首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancellous bone mass decreases following ovariectomy in rodents, providing a useful model for post-menopausal bone loss in humans. This study describes and quantifies the longer-term changes in cancellous bone structure in the ovariectomized (OVX) rat. Rats were OVX or sham-OVX at 100 days of age and bones were collected 540 days later. Lumbar vertebral bodies were prepared for microradiography and structural analyses (nodal analyses and star volume analyses) of cancellous bone. Proximal humerii were prepared for scanning electron microscopy (SEM). Microradiography confirmed the loss of cancellous bone from the central spongiosa regions of the vertebral bodies and the humerii in the OVX rats. Changes in trabecular structural elements included relative increases in the number of free to free, cortical to free, cortical to node struts and decreases in the node to node struts in the OVX animals compared with controls. There were increases in average lengths of the node to free, node to node, and free to free trabecular struts in the OVX animals. The marrow star volume was increased in the OVX animals indicating a greater trabecular separation in these animals compared with controls. Viewed by SEM, metaphyseal trabeculae in the controls consisted of rods and plates but in the OVX animals the remaining trabeculae were mostly longitudinal rods with smaller transverse connecting rods. The remaining bone in the OVX animals was found in the lateral metaphyseal areas and is consistent with maintenance of the structural capacity of the bone. These long-term changes in cancellous bone structure are likely due to the continuation of functional skeletal loading but a decrease in gonadal hormones resulting in a decreased necessity to maintain a skeletal mineral store for reproduction (e.g., pregnancy and lactation). © 1993 Wiley-Liss, Inc.  相似文献   

2.
The effect of surgical ovariectomy on cancellous bone was investigated by comparing mechanical properties and microarchitectural characteristics of the lumbar vertebrae in ovariectomized and sham-operated ewes. Eighteen mongrel ewes, 4+/-1 years old, were randomly divided into three groups: 6 animals served as a control group (Baseline), 6 were bilaterally ovariectomized (OVX), and the others were used as a sham-operated group (SHAM). OVX and SHAM ewes were euthanized 24 months after surgery; the L5 vertebrae were processed for mechanical and histomorphometric analyses. Maximum load, maximum strength (p<0.0005) and elastic modulus (p <0.005) decreased by about 28% in the OVX group in comparison with the other groups. In the OVX group, vertebral cancellous bone volume, trabecular thickness and trabecular number decreased by about 32% (p<0.0005), 15% (p=0.001) and 20% (p=0.019), respectively. An overall decrease in the bone turnover rate of the OVX group was registered in terms of bone formation rate (p=0.007) and activation frequency (p<0.0005). The variations observed in cancellous bone mechanics and histomorphometry would suggest the development of an osteopenic state in ewe vertebrae at 24 months. Such findings may be useful for future experimental investigations on biomaterials and prosthetic devices to be implanted in the osteopenic spine.  相似文献   

3.
腰椎疲劳骨折的有限元分析   总被引:10,自引:2,他引:8  
目的:了解腰椎疲劳骨折后各结构力学变化。方法:建立腰椎三维有限元模型模拟腰椎疲劳骨折的载荷状态。结果:骨折后各结构位移增加,椎间盘膨出半径增大,皮质骨,松质骨,裂纹两端应力增加。结论:腰椎疲劳骨折后各结构应力增加,小梁裂纹表现出明显的裂纹扩展趋势,增大的椎间盘膨出半径是引起下腰痛的主要原因。  相似文献   

4.
目的:探讨类固醇激素对大鼠股骨和腰椎的骨密度影响。方法:雄性SD大鼠分为基础对照组、实验对照组和激素模型组;用DEXA对各组的离体双侧股骨和第5腰椎进行骨密度测定。结果:与实验对照组比较,激素模型组股骨和第5腰椎的总骨密度减少了14.77%;腰椎的骨密度减少了23.00%;左、右股骨远段的骨密度分别减少了19.83%、21.37%,具显著或非常显著差异。结论:长期使用类固醇激素,会使大鼠的骨量丢失,尤以松质骨的丢失比密质骨更为明显。故出现骨质疏松时,松质骨更容易出现骨折。  相似文献   

5.
The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7-month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE2/kg/d for 60, 120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancellous bone mass of lumbar vertebral bodies 26-60% above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was withdrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancellous bone area, bone formation, and resorption parameters returned to near age-related controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.  相似文献   

6.
The lumbar vertebrae are major load-bearing structures within the spinal column. The current understanding of the microstructure of these bodies and their full role in load-bearing is incomplete. There is a need to develop our understanding of these issues to improve fracture prediction in musculoskeletal diseases such as osteoporosis. The lumbar vertebrae consist primarily of trabecular bone enclosed in a thin cortical shell, but little is known about how microstructural parameters vary within these structures, particularly in relation to the trabecular compartment. The specific aim of this study was to use micro-computed tomography to characterize the trabecular microarchitecture of the ovine L3 vertebra in cranial, mid-vertebra and caudal regions. The L3 vertebra was obtained from skeletally mature ewes ( n  = 18) more than 4 years old. Three-dimensional reconstructions of three pre-defined regions were obtained and microarchitectural parameters were calculated. Whereas there was no difference in bone volume fraction or structural model index between regions, trabecular number, thickness, spacing, connectivity density, degree of anisotropy and bone mineral density all displayed significant regional variations. The observed differences were consistent with the biomechanical hypothesis that in vivo loads are distributed differently at the endplates compared with the mid-vertebra. Thus, a more integrative approach combining biomechanical theory and anatomical features may improve fracture risk assessment in the future.  相似文献   

7.
Measures of complexity for cancellous bone.   总被引:1,自引:0,他引:1  
The problem of quantifying the structure of cancellous bone has been addressed in the past by histomorphometry and more recently by imaging techniques using X-ray attenuation. The current approaches compute and describe parts of the construction of the trabecular net. We developed a new technique which quantifies cancellous bone of human lumbar vertebrae as a whole. The interactions, transactions, and interrelationships of all parts of the structural composition of the trabeculae are accounted for and quantified. The method is based on the concept of structural complexity within the framework of nonlinear dynamics. The methodology was developed by using axial high resolution computed tomography images. The technique was transferred to quantitative computed tomography images and is based on the non-invasive assessment of 50 human L3 specimens. The value of Houndsfield units per pixel representing trabecular bone of the vertebrae was transformed into color-encoded and alphabet-encoded symbols. The procedure of transformation of the X-ray attenuation pixels into symbols was necessary as a basis on which measures of complexity were introduced to assess the composition of symbols within the images. The development of a generalization of symbolic dynamics, a mathematical method, to work with two-dimensional images was a prerequisite. The results of this study demonstrate that the structural composition of cancellous bone declines more rapidly than bone mineral density during the loss of bone. This outcome strongly suggests an exponential relationship between bone mineral density and the architectural composition of cancellous bone. Normal trabecular bone has a complex ordered structure. The structural composition during the osteopenic phase of bone loss is characterized by lower structural complexity and a significantly higher level of architectural disorder. A high grade of osteoporosis leads again to an ordered structure, although its structural complexity is minimal.  相似文献   

8.
The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7-month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0,1,3, and 6 mg PGE2 /kg/dfor 60, 120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancellous bone mass of lumbral vertebral bodies 26–60% above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was withdrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancellous bone area, bone formation, and resorption parameters returned to near agerelated controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.© Willey-Liss, Inc.  相似文献   

9.
Cetaceans (dolphins, whales, and porpoises) are fully aquatic mammals that are supported by water's buoyancy and swim through axial body bending. Swimming is partially mediated by variations in vertebral morphology that creates trade-offs in body flexibility and rigidity between axial regions that either enhance or reduce displacement between adjacent vertebrae. Swimming behavior is linked to foraging ecology, where deep-diving cetaceans glide a greater proportion of the time compared to their shallow-diving counterparts. In this study, we categorized 10 species of cetaceans (Families Delphinidae and Kogiidae) into functional groups determined by swimming patterns (rigid vs. flexible torso) and diving behavior (shallow vs. deep). Here, we quantify vertebral trabecular microarchitecture (a) among functional groups (rigid-torso shallow diver (RS), rigid-torso deep diver (RD), and flexible-torso deep diver (FD)), and (b) among vertebral column regions (posterior thoracic, lumbar, caudal peduncle, and fluke insertion). We microCT scanned vertebral bodies, from which 1-5 volumes of interest were selected to quantify bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (TbTh), trabecular number (TbN), trabecular separation (TbSp), and degree of anisotropy (DA). We found that BV/TV was greatest in the rigid-torso shallow-diving functional group, smallest in flexible-torso deep-diving species, and intermediate in the rigid-torso deep-diving group. DA was significantly greater in rigid-torso caudal oscillators than in their flexible-torso counterparts. We found no variation among vertebral regions for any microarchitectural variables. Despite having osteoporotic skeletons, cetacean vertebrae had greater BV/TV, TbTh, and DA than previously documented in terrestrial mammalian bone. Cetacean species are an ideal model to investigate the long-term adaptations, over an animal's lifetime and over evolutionary time, of trabecular bone in non-weight–bearing conditions.  相似文献   

10.
康力龙、泼尼松对大鼠骨组织形态学的影响   总被引:6,自引:1,他引:5  
目的 探讨康力龙和泼尼松对大鼠骨组织形态学的影响。方法  3月龄雄性SD大鼠 2 4只 ,体重 2 31 7± 33 3g随机分为三组。分别用蒸馏水、泼尼松 4 5mg·kg-1·d-1(每周二次 )和泼尼松 4 5mg·kg-1·d-1加康力龙 0 5mg·kg-1·d-1灌胃(每周 6次 ) ,持续 90天。用图像分析仪测算胫骨近端骨小梁的骨形态计量学指标 ,并在扫描电镜下观察大鼠腰椎的组织结构改变。结果 与对照组比较 ,泼尼松组大鼠胫骨的骨吸收增加 (破骨细胞数 + 92 % ) ,骨小梁间隙 (Tb .Sp)增宽 187% ,骨形成率(BFR/TV)减少 89% ,骨小梁面积 (%Tb .Ar)减少 (- 5 8% )。腰椎的骨小梁变少 ,变细 ,断裂 ,连接不紧密 ,表面常见骨吸收形成的陷窝。与泼尼松组比较 ,康力龙组骨形成增加 (BFR/TV + 75 2 % ) ,骨吸收减少 (破骨细胞数 - 41% ) ,骨量增加 (%Tb .Ar +87% ,Tb .Sp - 5 8% )。腰椎的骨小梁粗大 ,排列整齐 ,连接紧密。结论 长期使用泼尼松可导致骨质疏松 ,康力龙对此有防止作用。  相似文献   

11.
目的 观察骨质疏松和非骨质疏松状态的松质骨的三维微观结构对其骨强度的影响。方法 16只雌性成年绵羊随机分为去势(OVX)组(8只)和假手术(Sham)组(8只)。OVX组行双侧卵巢切除术,假手术组仅显露双侧卵巢,术前测定腰椎竹密度(BMD)。术后12个月处死动物,测定腰椎的BMD,用环钻钻取椎体松质骨,并行MicroCT分析及生物力学测试。结果 去势12个月后,OVX组的BMD较Sham组显著降低。松质骨的骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数目(Tb.N)较Sham组显著降低,表面积体积比(BS/BV)和骨小梁分离度(Tb.Sp)较对照显著增高。生物力学测试表明,去势12个月后,OVX组松质骨的力学强度显著下降。骨小梁的力学强度与骨小梁厚度(r=0.945,R^2=0.886)、骨体积分数(r=0.783,R^2=0.586)及面积体积比(r=0.643,R^2=0.372)呈线性相关。结论 骨小梁的三维微观结构改变可以影响松质骨的力学强度,两者之间具有一定的线性关系。  相似文献   

12.
应用micro-CT获得腰椎松质骨微结构的三维参数,分析卵巢切除术与雌二醇干预对大鼠松质骨微结构及整体骨生物力学性能的作用,初步讨论松质骨微结构的改变对生物力学性能的影响.6月龄未交配雌性SD大鼠30只,随机分成3组(每组10只):假手术对照组(Sham)、去卵巢组(OVX)和去卵巢 补充雌二醇组(EBT).术后相同条件饲养5个月,取第3腰椎进行生物力学压缩试验,第4腰椎行micro-CT扫描.结果表明,与相应的Sham组比较,OVX组的BV/TV、Tb.N均明显下降,Tb.Sp和SMI明显增高.EBT组的BV/TV、Tb.N和Tb.Th均大于OVX组,Tb.Th和SMI明显小于OVX组.骨力学性能检测显示OVX组腰椎松质骨E、Fmax和σmax均明显降低,而EBT组上述骨生物力学参数均明显改善.通过micro-CT获得的骨微结构参数并结合骨力学性能检测能为合理评价骨质疏松及抗骨质疏松药物药效研究提供较好的实验依据.  相似文献   

13.
The sexual dimorphism in age-related loss of human vertebral cancellous bone is not fully understood and could be related to dimorphism in the bone cell populations. The objective of this study was to investigate age- and gender-related differences in the osteocyte population and its relationship with bone volume fraction for human vertebral cancellous bone. Histomorphometric techniques were used to quantify osteocyte lacunae (a measure of osteocyte population) and bone volume fraction in male and female human T12 vertebrae, the most common site of vertebral fracture. Two measures of osteocyte population [number of osteocytes per bone area (OtLcDn) and number of osteocytes per total area (OtLcN/TA)] and their relationships with age and bone volume fraction were found to be sexually dimorphic. Dimorphism in osteocyte density may explain the dimorphic patterns of bone loss in human vertebrae due to the sensory and signal communication functions that osteocytes perform.  相似文献   

14.
目的运用有限元方法模拟腰椎爆裂骨折的过程,观察腰椎在轴向压缩载荷作用下松质骨内的应力分布情况。方法建立正常人体胸腰段(T12~L2)运动节段的三维有限元模型,在T12椎体上表面施加不同等级的压力(0.4、0.6、0.8、1.0、1.2 k N),模拟腰椎爆裂骨折发生时椎体承受的不同等级的轴向压缩载荷。将连接椎体上下终板凹面顶点的连线7等分,在此基础上将L1椎体中的松质骨划分为7个具有统计节点的层面,每个统计层面划分成6个统计区。分别测量L1椎体松质骨内3个层面(第1、4、7层面)18个统计区的平均应力。在同一等级载荷下对3个层面内的平均应力进行单因素方差分析,分析腰椎椎体松质骨内不同载荷作用下的应力分布情况。结果在5个不同等级载荷下,第1、7层松质骨平均应力分别与第4层比较有统计学意义(P0.05),而第1、7层平均应力比较无统计学意义(P0.05)。轴向加载时,相比第1、7层应力,椎体松质骨中间层面(第4层)应力最小。结论腰椎在轴向压缩载荷作用下,椎体松质骨内存在应力集中的现象,接近椎体上下软骨板的松质骨应力较大,而椎体松质骨中间层面应力较小,椎体内应力集中分布在上下软骨板的特点与腰椎爆裂骨折所致终板破裂的生物力学机制相一致,提示腰椎椎体骨结构损伤可能与椎体内应力集中有关。  相似文献   

15.
Nine-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 2, 10, 18, and 26 weeks and were double-labeled with bone markers. The right limb was immobilized against the abdomen and considered unloaded, while the left limb was overloaded during ambulation. Single-photon absorptiometry was performed on intact femur; static and dynamic histomorphometry were performed on 20 microns thick undecalcified frontal sections of the proximal tibial metaphysis. Changes in the continuously overloaded limb was compared to that in both limbs of age-matched control animals. Single-photon absorptiometry detected increases of bone mineral density of +6%, +6%, and +5% in the proximal and +9%, +7%, and +10% in the distal femoral metaphyses after 10, 18, and 26 weeks of continuous overloading. Morphometrically, significant changes occurred in proximal tibial metaphyses compared to age-matched controls: trabecular area increased +41% and +45%, trabecular number increased +31% and +32%, and trabecular separation decreased -30% and -31% after 18 and 26 weeks of overloading. A significant increase in mineral apposition rate (+38%) was found only at 26 weeks of overloading. Insignificant decreases in both eroded and labeled bone surfaces occurred at all time periods. The histomorphometric changes indicated that increased cancellous bone mass was caused by an increase in bone formation activity (i.e., increases in mineral apposition and bone formation rates) and a decrease in remodeling space (i.e., decrease in bone eroded surface). These findings indicate that the adult skeleton can quickly adapt to the increased biomechanical needs by increasing its cancellous bone mass with an adequate structural pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Bone mineral density and three-dimensional trabecular structure play a significant role in predicting bone strength and biomechanical properties. MR is a non-invasive technique for determining trabecular architecture both in vivo and in vitro. In this paper we review the use of magnetic resonance imaging to obtain high resolution images of trabecular bone structure and quantify the three-dimensional architecture of the trabecular bone network. Studies assessing the anisotropy of the trabecular architecture in human cadaveric specimens from the distal and proximal femur, and the thoracic and lumbar vertebrae, are reviewed. The contributions of the MR derived measures of 3D trabecular bone structure to the biomechanical strength of the specimen are presented. In vivo, the relationship between the high resolution MR derived trabecular bone structure parameters in the distal radius and calcaneus in patients with hip fractures, are compared to age matched normal controls. MR derived measures are compared to measures of trabecular bone mineral density (BMD) in the hip using dual X-ray absorptiometry (DXA).  相似文献   

17.
仙珍骨宝抗泼尼松致大鼠松质骨结构破坏的作用   总被引:2,自引:0,他引:2  
张志平  谢华  吴铁  崔燎  李青南 《解剖学研究》2007,29(4):253-255,267
目的观察仙珍骨宝对糖皮质激素引起松质骨结构破坏的防治作用。方法选用3月龄SD雄性大鼠24只,随机分为对照组、激素组和治疗组。激素组用泼尼松4.5mg/kg灌胃,每周2次。治疗组给予100%仙珍骨宝5ml/kg,每周6次,持续90d。用骨组织形态计量学方法测算胫骨近端骨小梁的静态指标,并在扫描电镜下观察大鼠腰椎松质骨结构的改变。结果与正常组比较,激素组的大鼠胫骨的骨小梁的面积减少72.43%,骨小梁数目减少74.09%。腰椎的骨小梁变少,变细,断裂,连接不紧密,表面常见骨吸收形成的陷窝。治疗组大鼠胫骨骨小梁的面积比激素组增加179.70%,骨小梁数目增多187.60%。腰椎的骨小梁较粗大,排列整齐,连接紧密。结论仙珍骨宝能有效防止糖皮质激素所引起的松质骨三维结构的损害,保持骨的正常力学强度,避免骨折。  相似文献   

18.
The distribution of bone calcium between morphologically identifiable cortical and trabecular bone obtained by dissection and quantitated by neutron activation analysis (NAA) is described. The skeleton of a female beagle dog was dissected into approximately 400 pieces and assayed for 49Ca produced in the University of California, Irvine TRIGA reactor. For each of the skeletal sections, we give the initial weight of the alcohol-fixed tissue, which includes cortical bone, trabecular bone, marrow, and cartilage, and a final tissue weight after the marrow and trabecular bone have been dissected away; total section and cortical section calcium weights are reported. The level of detail is represented, for example, by the vertebrae, which were divided into three parts (body, spine, and transverse processes) and by the long bones, which were divided into 10–12 parts such that characterization of the epiphysis, metaphysis, and diaphysis was accomplished. The nedian percentage cortical calcium values for cervical, thoracic, and lumbar vertebrae were 82%, 56%, and 66%, respectively; however, variation within these groups and among individual vertebral sections was about a factor of 2. For long bones, the median percentage cortical calcium varied from 90–100% in the midshaft to below 50% in the proximal and distal sections. The final calculated cortical tissue-to-calcium mass ratio (TCR) varied from about 4.5 for midshafts of the long bones to about 9 for thoracic vertebral bodies and indicated that the mineral fraction of cortical bone is not constant throughout the skeleton. The ratio of cortical to trabecular calcium in the skeleton was 79.6:20.4.  相似文献   

19.
Fractal analysis of lumbar vertebral cancellous bone architecture.   总被引:5,自引:0,他引:5  
Osteoporosis is characterized by bone mineral density (BMD) decreasing and spongy bone rearrangement with consequent loss of elasticity and increased bone fragility. Quantitative computed tomography (QCT) quantifies bone mineral content but does not describe spongy architecture. Analysis of trabecular pattern may provide additional information to evaluate osteoporosis. The aim of this study was to determine whether the fractal analysis of the microradiography of lumbar vertebrae provides a reliable assessment of bone texture, which correlates with the BMD. The lumbar segment of the spine was removed from 22 cadavers with no history of back pain and examined with standard x-ray, traditional tomography, and quantitative computed tomography to measure BMD. The fractal dimension, which quantifies the image fractal complexity, was calculated on microradiographs of axial sections of the fourth lumbar vertebra to determine its characteristic spongy network. The relationship between the values of the BMD and those of the fractal dimension was evaluated by linear regression and a statistically significant correlation (R = 0.96) was found. These findings suggest that the application of fractal analysis to radiological analyses can provide valuable information on the trabecular pattern of vertebrae. Thus, fractal dimensions of trabecular bone structure should be considered as a supplement to BMD evaluation in the assessment of osteoporosis.  相似文献   

20.
目的 探讨雷公藤甲素抗骨质疏松的作用及机制。方法 建立大鼠老年性骨质疏松模型。40只22月龄雄性SD大鼠随机分为雷公藤甲素(每天15μg/kg腹腔注射)治疗组和生理盐水对照组(每天15μg/kg腹腔注射),连续8周。采用显微CT分析胫骨近端骨松质的骨密度(BMD)和骨显微结构。WB检测成骨相关蛋白表达水平。TRACP-5b染色法测定破骨细胞数,同时检测骨吸收标志物表达水平。结果 显微CT结果显示,雷公藤甲素治疗组大鼠骨密度、骨体积/总体积比值(Bv/Tv)、骨小梁厚度(Tb.Th)、骨小梁数目(Tb.N)、骨小梁间距(Tb.Sp)均显著高于对照组(P<0.05)。两组的成骨相关蛋白表达水平无明显差异,TRACP-5b染色显示雷公藤甲素减少了体内破骨细胞的数量(P<0.05),同时血液骨吸收标志物水平也明显降低(P<0.05)。结论 雷公藤甲素通过抑制破骨细胞生成进而对老年性骨质疏松有保护作用。雷公藤甲素可能是治疗老年性骨质疏松症的一种可行方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号