首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate a new self-etch conditioner used with resin-modified glass ionomers (RMGIs) in bonding orthodontic brackets. MATERIALS AND METHODS: Sixty human molars were cleaned, mounted, and randomly divided into three groups. In group 1 (control), 20 orthodontic brackets were bonded to teeth using Transbond Plus Self-etching Primer; in group 2, 20 brackets were bonded using an RMGI with a 10% polyacrylic acid conditioner. In group 3, 20 brackets were bonded using Fuji Ortho LC with a new no-rinse self-conditioner for RMGIs. The same bracket type was used on all groups. The teeth were debonded in shear mode using a universal testing machine, and the amount of residual adhesive remaining on each tooth was evaluated. Analysis of variance was used to compare the shear bond strength (SBS), and the chi(2) test was used to compare the Adhesive Remnant Index (ARI) scores. RESULTS: There were no significant differences in the SBS (P = .556) between the groups. The mean SBS for Transbond Plus was 8.6 +/- 2.6 MPa, for Fuji Ortho LC using 10% polyacrylic acid 9.1 +/- 4.6 MPa, and for Fuji Ortho LC using GC Self-conditioner 9.9 +/- 4.1 MPa. The comparisons of the ARI scores between the three groups (chi(2) = 35.5) indicated that bracket failure mode was significantly different (P < .001), with more adhesive remaining on the teeth bonded using Transbond. Conclusions: The new self-etch conditioner can be used with an RMGI to successfully bond brackets. In addition, brackets bonded with Fuji Ortho LC resulted in less residual adhesive remaining on the teeth.  相似文献   

2.
OBJECTIVE: To compare the effects of a standardized thermocycling protocol on the shear bond strength (SBS) of two adhesive systems: a resin-modified glass ionomer and a composite resin used with a new self-etching primer. MATERIALS AND METHODS: Forty human molars were cleaned, mounted, and randomly divided into two groups. In group 1, brackets were bonded to the teeth using Fuji Ortho LC adhesive, and in group 2, the Transbond Plus system was used. The teeth were stored in water at 37 degrees C for 24 hours, thermocycled between 5 and 55 degrees C, and debonded using a universal testing machine. The enamel surface was examined under 10x magnification to determine the amount of residual adhesive remaining on the tooth. Student's t-test was used to compare the SBS and the chi-square test was used to compare the adhesive remnant index (ARI) scores. RESULTS: The mean SBS for the brackets bonded using the Fuji Ortho LC was 6.4 +/- 4.5 MPa, and the mean SBS for the Transbond Plus system was 6.1 +/- 3.2 MPa. The result of the t-test comparisons (t = 0.207) indicated that there was no significant difference (P = .837) between the two groups. The comparisons of the ARI scores (chi(2) = 0.195) indicated that bracket failure mode was not significantly different (P = .907) between the two adhesives. CONCLUSION: Although SBS and ARI scores were not significantly different for the two adhesives, clinicians need to take into consideration the other properties of the adhesives before using them.  相似文献   

3.
目的:评估一种树脂修饰化的玻璃离子托槽粘结剂在牙面不同处理方式和环境下的两次粘结后的剪切强度情况。方法:将新近拔除的105颗上颌第一前磨牙随机均分成7组,按照说明书的要求完成托槽的粘结。对照组牙面用37%的磷酸处理后,用光固化复合树脂粘结剂(3M,Transbond XT)粘结。其它6组牙面分别在37%的磷酸、GC处理剂(GC Self-Conditioner)、和不做任何处理的条件下,分别在干燥和湿润的环境下用树脂修饰化的玻璃离子(RMGIC;Fuji ORTHO LC,GC Corporation,Tokyo,Japan)粘结,所有牙齿均选用同种托槽。托槽粘结24 h后,在万能测力机下以1 mm/min的速度卸载,并记录下数值。除去牙面和托槽底面多余粘结剂后,重复上述过程。每次卸载后检查牙釉质损坏情况。结果:对照组两次剪切强度有较小的差异,其它GC玻璃离子粘结剂组两次剪切强度没有统计学意义。GC粘结剂不做任何处理组在干燥和湿润的环境下其剪切强度存在明显的差异。干燥环境下,37%的磷酸和GC处理剂处理后,GC粘结剂组两次卸载后的牙釉质均出现不同程度的釉裂或釉质脱落。结论:这种树脂修饰化的玻璃离子粘结剂可以在多种条件下用于托槽的粘结。  相似文献   

4.
The purpose of this study was to investigate the effects of enamel pre-treatment with a new fluoride-containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complex on the shear bond strength (SBS) of brackets bonded with etch-and-rinse or self-etching adhesive systems. The material comprised 66 extracted human premolars randomly divided into six equal groups with respect to the enamel pre-treatment and adhesive system employed: 1. No pre-treatment and brackets bonded with the etch-and-rinse adhesive system (Transbond XT). 2. Pre-treatment with fluoride-containing CPP-ACP paste (MI Paste Plus) and Transbond XT. 3. Pre-treatment with non-fluoride CPP-ACP paste (MI Paste) and Transbond XT.4. No pre-treatment and brackets bonded with the self-etching adhesive system (Transbond Plus). 5 and 6. Enamel pre-treated as for groups 2 and 3, respectively, and the Transbond Plus. Bonded specimens were subjected to thermal cycling (×1000) before SBS testing. The residual adhesive on the enamel surface was evaluated after debonding with the adhesive remnant index (ARI). Data evaluation was made using one-way analysis of variance and Tukey test for SBS results, and Kruskal-Wallis test for ARI results. The results showed that enamel pre-treatment with either fluoride or non-fluoride CPP-ACP paste had no significant effect on the SBS of the self-etching adhesive system (P > 0.05). Enamel pre-treatment with non-fluoride CPP-ACP in group 3 significantly reduced the SBS of the etch-and-rinse adhesive (P < 0.001), while pre-treatment with fluoride-containing CPP-ACP paste (groups 2 and 5) did not affect debonding values (P > 0.05). The fluoride-containing CPP-ACP did not compromise the SBS of brackets bonded with the tested etch-and-rinse and self-etching systems, but its non-fluoride version significantly decreased the SBS of the etch-and-rinse adhesive system.  相似文献   

5.
The shear bond strength (SBS) of a light-cured, resin-reinforced glass ionomer and a composite adhesive in combination with a self-etching primer was compared after different setting times to evaluate when orthodontic wires could be placed. Additionally, the fracture site after debonding was assessed using the Adhesive Remnant Index (ARI). Eighty freshly extracted human premolars were used. Twenty teeth were randomly assigned to each of four groups: (1) brackets bonded with Transbond XT with a Transbond Plus etching primer and debonded within 5 minutes; (2) brackets bonded with Fuji Ortho LC and debonded within 5 minutes; (3) brackets bonded as for group 1 and debonded within 15 minutes; (4) brackets bonded as for group 2 and debonded within 15 minutes. The SBS of each sample was determined with an Instron machine. The mean SBS were, respectively: (1) 8.8 +/- 2 MPa; (2) 6.6 +/- 2.5 MPa; (3) 11 +/- 1.6 MPa and (4) 9.6 +/- 1.6 MPa. Interpolating the cumulative fracture probability by means of a Weibull analysis, the 10 per cent probabilities of fracture for the groups were found to be attained for shear stresses of 6.1, 3.1, 8.3 and 7.1 MPa, respectively. Chi-square testing of the ARI scores revealed that the nature of the remnant did not vary significantly with time, but the type of bonding material could generally be distinguished in leaving more or less than 10 per cent of bonding material on the tooth. After debonding, the Transbond system was likely to leave adhesive on at least 10 per cent of the bonded area of the tooth. The present findings indicate that brackets bonded with either Transbond XT in combination with Transbond Plus etching primer and Fuji Ortho LC had adequate bond strength at 5 minutes and were even stronger 15 minutes after initial bonding.  相似文献   

6.
This study assessed bonding of orthodontic brackets to porcelain teeth using two different surface preparation techniques and comparing two bonding systems, Fuji Ortho L.C. and Transbond. Four groups of 20 porcelain premolar teeth were bonded with metal orthodontic brackets (0.022 inch Minitwin, 3M Unitek) according to the following protocol: Transbond with a phosphoric acid etch (group 1), Transbond with a hydrofluoric acid etch (group 2), Fuji Ortho L.C. with a hydrofluoric acid etch (group 3), and Fuji Ortho L.C. with a phosphoric acid etch (group 4). All groups were bonded with a silane coupling agent. The teeth were debonded with an Instron universal testing machine. Bond strength, site of bond failure and adhesive remnant index (ARI) were recorded for each group. Differences between groups were analysed statistically. The composite resin groups (groups 1 and 2) had the highest mean bond strength values at 7.9 and 9.7 MPa, respectively. The resin-modified glass ionomer cement groups (RMGIC; groups 3 and 4) had the lowest mean bond strength values at 6.3 and 1.8 MPa, respectively. The mean bond strength of group 3 was significantly lower than all other groups (P < 0.0001). The Fuji groups had also significantly (P < 0.001) lower ARI scores than the composite groups (groups 1 and 2). Most samples experienced porcelain surface damage, except group 4. In conclusion, the highest bond strength levels were achieved with a conventional composite resin cement (groups 1 and 2). No significant differences in bond strength were found between the hydrofluoric and phosphoric acid etch technique.  相似文献   

7.

Aim

The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT).

Material and Methods

The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B–37% phosphoric acid; Fuji Ortho LC, group C–self etching primer; Transbond XT, group D–37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated.

Results

After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups.

Conclusion

The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer’s recommendation is the “gold standard” for brackets bonding for fixed orthodontic appliances.Key words: orthodontic brackets, shear strength, adhesive, enamel preparation  相似文献   

8.
Objective:To investigate the influence of caries infiltrant preconditioning on the shear bond strength of orthodontic resin cements on sound and demineralized enamel.Materials and Methods:Stainless-steel brackets were bonded to sound or artificially demineralized (14 d, acidic buffer, pH 5.0) bovine enamel specimens using a resin cement or a combination of caries infiltrant preconditioning (Icon, DMG) and the respective resin cement (light-curing composite: Heliosit Orthodontic, Transbond XT, using either Transbond XT Primer or Transbond Plus Self Etching Primer; light-curing resin-modified glass ionomer cement: Fuji Ortho; or self-curing composite: Concise Orthodontic Bonding System). Each group consisted of 15 specimens. Shear bond strength was evaluated after thermo-cycling (10,000×, 5°C to 55°C) at a crosshead speed of 1 mm/min, and data were statistically analyzed by analysis of variance, Mann-Whitney test, and Weibull statistics. Adhesive Remnant Index (ARI) scores and enamel fractures were determined at 25× magnification and were statistically analyzed by regression analyses (P < .05).Results:The caries infiltrant system significantly increased the shear bond strength of Transbond XT Primer, Transbond Plus Self Etching Primer, and Fuji Ortho in sound specimens, and of all resin cements except for the Concise Orthodontic Bonding System in demineralized enamel. Overall, caries infiltrant preconditioning decreased significantly the number of enamel fractures, but it did not affect ARI scores.Conclusion:Preconditioning of sound and demineralized enamel with the caries infiltrant system did not impair but rather increased the shear bond strength of most orthodontic resin cements while decreasing the risk of enamel fracture at debonding.  相似文献   

9.
The aim of this study was to assess the influence of etching and light-curing time on the shear bond strength (SBS) and adhesive remnant index (ARI) of a resin-modified glass ionomer cement (RMGIC) upon debonding of orthodontic brackets. Sixty-eight bovine permanent incisors were obtained and embedded in acrylic resin. Edgewise metallic brackets were bonded to the teeth with Fuji Ortho LC RMGIC. The specimens were randomly assigned to 4 groups, using the following etching and light-curing times: G1: 10% polyacrylic acid and 40 s (control); G2: 37% phosphoric acid and 40 s; G3: 10% polyacrylic acid and 50 s; and G4: 37% phosphoric acid and 50 s. Shear test was performed at 0.5 mm/min and the ARI was assessed. G2 (3.6 ± 0.98 MPa) presented significantly higher (p<0.05) SBS than G1 (2.76 ± 0.86 MPa) and G4 (2.86 ± 0.68 MPa), and there was no statistically significant difference (p>0.05) between G2 and G3 (2.94 ± 0.67 MPa). ARI presented prevalence of scores 2 and 3 in all groups. RMGIC SBS enhanced with 37% phosphoric acid etching and 40 s light-curing time, but this did not occur when the light-curing time was increased, regardless of the acid used. RMGIC presented prevalence of failures at the adhesive/bracket interface.  相似文献   

10.
PURPOSE: This study evaluated bond strengths of orthodontic brackets to instrumented and uninstrumented enamel using self-etching adhesive systems when compared to a total-etch adhesive system. The adhesive remnant index (ARI) was also determined after debonding. METHODS: 140 bovine incisors were included in acrylic resin, and divided randomly in two groups: instrumented vs. uninstrumented enamel. For the instrumented enamel, specimens had their facial enamel ground flat to 600-grit. In each group, specimens were subdivided into four experimental subgroups according to the adhesive technique used: Transbond Plus, Adper Prompt L-Pop, iBond, and Adper Single Bond, applied following manufacturers' instructions. Orthodontic brackets were bonded to the treated instrumented or uninstrumented enamel with Transbond XT light-cured resin-based composite cement, and the bond strength was tested in shear mode after 7 days. One group where no etch and no adhesive were used served as a control. ARI scores were determined after debonding. RESULTS: There was no statistically significant difference in mean bond strengths between instrumented and uninstrumented enamel for any of the adhesive systems (P > or = 0.05). No significant differences were observed for bond strengths among the adhesives tested (P = 0.308), and all experimental groups resulted in mean bond strengths significantly higher than the controls (P < 0.05). Statistically significant differences were identified when ARI scores were compared, with less adhesive remnants being observed for iBond (uninstrumented enamel) and the control groups (P < 0.05).  相似文献   

11.
OBJECTIVE: The purpose of this study was to determine whether a self-adhesive universal cement, RelyX Unicem (3M ESPE, Seefeld, Germany), can be used successfully to bond orthodontic brackets to enamel. MATERIALS AND METHODS: Forty human molars were cleaned, mounted, and randomly divided into two groups: 20 orthodontic brackets were bonded to teeth using RelyX Unicem, and 20 brackets were bonded using the Transbond XT (3M Unitex, Monrovia, Calif) adhesive system. The teeth were debonded within 30 minutes after initial bonding using a universal testing machine. After debonding, the enamel surface was examined under 10x magnification to determine the amount of residual adhesive remaining on the tooth. Student's t-test was used to compare the shear bond strength (SBS) of the two groups, and the chi-square test was used to compare the Adhesive Remnant Index (ARI) scores for the two adhesive systems. RESULTS: The mean SBS of the brackets bonded using the RelyX Unicem was 3.7 +/- 2.1 MPa and was significantly lower (t = 2.07, P = .048) than the SBS of the brackets bonded with the Transbond system (x = 5.97 +/- 4.2 MPa). The comparisons of the ARI scores between the two groups (chi(2) = 17.4) indicated that bracket failure mode was significantly different (P = .002) with more adhesive remaining on the teeth bonded with Transbond XT. CONCLUSIONS: The SBS of the self-adhesive universal cement needs to be increased for it to be successfully used for bonding orthodontic brackets.  相似文献   

12.
The purpose of this study was to test the hypothesis that a torsional load applied after bracket bonding does not affect the shear bond strength (SBS) with different bonding techniques. Sixty human premolars were divided into two groups (experimental and control) to investigate the effects of a torsion load, and the two groups were further subdivided into three groups of 10 for the evaluation of different adhesive systems (one etch-and-rinse adhesive, Transbond XT; two self-etching primer adhesives, Transbond Plus and Beauty Ortho Bond). A torsion load (1.45 N/cm) was applied by beta-titanium wire at 15 minutes after bracket bonding in the experimental groups. All specimens were then thermocycled between 5 and 55°C for approximately 1 week (6000 cycles). The SBS for each sample was examined with a universal testing machine and the adhesive remnant index (ARI) score was calculated. Data were compared by two-way analysis of variance, Student's t-test, and a chi-square test. The SBS for Transbond XT after thermocycling with a torsion load was significantly lower than that without a torsion load. For Transbond Plus and Beauty Ortho Bond, there was no significant difference in the mean SBS between specimens thermocycled with and without a torsion load. No significant difference in the distribution of frequencies among the ARI categories was observed among the six groups, although the ARI scores for specimens with a torsion load tended to be higher than those without a torsion load. In conclusion, the SBS of the conventional etch-and-rinse adhesive system significantly decreased under a torsion load with thermocycling.  相似文献   

13.
目的:研究光固化树脂加强型玻璃离子黏结剂与自酸蚀光固化正畸黏结剂对金属托槽-牙面黏结的特点。方法:60颗离体前磨牙随机分成6组,每组10颗牙,3组用光固化树脂加强型玻璃离子黏结剂,另3组用自酸蚀光固化复合树脂黏结剂黏结正畸托槽,分别于0.5、24h及冷热循环实验后测试其抗剪强度及黏结剂残留指数,并通过扫描电镜观察树脂—牙釉质面形态。结果:2种材料黏结强度均能超过5MPa。但是,24h自酸蚀光固化正畸黏结剂的强度高于光固化树脂加强型玻璃离子黏结剂的强度(P<0.05)。结论:2种光固化正畸黏结剂能提供正畸临床黏结金属托槽足够的黏结力。  相似文献   

14.
The aim of the study was to compare the shear bond strength of a fluoride-releasing composite resin adhesive (Light Bond, Reliance) and a light-cured resin-reinforced glass ionomer cement (Fuji Ortho LC, GC America) bonded to extracted teeth under different enamel surface conditions. Forty human premolars were divided at random into 4 groups of 10 specimens. Stainless steel brackets were attached to the enamel surface by 1 of the 4 protocols: 1. Fuji Ortho LC, moist non-etched enamel; 2. Fuji Ortho LC, moist etched (37% H3PO4); 3. Light Bond, dry etched (37% H3PO4); 4. Light Bond, dry etched (Etch & Prime 3.0, Degussa). The teeth were stored in deionized water at 37 degrees C for 48 hours. Shear bond strengths was determined at a crosshead speed of 1 mm/min. The residual adhesive on the enamel surface was evaluated with the modified Adhesive Remnant Index (ARI). Analysis of variance (ANOVA) and Duncan's test were used to compare the 4 groups. Significance was predetermined at p = 0.05. Significant inter-group differences were found (p < 0.0001). The mean SBS (and SD), in MPa were: Group 1: 15.9 (4.7); Group 2: 20.3 (2.5); Group 3: 16.7 (2.6); Group 4: 11.7 (2.5). Glass ionomer cement without etching and composite with Etch & Prime showed adhesive failures at the enamel and good enamel integrity after debonding. The other specimens showed mixed or adhesive fractures at the bracket failure sites. Glass ionomer used on wet tooth surfaces without etching shows a clinically acceptable bond strength with clean separation from the enamel after debonding.  相似文献   

15.
The aim of this work was to investigate the stability of the bracket-adhesive-enamel interface, as a function of adhesive material and of debonding procedure, in order to assess which debonding technique is the least detrimental to the enamel. Ninety lower adult bovine incisors were selected and metallic orthodontic brackets were bonded using three adhesive systems: Concise, Transbond, and Fuji Ortho. Three different debonding procedures were used based on tensile, shear, and torsional stresses. One-way analysis of variance statistical analysis was employed to compare mechanical properties, while the adhesive remnant index was used to evaluate fracture properties. Each adhesive material used showed a statistical difference in tensile failure. The difference between shear and torsion failure loads was statistically significant only for the Fuji GC sample (P < 0.01). The shear test was the most damaging to the enamel surface. Transbond luting resulted in greater adhesion than the Concise or Fuji Ortho systems. Fuji Ortho was more prone to accidental debonding, while Transbond tended to cause enamel lesions, since high loads were required to debond the bracket. Of the three modes examined, torsional debonding stress resulted in the least enamel damage.  相似文献   

16.
This study sought to assess the efficacy of two self-etching primer systems (Transbond Plus and Beauty Ortho Bond) on orthodontic brackets. Therefore, shear bond strengths and bracket-adhesive failure modes (ARI scores) were determined and compared against an etch-and-rinse adhesive system (Transbond XT) under two experimental conditions (dry and saliva application). Shear bond strength test was performed at a crosshead speed of 0.5 mm/min, while enamel surfaces and enamel-adhesive interfaces were examined with SEM. There were no significant differences between Transbond XT (9.15 MPa) and Transbond Plus (9.74 MPa) under the dry condition, whereas that of Beauty Ortho Bond (6.47 MPa) was significantly lower than these two systems. Under SEM examination, both self-etching primers showed a milder etching effect and decreased depth of resin penetration into intact enamel than Transbond XT. In conclusion, results of this study showed that both self-etching systems seemed to offer more merits than conventional acid etching because of fewer irreversible changes to enamel.  相似文献   

17.
OBJECTIVE: To compare the shear bond strength and determine the area of residual adhesive on teeth after the debonding of brackets bonded with two types of orthodontic adhesives. These were a resin-modified glass ionomer cement (RMGIC; Fuji ORTHO LC, GC Corporation, Tokyo, Japan) and a resin applied as a precoated bracket (APC bracket, 3M Unitek GmbH, Seefeld, Germany). MATERIALS AND METHODS: A total of 60 premolar teeth were randomly divided into two groups, and brackets were bonded according to the manufacturers' instructions. In group 1, the teeth were conditioned using 10% polyacrylic acid, and the brackets were bonded using Fuji Ortho LC in wet condition. In group 2, the teeth were etched using 37% phosphoric acid, and the APC brackets were bonded. Bond strength was measured using a testing instrument (2000S, Lloyds Instruments, Fareham, England) at a crosshead speed of 1 mm/min, and the residual adhesive was quantified using a three-dimensional laser scanning instrument. RESULTS: The Mann-Whitney test showed that the median bond strength of group 1 was significantly lower than that of group 2 (P < .001). A Pearson chi-square test of the Adhesive Remnant Index (ARI) revealed a significant difference among the groups tested. All the adhesives in group 1 failed at the enamel/adhesive interface (100%), whereas group 2 exhibited cohesive failure of the adhesive (90%). CONCLUSIONS: The bond strength values obtained with the RMGIC were above the minimum values suggested in the literature to achieve a clinically effective adhesion in orthodontics.  相似文献   

18.
OBJECTIVE: To assess the shear bond strength of metallic orthodontic brackets bonded with either Fuji Ortho or Ortho Glass LC resin-reinforced glass ionomer cements to enamel surfaces under different conditions, namely, enamel without etching, enamel conditioned with 37% phosphoric acid and enamel conditioned with Transbond Plus Self Etching Primer (TPSEP). MATERIALS AND METHODS: One hundred and five bovine inferior incisors were divided into seven groups (n = 15). In group 1 (control) Transbond XT was used according to the manufacturer's recommendations. In groups 2, 3, and 4 all using Fuji Ortho LC, the brackets were bonded, respectively, to enamel nonetched, enamel etched with 37% phosphoric acid, and enamel etched with TPSEP. In groups 5, 6, and 7, the bonding was performed using Ortho Glass LC under the same enamel conditions observed in the other experimental groups. After 24 hours, shear bond strength tests were performed for all samples at a crosshead speed of 0.5 mm/min. RESULTS: The results (MPa) showed no statistically significant difference between groups 1, 3, and 4 (P > .05). However, such groups were statistically superior to the others (P < .05). No statistically significant difference was observed between groups 2, 6, and 7 (P > .05). Group 5 showed the lowest shear strength value, which was also statistically inferior to the other groups (P < .05). CONCLUSIONS: Regardless of the enamel treatment, Fuji Ortho LC yielded shear strength values superior to those from Ortho Glass LC.  相似文献   

19.
The purpose of this study was to evaluate the shear bond strength and the site of bond failure for 2 visible light-cured composites (Transbond XT and Enlight) and a resin-modified glass ionomer cement (RMGIC; Fuji Ortho LC). Seventy-five extracted human premolars were collected and randomly divided into 3 test groups. Brackets were bonded to the teeth in each test group with the respective adhesive according to the manufacturers' instructions. Each specimen was debonded using an Instron Universal Testing Machine at a crosshead speed of 0.1 mm/min. The mode of bond failure was observed by using light microscopy. The results of this study demonstrated that the light-cured composites had a higher shear bond strength than the RMGIC. The adhesive-remnant scores were similar for the composites with the mean values at about 2, which indicates that more than half of the adhesive remained on the tooth. The RMGIC had a mean score of 3, which was significantly different from the composites and indicated that all of the adhesive remained on the tooth with a distinct impression of the bracket.  相似文献   

20.
This study aimed to evaluate the mean shear bond strength of molar tubes with micro-etched bases bonded with either a compomer (Ultra Band-Lok), a resin-modified glass ionomer cement (3M Multi-Cure or Fuji Ortho LC), or a light-cured resin adhesive (Transbond). The amount of adhesive remaining on the tooth surface following tube removal was assessed also. Finally, survival time of molar tubes bonded with each bonding agent was assessed following simulated mechanical fatigue in a ball mill. A total of 120 extracted human third molars were collected and randomly divided into 4 test groups. Thirty teeth (20 to assess debonding force and 10 to assess survival time) were bonded with each adhesive according to the manufacturers' instructions. Debonding was carried out using a Nene M3000 testing machine with a crosshead speed of 0.5 mm/min. The mean shear bond strength of tubes bonded with Transbond was significantly less than that of those bonded with 3M Multi-Cure (P = .0036) or Fuji Ortho LC (P < .0001). Tubes bonded with Ultra Band-Lok also had significantly lower mean shear bond strength than those bonded with Fuji Ortho LC (P = .020). Distribution of adhesive remnant index scores only differed significantly between tubes bonded with 3M Multi-Cure or Transbond. Only I molar tube, bonded with Transbond, debonded in the ball mill at 5 hours, but at 50 hours there was no significant difference in the survival time of tubes bonded with any of the bonding agents. Compomer or resin-modified glass ionomer cements appear to be viable alternatives to light-cured resin adhesive for bonding molar tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号