首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 15 (IL-15) is a pleiotropic cytokine produced principally by monocytes and affects both innate and acquired immunity. It has been shown that IL-15 is essential for the proliferation and maintenance of CD8+ memory cells but has little or no effect on naive CD8+ cells or CD4+ T cells. We report here, using an in vitro culture system of antigen-specific OVA TCR transgenic T cells as well as normal mouse T cell activated with anti-CD3 antibody that IL-15, at high concentrations, induced proliferation of both naive and memory CD4+ and CD8+ cells. IL-15 also enhanced the differentiation of type 1 (IFN-gamma-producing) and type 2 (IL-5-producing) CD4+ and CD8+ T cells under IL-12 and IL-4 driving conditions, respectively. However, IL-15 alone was not efficient in stimulating cytokine production of these cells in the absence of T cell subset driving cytokines (IL-12 or IL-4) and / or simultaneous TCR activation. Together, these results demonstrate that IL-15, at high dose, is a pan-T cell growth factor. The apparent requirement of IL-15 for the maintenance of memory CD8+ cell in vivo may reflect the exceptionally restricted nature of this subpopulation of cells for IL-15. The inability of IL-15 alone to stimulate cytokine synthesis also suggests that IL-15 on its own does not drive antigen-specific T cells to exhaustion. The levels of these cells are maintained by IL-15 and they are only mobilized to carry out effector functions when subsequently confronted with specific pathogens.  相似文献   

2.
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.  相似文献   

3.
The impact of CD28 ligation upon CD4+ and CD8+ T lymphocyte proliferation and cytokine production was assessed. Although costimulation increased the proliferative response of both T cell subsets, cytokine production was most markedly increased in the CD4+ subset, as evidenced by a 40-fold increase in interleukin-2 (IL-2), a 14-fold increase in interleukin-3 (IL-3) and 5-fold increases in interferon gamma and GM-colony-stimulating factor (CSF) production. The CD8+ T cell response to CD28 ligation was less marked, maxima being a 5-fold increase in IL-2 production and 2-fold increases in IL-3 and GM-CSF production. Resolution of CD4+ and CD8+ T cells into their CD44lo (na?ve) and CD44hi (memory/effector) subsets revealed that naive CD4+ T cells were the most CD28-responsive subsets. CD28-mediated costimulation promotes distinct differentiation programs in CD4+ versus CD8+ T cells.  相似文献   

4.
Notch signaling regulates cell fate decisions in multiple lineages. We demonstrate in this report that retroviral expression of activated Notch1 in mouse thymocytes abrogates differentiation of immature CD4+CD8+ thymocytes into both CD4 and CD8 mature single-positive T cells. The ability of Notch1 to inhibit T cell development was observed in vitro and in vivo with both normal and TCR transgenic thymocytes. Notch1-mediated developmental arrest was dose dependent and was associated with impaired thymocyte responses to TCR stimulation. Notch1 also inhibited TCR-mediated signaling in Jurkat T cells. These data indicate that constitutively active Notch1 abrogates CD4+ and CD8+ maturation by interfering with TCR signal strength and provide an explanation for the physiological regulation of Notch expression during thymocyte development.  相似文献   

5.
6.
We have reported previously that uncommitted human CD4+ CD45RO- T cells default to the T-helper type 1 (Th1) pathway, if they are costimulated by anti-CD3 plus anti-CD28 monoclonal antibodies (mAb). In contrast, 5% of the uncommitted T cells differentiate into Th2 cells, if they are stimulated by anti-CD28 plus interleukin-2 (IL-2) in the absence of T-cell receptor (TCR) signals. The anti-CD28/IL-2-induced proliferation (and the resulting Th2 commitment) was not affected by neutralizing anti-IL-4 mAb, suggesting a non-conventional IL-4-independent Th2 differentiation pathway. Here we report that the respective CD4+ Th2 cells (but not the Th1 cells) coexpressed the natural killer (NK) cell marker HNK1/CD57. Expression of CD57 on Th2 cells required CD28 stimulation, and was suppressed by CD3/TCR signals. However, Th2 effector cells displayed a TCR V beta-chain usage comparable to that of committed Th1 cells (with V beta 8 dominating). Our data suggest that expression of CD57 on human CD4 T cells may be associated with defined stages of Th2 cell activation/differentiation, and may not necessarily characterize a separate T-cell lineage. The induction of cytokine production and B-cell helper function in both Th1 and Th2 populations required CD3/TCR signalling in costimulation with anti-CD28 or IL-2. Importantly, anti-CD28/IL-2-primed Th2 cells readily secreted IL-4 and induced IgE production by surface IgE- B cells in response to the first TCR signal and independent of previous contact with IL-4. Therefore, CD4+ CD57+ T cells responded comparably to murine CD4+ NK1.1+ T cells, which are critical for the development of Th2/IgE immune responses in vivo. The possible role of human CD4+ CD57/HNK1+ Th2-like cells in cancer, infection and allergy is discussed.  相似文献   

7.
Paclitaxel (PTX) is one of the most widely used clinical antitumour drugs in chemotherapy nowadays. Its effect on immune system has become a hot spot of research in recent years. Here, we demonstrated that PTX not only decreased the percentage of CD4+Foxp3+ regulatory T (Treg) cells both in vitro and in vivo but also impaired cell viability and cytokine production of Treg cells rather than CD4+Foxp3- effector T (Teff) cells. As PTX has been reported to mimic the activity of LPS to trigger the toll-like receptor 4 (TLR4) signalling pathway in macrophages, we investigated the possible role of TLR4 in the effect of PTX. However, although TLR4 expression on Treg cells was higher than that on Teff cells, the expression level remained unaltered in both Treg and Teff cells after PTX treatment. Surface molecules and activation markers in Treg and Teff cells did not change, either. Further study showed that the effect of PTX on TLR4-/- mice deficient in TLR4 signalling was similar to that on C57BL/6 mice both in vivo and in vitro. These data indicate that the selective impairment of Treg cells by PTX is independent of TLR4.  相似文献   

8.
Interleukin (IL)-2 functions to promote, as well as down-regulate, expansion of antigen-reactive CD4+ and CD8+ T cells, but the role of IL-2 in hapten-specific CD8+ T cell priming for contact hypersensitivity (CHS) responses remains untested. Using enzyme-linked immunospot to enumerate numbers of hapten-specific CD4+ and CD8+ T cells producing IL-2 in hapten-sensitized mice, the number of IL-2-producing CD8+ T cells was tenfold that of CD4+ T cells. Hapten-primed CD4+ T cells produced low amounts of IL-2 during culture with hapten-presenting Langerhans cells, whereas production by hapten-primed CD8+ T cells was fivefold greater. CD8+ T cells did not express CD25 during hapten priming, but treatment with anti-IL-2 or anti-CD25 monoclonal antibodies during hapten sensitization increased hapten-specific effector CD8+ T cells as well as the magnitude and duration of the CHS response. These results indicate that CD8+ T cells are the primary source of IL-2 and that this IL-2 is required for the function of a population of CD(4+)CD25+ T cells to restrict the development of the hapten-reactive effector CD8+ T cells that mediate CHS responses.  相似文献   

9.
The induction of specific effector functions in naive T cells may be directed by accessory signals during activation. These could be elicited through binding to cell surface molecules or through factors secreted by antigen-presenting cells or other simultaneously activated cells. We have investigated the influence of CD8+ cells and of exogenously added cytokines (interleukin (IL)-2, IL-4 and interferon (IFN)-gamma) on the cytokine production in splenic CD4+ T cells. IL-2, IL-4, IL-5 and IFN-gamma production in CD4+ cells was measured at the single cell level during primary mitogen stimulation in vitro in the presence or absence of factors or CD8+ cells. On day 5 the cells were restimulated with mitogen alone and analysed to evaluate the short-term development of cytokine-producing cells in such cultures. Preactivation in the presence of either exogenous IL-4 or IFN-gamma led to an increased production of IL-4 and IFN-gamma respectively at restimulation, and the effects of both IL-4 and IFN-gamma were augmented by IL-2. After preactivation in the presence of IL-2 and IL-4, every third CD4+ cell could be induced to produce IL-4. Exogenous IL-4 or IFN-gamma further decreased each other's production. Depletion of CD8+ cells before activation resulted in a slight increase of IL-4-producing cells, indicating that simultaneous activation of CD8+ cells will influence lymphokine production in CD4+ cells. The results suggest that the pattern of lymphokines induced in naive cells may be influenced by factors secreted by preactivated CD4+ and CD8+ cells, and that naive cells are preferentially 'recruited' to produce similar cytokines.  相似文献   

10.
Interleukin (IL)-10 is an important regulatory cytokine that can modulate excessive immune mediated injury. Several distinct cell types have been demonstrated to produce IL-10, including most recently CD8+ cytotoxic T lymphocytes (CTLs) responding to respiratory virus infection. Here we report that CD4+ T cell help in the form of IL-2 is required for IL-10 production by CTLs, but not for the induction of CTL effector cytokines. We show that IL-2 derived from CD4+ helper T cells cooperates with innate immune cell-derived IL-27 to amplify IL-10 production by CTLs through a Blimp-1-dependent mechanism. These findings reveal a previously unrecognized pathway that coordinates signals derived from innate and helper T cells to control the production of a regulatory cytokine by CTLs during acute viral infection.  相似文献   

11.
12.
IL-2 is a cytokine with multiple and even divergent functions; it has been described as a key cytokine for in vitro T cell proliferation but is also essential for down-regulating T cell responses by inducing activation-induced cell death as well as regulatory T cells. The in vivo analysis of IL-2 function in regulating specific T cell responses has been hampered by the fact that mice deficient in IL-2 or its receptors develop lymphoproliferative diseases and/or autoimmunity. Here we generated chimeric mice harboring both IL-2R-competent and IL-2R-deficient T cells and assessed CD8+ T cell induction, function and maintenance after acute or persistent viral infections. Induction and maintenance of CD8+ T cells were relatively independent of IL-2R signaling during acute/resolved viral infection. In marked contrast, IL-2 was crucial for secondary expansion of memory CD8+ T cells and for the maintenance of virus-specific CD8+ T cells during persistent viral infections. Thus, depending on the chronicity of antigen exposure, IL-2R signaling is either essential or largely dispensable for induction and maintenance of virus-specific CD8+ T cell responses.  相似文献   

13.
初始T细胞分化为效应T和记忆T细胞受到多种因素调节.最近在Notch信号途径的研究进展显示它也参于T细胞的活化与分化.大量研究已经表明Notch信号途径可以影响T细胞在中枢免疫器官的发育,现在关于它调节外周T细胞的分化状态也积累不少证据,Notch信号活化之后能够改变CD4+和CD8+T细胞分泌细胞因子的特点.以下着重介绍Notch信号参于调节外周T细胞的活化、增殖和分化的最新资料,尽管不同的研究者所得实验结果有冲突之处,但已经提示Notch信号在T细胞外周发育中的重要意义,特别重要的是抗原递呈细胞(APC)可以通过Notch信号途径调节T细胞的分化.  相似文献   

14.
The CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E is coupled to the KARAP/DAP12 adapter in a subset of NK cells, triggering their effector functions. We have studied the distribution and function of this KLR in T lymphocytes. Like other NK cell receptors (NKR), CD94/NKG2C was predominantly expressed by a CD8(+) T cell subset, though TCRgammadelta(+) NKG2C(+) and rare CD4(+) NKG2C(+) cells were also detected in some individuals. Coculture with the 721.221 HLA class I-deficient lymphoma cell line transfected with HLA-E (.221-AEH) induced IL-2Ralpha expression in CD94/NKG2C+ NK cells and a minor subset of CD94/NKG2C(+) T cells, promoting their proliferation; moreover, a similar response was triggered upon selective engagement of CD94/NKG2C with a specific mAb. CD8(+) TCRalphabeta CD94/NKG2C(+) T cell clones, that displayed different combinations of KIR and CD85j receptors, expressed KARAP/DAP12 which was co-precipitated by an anti-CD94 mAb. Specific engagement of the KLR triggered cytotoxicity and cytokine production in CD94/NKG2C(+) T cell clones, inducing as well IL-2Ralpha expression and a proliferative response. Altogether these results support that CD94/NKG2C may constitute an alternative T cell activation pathway capable of driving the expansion and triggering the effector functions of a CTL subset.  相似文献   

15.
A key issue in mammalian immunology is how CD4+CD25+Foxp3+ regulatory T cells (T(reg) cells) suppress immune responses. Here we show that T(reg) cells induced apoptosis of effector CD4+ T cells in vitro and in vivo in a mouse model of inflammatory bowel disease. T(reg) cells did not affect the early activation or proliferation of effector CD4+ T cells. Cytokines that signal through the common gamma-chain suppressed T(reg) cell-induced apoptosis. T(reg) cell-induced effector CD4+ T cell death required the proapoptotic protein Bim, and effector CD4+ T cells incubated with T(reg) cells showed less activation of the prosurvival kinase Akt and less phosphorylation of the proapoptotic protein Bad. Thus, cytokine deprivation-induced apoptosis is a prominent mechanism by which T(reg) cells inhibit effector T cell responses.  相似文献   

16.
Summary: CD4 regulatory T cells have a major role in controlling the immune response to self and foreign antigens. Natural CD4+ CD25+ T cells are a major component of the regulatory subset. Their absence is associated with the development of autoimmune and inflammatory diseases and with abnormal peripheral T-cell homeostasis. Two main characteristics discriminate natural CD4+ CD25+ T cells from their CD4+ CD25 counterparts, namely their cytokine production profile and their behavior during tolerance induction. Natural CD4+ CD25+ T cells produce interleukin (IL)-10, a cytokine that contributes to their regulatory role. They do not produce IL-2 and are dependent on exogenous IL-2 for proliferation in vitro and in vivo . Studies of their response to superantigen administration in vivo show that they are resistant to clonal deletion but can be tolerized by anergy. Their resistance to apoptosis may contribute to their continuous regulatory function, as it allows them to maintain permanent control over effector T cells.  相似文献   

17.
PKCdelta has been implicated in the signalling events after engagement of the antigen specific receptor on B cells and the Fc-epsilon receptor on mast cells. Employing our recently established PKCdelta null mice , we here investigate the physiological function of PKCdelta in CD3+ T cells. As result, administration of anti-CD3 antibodies in vivo induced markedly increased blood plasma IL-2 levels (but not IL-4, IFN-gamma, TNF-alpha and IL-6 levels) in the PKCdelta null mice, when compared to wild-type sibling controls. Additionally, in vitro T cell proliferative responses to allogenic MHC are significantly enhanced in PKCdelta-deficient CD3+ T cells. These findings suggest that PKCdelta serves a so far unrecognized role in TCR-induced negative regulation of IL-2 cytokine production and T cell proliferation.  相似文献   

18.
CD8^+ cytotoxic T (Tc) cells play a crucial role in host immune responses to cancer, and in this context, adoptive CD8^+ Tc cell therapy has been studied in numerous animal tumor models. Its antitumor efficacy is, to a large extent, determined by the ability of Tc cells to survive and infiltrate tumors. In clinical trials, such in vitro-activated T cells often die within hours to days, and this greatly limits their therapeutic efficacy. CD8^+ Tc cells fall into two subpopulations based upon their differential cytokine secretion. In this study, we in vitro generated that ovalbumin (OVA)-pulsed dendritic cell (DCovA)-activated CD8^+ type 1 Tc (Tcl) cells secreting IFN-T, and CD8^+ type 2 Tc (Tc2) cells secreting IL-4, IL-5 and IL-10, which were derived from OVA-specific T cell receptor (TCR) transgenic OT I mice. We then systemically investigated the in vitro and in vivo effector function and survival of Tcl and Tc2 cells, and then assessed their survival kinetics after adoptively transferred into C57BL/6 mice, respectively. We demonstrated that, when compared to CD8^+ Tc2, Tcl cells were significantly more effective in perforin-mediated cytotoxicity to tumor cells, had a significantly higher capacity for in vivo survival after the adoptive T cell transfer, and had a significantly stronger therapeutic effect on eradication of well-established tumors expressing OVA in animal models. In addition, CD8^+ Tcl and Tc2 cells skewed the phenotype of CD4^+ T cells toward Thl and Th2 type, respectively. Therefore, the information regarding the differential effector function, survival and immune modulation of CD8^+ Tcl and Tc2 cells may provide useful information when preparing in vitro DC-activated CD8^+ T cells for adoptive T cell therapy of cancer.  相似文献   

19.
Interleukin (IL)-21 is a T cell-derived cytokine which uses a heterodimeric receptor, composed of the common gamma-chain (CD132) and an IL-21Ralpha-chain. IL-21 activates lymphoid T and B cells, modulates antibody production but also suppresses maturation of myeloid dendritic cells; however, its role in the differentiation and function of other myeloid cells remains less clear. In this study we analysed IL-21/IL-21Ralpha effects on macrophage (MPhi) differentiation and function. MPhi could be generated readily from bone marrow with MPhi-colony-stimulating factor in the presence of IL-21 (designated IL-21MPhi) or from IL-21Ralpha-/- mice. IL-21Ralpha-/- mice had normal MPhi numbers, suggesting a non-essential role of both IL-21 and the IL-21Ralpha for MPhi generation. We could demonstrate that mature MPhi express the IL-21Ralpha and the common gamma-chain. However, short-term IL-21 stimulation did not enhance MPhi proliferation but induced anti-apoptotic cell-cycle regulators p21(waf1)/p27(Kip1) and expression of suppressors of cytokine signalling (SOCS)2/SOCS3. Moreover, IL-21 enhanced phagocytosis by MPhi via IL-21Ralpha signalling and supports protease activity and matrix metalloproteinase 12 expression. Stimulating MPhi with IL-21 enhanced their capacity to induce antigen-specific CD4+ T cell proliferation in dependence from the IL-21Ralpha, which was not the case for CD8+ T cells. Taken together, IL-21 plays a previously unrecognized role in modulating innate and acquired effector mechanisms of murine MPhi by linking these different functions to support CD4+ T cell-mediated immune responses.  相似文献   

20.
Based on recent advances in techniques that can detect and enumerate antigen-specific CD8+ T cells, it is evident that these cells can differentially regulate CD8+ T cell effector mechanisms at the single-cell level. Interplay between effector mechanisms that are employed by antigen-specific CD8+ T cells during the immune response in vivo can be addressed with different techniques that "count" cells either directly (T cell receptor (TCR) expression) or indirectly (antigen-specific cytokine production).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号