首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage is implicated in the pathogenesis of various liver injuries. The study was aimed to investigate the antioxidant activity of Coriandrum sativum on CCl4 treated oxidative stress in Wistar albino rats. CCl4 injection induced oxidative stress by a significant rise in serum marker enzymes and thiobarbituric acid reactive substances (TBARS) along with the reduction of antioxidant enzymes. In serum, the activities of enzymes like ALP, ACP and protein and bilirubin were evaluated. Pretreatment of rats with different doses of plant extract (100 and 200 mg/kg) significantly lowered SGOT, SGPT and TBARS levels against CCl4 treated rats. Hepatic enzymes like SOD, CAT, GPx were significantly increased by treatment with plant extract, against CCl4 treated rats. Histopathological examinations showed extensive liver injuries, characterized by extensive hepatocellular degeneration/necrosis, inflammatory cell infiltration, congestion, and sinusoidal dilatation. Oral administration of the leaf extract at a dose of 200 mg/kg body weight significantly reduced the toxic effects of CCl4. The activity of leaf extract at the dose of 200 mg/kg was comparable to the standard drug, silymarin. Based on these results, it was observed that C. sativum extract protects liver from oxidative stress induced by CCl4 and thus helps in evaluation of traditional claim on this plant.  相似文献   

2.
The present study was undertaken to investigate whether or not the hepatoprotective activity of acetylbergenin was superior to bergenin in carbon tetrachloride (CCl4)-intoxicated rat. Acetylbergenin was synthesized by acetylating bergenin, which was isolated from Mallotus japonicus. The hepatoprotective effects of acetylbergenin were examined against CCl4-induced liver damage in rats by means of serum and liver biochemical indices. Acetylbergenin was administered orally once daily for 7 successive days, then a 0.5 ml/kg mixture of CCl4 in olive oil (1:1) was intraperitoneally injected at 12 h and 36 h after the final administration of acetylbergenin. Pretreatment with acetylbergenin reduced the elevated serum enzymatic activities of alanine/aspartate aminotransferase, sorbitol dehydrogenase and gamma-glutamyltransferase in a dose dependent fashion. Acetylbergenin also prevented the elevation of hepatic malondialdehyde formation and depletion of glutathione content dose dependently in CCl4-intoxicated rats. In addition, the decreased activities of glutathione S-transferase and glutathione reductase were restored to almost normal levels. The results of this study strongly suggest that acetylbergenin has potent hepatoprotective activity against CCl4-induced hepatic damage in rats by glutathione-mediated detoxification as well as having free radical scavenging activity. In addition, acetylbergenin doses of 50 mg/kg showed almost the same levels of hepatoprotective activity as 100 mg/kg of bergenin, indicating that lipophilic acetylbergenin is more active against the antihepatotoxic effects of CCl4 than those of the much less lipophilic bergenin.  相似文献   

3.
Puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicine for thousands of years. The purpose of this study was to investigate the protective effects of puerarin against hepatotoxicity induced by carbon tetrachloride (CCl4) and the mechanism of its hepatoprotective effect. In mice, pretreatment with puerarin prior to the administration of CCl4 significantly prevented the increased serum enzymatic activity of alanine aspartate aminotransferase and hepatic malondialdehyde formation in a dose-dependent manner. In addition, pretreatment with puerarin significantly prevented both the depletion of reduced glutathione (GSH) content and the decrease in glutathione S-transferase (GST) activity in the liver of CCl4-intoxicated mice. Hepatic GSH levels and GST activity were increased by treatment with puerarin alone. CCl4-induced hepatotoxicity was also prevented, as indicated by liver histopathology. The effects of puerarin on cytochrome P450 (CYP) 2E1, the major isozyme involved in CCl4 bioactivation, were also investigated. Treatment of the mice with puerarin resulted in a significant decrease in the CYP2E1-dependent aniline hydroxylation in a dose-dependent manner. Consistent with these observations, the CYP2E1 protein levels were also lowered. Puerarin exhibited anti-oxidant effects on FeCl2-ascorbate induced lipid peroxidation in mouse liver homogenates, and on superoxide radical scavenging activity. These results suggest that the protective effects of puerarin against the CCl4-induced hepatotoxicity possibly involve mechanisms related to its ability to block CYP-mediated CCl4 bioactivation, induction of GST activity and free radical scavenging effects.  相似文献   

4.
Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals with carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation.  相似文献   

5.
《Pharmaceutical biology》2013,51(11):1265-1272
Context: Pergularia daemia (Forsk) Chiov. (Asclepiadaceae) is a slender, hispid, fetid-smelling perennial climber and has been used for the treatment of inflammation, diabetes, malaria, asthma, and liver disorders. Ethnopharmacological surveys conducted among herbal practitioners of Western Ghats, Tamil Nadu, India, revealed that large numbers of laticiferous plant species are used as a source of herbal therapies, in which Pergularia daemia was commonly used to treat liver disease and jaundice.

Objective: The hepatoprotective effect of aqueous and ethanol extracts of Pergularia daemia roots by paracetamol and carbon tetrachloride (CCl4)-induced liver damage in rats was studied.

Materials and methods: The aqueous (PdAE) and ethanol (PdEE) extracts of Pergularia daemia were studied for their hepatoprotective effects on paracetamol and CCl4-induced liver damage on Wistar albino rats. The degree of protection was measured by physical changes (liver weight), biochemical (serum gultamic pyruvic transaminase, serum gultamic oxaloacetic transaminase, alkaline phosphatase, direct bilirubin, total bilirubin, cholesterol and decrease in protein), antioxidant enzymes (lipid peroxidation and glutathione levels), and histological changes.

Results: Pretreatment with PdAE and PdEE significantly prevented the physical, biochemical, antioxidant enzyme levels and histological changes induced by paracetamol and CCl4 in the liver. The effects of PdAE and PdEE were comparable to that of the standard drug silymarin. The ethanol extract was found to exhibit greater hepatoprotective activity than the aqueous extract.

Discussion and conclusion: These results indicate that Pergularia daemia could be useful in preventing chemically induced acute liver injury. From this study it can be concluded that the aqueous and ethanol extracts of P. daemia possess significant hepatoprotective activity.  相似文献   

6.
This study was designed to investigate the protective effects of the phenethyl ester of caffeic acid (CAPE) against carbon tetrachoride (CCl4)-induced hepatotoxicities in mice. Pretreatment with CAPE prior to administration of CCl4 significantly prevented the increases in serum alanine, aspartate aminotransferase and alkaline phosphatase activities, hepatic lipid peroxidation formation, and depletion of glutathione content. In addition, CAPE prevented CCl4-induced apoptosis and necrosis, as indicated by liver histopathology and DNA laddering studies. To determine whether the Fas/Fas ligand (FasL) pathway is involved in CCl4-induced acute liver injury, Fas and FasL proteins and caspase-3 and -8 activities were tested by western blotting and ELISA. CAPE markedly decreased CCl4-induced Fas/FasL protein expression levels and, in turn, attenuated CCl4-induced caspase-3 and -8 activities in mouse liver. Moreover, the effect of CAPE on CYP2E1, the major isozyme involved in CCl4 bioactivation, was investigated. Treatment with CAPE significantly decreased the CYP2E1-dependent hydroxylation of aniline. In addition, CAPE attenuated the CCl4-mediated depletion of antioxidant enzyme (catalase, superoxide dismutase and glutathione-S-transferase) activities. These findings suggest that the protective effects of CAPE against CCl4-induced acute liver injury may involve its ability to block CYP2El-mediated CCl4 bioactivation and to protect against Fas/FasL-mediated apoptosis.  相似文献   

7.
The capability of Chhit-Chan-Than extract powder (CCTEP, 10% aqueous Ocimum gratissimum L. extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity in vivo was investigated. Wistar rats were divided into five groups. Group A was a normal control group given only vehicle; Group B, the hepatotoxic group, was injected intraperitoneally twice a week with repeated 8% CCl4/olive oil (0.1 mL/100 g of body weight); Groups C–E, extract-treated groups received CCl4 and different doses of CCTEP (100 mg/kg and 200 mg/kg) or silymarin (200 mg/kg of body weight) daily by gavage for 8 weeks, respectively. The results showed that the CCl4-induced histopathogical changes may be prevented by CCTEP through reducing the intercellular collogen stack, dropping blood serum alanine aminotransferase and aspartate aminotransferase levels, and restoring the catalase activity and glutathione content. The hepatoprotective properties were further confirmed by the marked improvement in histopathological examination and by quantitative steatosis-fibrosis scoring. The above results suggest that CCTEP is able to prevent the liver inflammation and fibrosis induced by repeated CCl4 administration, and the hepatoprotective effects might be correlated partly with its antioxidant and free radical scavenging effects.  相似文献   

8.
The root of Aralia continentalis Kitagawa has been used in traditional Korean medicine to relieve pain and to treat inflammation. The purpose of this study was to investigate the protective effects of the extract of A. continentalis roots (AC) against hepatotoxicity induced by carbon tetrachloride (CCl4) and the mechanism of its hepatoprotective effect. In mice, pretreatment with AC prior to the administration of CCl4 significantly prevented the increased serum enzymatic activity of ALT and AST as well as the formation of hepatic malondialdehyde. Histopathological evaluation of the livers also revealed that AC reduced the incidence of liver lesions induced by CCl4. In addition, pretreatment with AC significantly prevented both the depletion of reduced glutathione (GSH) content and the decrease in glutathione-S-transferase (GST) activity in the liver of CCl4-intoxicated mice. Hepatic GSH levels and GST activity were increased by treatment with AC alone. Heme oxygenase-1 (HO-1) is known to be induced by oxidative stress and to confer protection against oxidative tissue injuries. Interestingly, AC markedly upregulated hepatic HO-1 expression in CCl4-treated mice, which might provide anti-oxidative activity in the liver. These results indicate that AC plays a critical protective role in CCl4-induced acute liver injury by promoting anti-oxidative protein expression.  相似文献   

9.
This research investigates the protective effect of N-acetylcysteine (NAC) against carbon tetrachloride (CCl4)- and trichloroethylene (TCE)-induced hepatotoxicity in rats. A single dose of 1.25 ml/kg of 20% CCl4 in corn oil, administered orally, or 20% TCE, administered intraperitoneally, produced significantly elevated levels of serum glutamic pyruvic transaminase (SGPT) and serum glutamic oxaloacetic transaminase (SGOT) activities. Histopathological examinations showed massive centrilobular necrosis and fat accumulation in CCl4-treated animals. In the curative test, especially in animals treated with higher dosages of NAC, there was significant reduction in SGPT and SGOT levels. Although there was no sign of abnormality in the livers of rats treated with TCE, NAC demonstrated its action against TCE-induced elevation of transaminases in the enzyme assays. Compared to the curative tests, the overall performance of NAC against toxin-induced toxicity in the preventive tests was poor. Even at the highest dosage applied, the effect was not as prominent as that achieved in the curative test. It is therefore concluded that NAC is effective for lowering chemical-induced elevated levels of SGPT and SGOT in the curative mode.  相似文献   

10.
High inter-individual variation in chemical-induced liver injury is a frequent observation with many hepatotoxic chemicals, yet the mechanism underlying it remains poorly understood. Even with carbon tetrachloride (CCl4), a well-known model hepatotoxicant, substantial individual variations are observed in the severity of liver injury. Using microarray, many attempts have been made to identify the key genes in CCl4-induced liver injury but mostly, they examined the gene expression of liver after CCl4 exposure, unable to dissect out the complicating factors from pathological changes secondary to liver injury. To more accurately identify the genes for the individual variation in CCl4-induced hepatotoxicity, we compared the innate gene expression of the individual liver samples pre-biopsied prior to CCl4-treatment with the severity of liver injury after CCl4-treatment. Effect of biopsy procedure and 3 week recovery period on liver function and gene expression were confirmed to be insignificant. Using this design, we found that the expression of genes associated with immunity and defense, lipid metabolism, transport and complement-mediated immunity, which are previously known to be suppressed by CCl4-treatment, were innately lower in the susceptible animals than resistant animals. Moreover, we demonstrated that the genes such as Gsta2, Sult2a1, Fgl1 and C6 were newly found to be innately lower in the susceptible animals to CCl4-hepatotoxicity. These naturally lower gene expression patterns were further confirmed by RT-PCR. We believe that this pre-biopsy design may provide a useful tool for understanding the cause of variability of hepatotoxicity and for the prediction and pre-screening of the susceptible individual to drug-induced hepatotoxicity.  相似文献   

11.
The present study examined the protective effects of seabuckthorn (Hippophae rhamnoides L., SBT) seed oil on carbon tetrachloride (CCl4)-induced hepatic damage in male ICR mice. Our results showed that oral administration of SBT seed oil at doses of 0.26, 1.30, and 2.60 mg/kg for 8 weeks significantly reduced the elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), and cholesterol at least 13% in serum, and the level of malondialdehyde (MDA) in liver at least 22%, that was induced by CCl4 (1 mL/kg) in mice. Moreover, the treatment of SBT seed oil was also found to significantly increase the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rd), and GSH content in liver up to 134%. Our study found that the optimal dose of SBT seed oil was 0.26 mg/kg, as the minimum amount exhibiting the greatest hepatoprotective effects on CCl4-induced liver injury. Overall, the hepatoprotective effect of SBT seed oil at all tested doses was found to be comparable to that of silymarin (200 mg/kg) and have been supported by the evaluation of the liver histopathology in mice.  相似文献   

12.
Wu Y  Li L  Wen T  Li YQ 《Toxicology》2007,232(1-2):50-56
The aim of this study was to investigate the possible protective effects of echinacoside, one of the phenylethanoids isolated from the stems of Cistanches salsa, a Chinese herbal medicine, on the free radical damage of liver caused by carbon tetrachloride in rats. Treatment of rats with carbon tetrachloride produced severe liver injury, as demonstrated by dramatic elevation of serum ALT, AST levels and typical histopathological changes including hepatocyte necrosis or apoptosis, haemorrhage, fatty degeneration, etc. In addition, carbon tetrachloride administration caused oxidative stress in rats, as evidenced by increased reactive oxygen species (ROS) production and MDA concentrations in the liver of rats, along with a remarkable reduction in hepatic SOD activity and GSH content. However, simultaneous treatment with echinacoside (50mg/kg, intraperitoneally) significantly attenuated carbon tetrachloride-induced hepatotoxicity. The results showed that serum ALT, AST levels and hepatic MDA content as well as ROS production were reduced dramatically, and hepatic SOD activity and GSH content were restored remarkably by echinacoside administration, as compared to the carbon tetrachloride-treated rats. Moreover, the histopathological damage of liver and the number of apoptotic hepatocytes were also significantly ameliorated by echinacoside treatment. It is therefore suggested that echinacoside can provide a definite protective effect against acute hepatic injury caused by CCl(4) in rats, which may mainly be associated with its antioxidative effect.  相似文献   

13.
The aim of the present study was to evaluate immunomodulator ginsan, a polysaccharide extracted from Panax ginseng, on carbon tetrachloride (CCl4)-induced liver injury. BALB/c mice were injected i.p. with ginsan 24 h prior to CCl4 administration. Serum liver enzyme levels, histology, expression of antioxidant enzymes, and several cytokines/chemokines were subsequently evaluated. Ginsan treatment markedly suppressed the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic histological necrosis increased by CCl4 treatment. Ginsan inhibited CCl4 induced lipid peroxidation through the cytochrome P450 2E1 (CYP2E1) downregulation. The hepatoprotective effect of ginsan was attributed to induction of anti-oxidant protein contents, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) as well as restoration of the hepatic glutathione (GSH) concentration. The marked increase of proinflammatory cytokines (IL-1β, IFN-γ) and chemokines (MCP-1, MIP-2β, KC) in CCl4 treated mice was additionally attenuated by ginsan, thereby preventing leukocyte infiltration and local inflammation. Our results suggest that ginsan effectively prevent liver injury, mainly through downregulation of oxidative stress and inflammatory response.  相似文献   

14.
The protective effects of Dunaliella salina (D. salina) on liver damage were evaluated by carbon tetrachloride (CCl4)-induced hepatotoxicity in mice. Male ICR mice were orally treated with D. salina or silymairn daily with administration of CCl4 twice a week for 8 weeks. CCl4 induced liver damage and significantly (p < 0.05) increased the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in serum and decreased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), and GSH content in liver whereas increased hepatic malondialdehyde (MDA) content as compared with control group. Treatment with D. salina or silymarin could significantly (p < 0.05) decrease the ALT, AST, and ALP levels in serum and increase the activities of SOD, catalase, GSH-Px, glutathione reductase, and GSH content and decrease the MDA content in liver when compared with CCl4-treated group. Liver histopathology also showed that D. salina reduced the incidence of liver lesions induced by CCl4. The results suggest that D. salina exhibits potent hepatoprotective effects on CCl4-induced liver damages in mice, and that the hepatoprotective effects of D. salina may be due to both the increase of antioxidant enzymes activities and inhibition of lipid peroxidation.  相似文献   

15.

Objective:

To evaluate the hepatoprotective activity of ethanolic and aqueous extract of stems of Leptadenia reticulata (Retz.) Wight. and Arn. in carbon tetrachloride (CCl4)-induced hepatotoxicity in rats.

Materials and Methods:

The toxicant CCl4 was used to induce hepatotoxicity at a dose of 1.25 ml/kg as 1 : 1 mixture with olive oil. Ethanolic and aqueous extracts of L. reticulata stems were administered in the doses of 250 and 500 mg/kg/day orally for 7 days. Silymarin (50 mg/kg) was used as standard drug. The hepatoprotective effect of these extracts was evaluated by the assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, total bilirubin, serum protein, and histopathological studies of the liver.

Results:

Treatment of animals with ethanolic and aqueous extracts significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver as indicated by lower levels of serum bilirubin and protein as compared with the normal and silymarin-treated groups. Histology of the liver sections confirmed that the extracts prevented hepatic damage induced by CCl4 showing the presence of normal hepatic cords, absence of necrosis, and fatty infiltration.

Conclusion:

The ethanolic and aqueous extracts of stems of L. reticulata showed significant hepatoprotective activity. The ethanolic extract is more potent in hepatoprotection in CCl4-indiced liver injury model as compared with aqueous extract.  相似文献   

16.

Objective:

To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl4)-induced liver damage in preventive and curative models.

Materials and Methods:

Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl4-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content.

Result and Discussion:

The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl4 treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl4-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl4-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl4-induced hepatic damage in rats.  相似文献   

17.
张明康  陈宇玥  周燕  武新安 《中国药学》2022,31(11):840-852
槲皮素是一种广泛存在于蔬菜和水果中的酚类植物化学物质,具有抗氧化、抗炎、抗病毒和免疫调节活性,已成功应用于急慢性疾病的治疗。本研究目的是探讨槲皮素对大鼠肝纤维化的缓解作用并探讨其作用机制。将健康雄性SD大鼠随机分为正常组、模型组和槲皮素组,每组6只。通过腹腔注射1 m L/kg四氯化碳(50%v/v,溶于橄榄油),每周2次,持续6周诱导肝脏纤维化,并于第7周灌胃给予槲皮素(100mg/kg/d)持续至第12周结束。末次给药1h后,收集血液和肝脏样品。利用全自动生化仪检测血清肝功能参数(AST、ALT、ALP、GGT和TBA);HE、Masson和天狼星红染色观察肝组织病理形态;Westernblotting评价肝纤维化因子(TGF-β1、α-SMA、MMP2和MMP9)和胆汁酸相关调节蛋白(FXR、CYP7A1、CYP8B1和CYP27A1)的表达;采用试剂盒检测肝组织氧化应激标志物(GSH、GSH-Px、GR、SOD和MDA)的含量;运用LC-MS/MS测定肝组织中胆汁酸含量。结果发现与模型组相比,给予槲皮素治疗后可显著降低血清AST、ALT和TBA含量(P <0.05);肝纤...  相似文献   

18.
The aim of the present study was to investigate the effect of mushroom insoluble non-starch polysaccharides (MINSP) on the carbon tetrachloride (CCl4)-induced hepatic damage in rat. MINSP (100 and 200 mg/kg) administered daily orally for 15 days before CCl4 (1.5 ml/kg). The effect of MINSP treatment was also examined in normal rats. Normal groups treated with MINSP showed significant decrease in serum activities of the liver enzymes, lipid peroxides and nitric oxide (NO) in the liver. Reduced glutathione (GSH) and total proteins (TP) contents in liver homogenate also increased after treatment with only MINSP for 15 days. In CCl4-treated rats, significant elevation in serum liver enzymes, increased lipid peroxides and NO in the liver, and depletion of hepatic-GSH level were observed. Pre-treatment with MINSP significantly ameliorated the tested parameters when compared with CCl4-treated group. It improved the antioxidant activity of the liver in a dose-dependent manner. Histopathological examination of hepatic tissue revealed that MINSP administration alone protected hepatocytes from the damage induced by CCl4. Conclusion: MINSP are safe; it could be used as fat replacer in processing low fat diet. MINSP represents a good functional food and liver supporter for patient suffering from various liver diseases.  相似文献   

19.
The oxidative status and morphological changes of mouse liver exposed to cadmium chloride (Cd(II)) and therapeutic potential of blueberry (Vaccinium corymbosum L.) extract against Cd(II)-induced hepatic injury were investigated. A variety of parameters were evaluated, including lipid peroxidation (LPO), protein carbonyl (PCO) level, DNA fragment, as well as antioxidative defense system (i.e., superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)). Elemental analysis and evaluation of morphological changes and NO levels were also performed. Exposure to Cd(II) led to increased LPO and PCO as well as DNA fragment and a reduction of SOD and CAT activities, however, the content of GSH elevated probably due to biological adaptive-response. In contrast, co-treatment of anthocyanin (Ay) inhibited the increased oxidative parameters as well as restored the activities of antioxidative defense system in a dose-dependent manner. Ay administration regained these morphological changes caused by intoxication of Cd(II) to nearly normal levels. Moreover, the accumulation of Cd(II) in liver may be one of the reasons for Cd(II) toxicity and Ay can chelate with Cd(II) to reduce Cd(II) burden. The influence of Cd(II) on the Zn and Ca levels can also be adjusted by the co-administration of Ay. Exposure to Cd(II) led to an increase of NO and Ay reduced NO contents probably by directly scavenging. Potential mechanisms for the protective effect of Ay have been proposed, including its anti-oxidative and anti-inflammatory effect along with the metal-chelating capacity. These results suggest that blueberry extract may be valuable as a therapeutic agent in combating Cd(II)-induced tissue injury.  相似文献   

20.
Porcine plasma protein hydrolysate (PPH) prepared by alcalase for 5 h was fractioned by ultrafiltration. Four fractions, H1 (MW > 10k), H2 (MW 6-10k), H3 (MW 3-6k) and H4 (MW < 3k), were obtained. H4 possessed the highest antioxidant activity as indicated by thiobarbituric acid-reactive substance values and hydroxyl radical scavenging activity (< 0.01). Male rats were pretreated with H4 at dose of 50, 100, and 200 mg/kg of body weight orally once daily for 12 days, then they were treated intraperitoneally with a single dose of CCl4 (2 mL/kg of body weight). The results showed that oral feeding of H4 could significantly lower (< 0.01) the serum levels of hepatic enzyme markers (aspartate transaminase and alanine transaminase). Compared with the CCl4-only treatment group, levels of hepatic superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity were significantly increased, and the malondialdehyde levels were sharply decreased (< 0.01) in rats treated by all doses of PPH fraction H4. A histological examination of the liver showed that lesions, including necrosis, lymphocyte infiltration and fatty degeneration, were partially healed by treatment with H4 fractions. These data suggest that in rats, PPH can protect the liver against CCl4-induced oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号