR gene. The most common mutation, delta F508, causes a trafficking arrest in the endoplasmic reticulum and the CFTR protein is degraded. Restoration of CFTR trafficking in vitro restores cAMP-mediated chloride transport at the cell surface. The hypothesis of this discussion is that the short chain fatty acids, butyrate and 4-phenylbutyrate, up-regulate mature CFTR at the plasma membrane. Evidence that these compounds regulate CFTR production and maturation in part through effects on molecular chaperones in CF cells in culture is discussed. The oral drug, 4-phenylbutyrate, was tested in a Phase I clinical trial in CF subjects and further trials are underway. Other new therapeutic approaches directed at different classes of mutations in CFTR are also discussed. Chemical and pharmacologic agents that regulate endogenous gene expression at different steps in the biosynthetic processing pathway of a membrane glycoprotein will be needed to comprehensively treat a complex inherited disorder like cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号