首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background and Purpose

Previously, we have shown that sorafenib sensitizes hepatocellular carcinoma (HCC) to apoptosis induced by TNF-related apoptosis-inducing ligand (TNFSF10; TRAIL). Here, we report that sorafenib and SC-49 sensitize HCC cells to CS-1008, a novel anti-human death receptor 5 (TNFRSF10B) antibody.

Experimental Approach

HCC cell lines (PLC5, Huh-7, and Hep3B) were treated with CS-1008 and/or sorafenib and analysed in terms of apoptosis and signal transductions.

Key Results

SC-49 is a sorafenib derivative, which is devoid of kinase inhibitory activity. Both sorafenib and SC-49 down-regulated the phosphorylation of STAT3 at Tyr705 and subsequently reduced the levels of STAT3-regulated proteins, Mcl-1, survivin and cylcin D1, in CS-1008-treated HCC cells. Knockdown of STAT3 by RNA interference overcame apoptotic resistance to CS-1008 in HCC cells, and ectopic expression of STAT3 in HCC cells abolished the sensitizing effects of sorafenib and SC-49 on CS-1008-induced apoptosis, indicating that inhibition of STAT3 mediates the enhancing effects of these compounds when combined with CS-1008. Importantly, inhibition of SHP-1 by adding a specific SHP-1 inhibitor reduced the effects of SC-49 and CS-1008 on p-STAT3 and apoptosis, whereas co-treatment of CS-1008 with SC-49 increased the activity of SHP-1. These data indicate that the combined effects of CS-1008 and SC-49 on HCC are mediated by SHP-1. Moreover, the combination of CS-1008 and SC-49 inhibited HCC xenograft tumour growth in vivo.

Conclusions and Implications

Sorafenib and its derivative SC-49 sensitize HCC cells to the antitumour effects of CS-1008 through SHP-1-dependent inactivation of STAT3.  相似文献   

2.
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation.  相似文献   

3.
《Biochemical pharmacology》2013,85(12):1617-1626
Dovitinib (TKI258/CHIR258) is a multi-kinase inhibitor in phase III development for the treatment of several cancers. Dovitinib is a benzimidazole-quinolinone compound that structurally resembles the bisbenzimidazole minor groove binding dye Hoechst 33258. Dovitinib bound to DNA as shown by its ability to increase the DNA melting temperature and by increases in its fluorescence spectrum that occurred upon the addition of DNA. Molecular modeling studies of the docking of dovitinib into an X-ray structure of a Hoechst 33258–DNA complex showed that dovitinib could reasonably be accommodated in the DNA minor groove. Because DNA binders are often topoisomerase I (EC 5.99.1.2) and topoisomerase II (EC 5.99.1.3) inhibitors, the ability of dovitinib to inhibit these DNA processing enzymes was also investigated. Dovitinib inhibited the catalytic decatenation activity of topoisomerase IIα. It also inhibited the DNA-independent ATPase activity of yeast topoisomerase II which suggested that it interacted with the ATP binding site. Using isolated human topoisomerase IIα, dovitinib stabilized the enzyme-cleavage complex and acted as a topoisomerase IIα poison. Dovitinib was also found to be a cellular topoisomerase II poison in human leukemia K562 cells and induced double-strand DNA breaks in K562 cells as evidenced by increased phosphorylation of H2AX. Finally, dovitinib inhibited the topoisomerase I-catalyzed relaxation of plasmid DNA and acted as a cellular topoisomerase I poison. In conclusion, the cell growth inhibitory activity and the anticancer activity of dovitinib may result not only from its ability to inhibit multiple kinases, but also, in part, from its ability to target topoisomerase I and topoisomerase II.  相似文献   

4.
目的研究海蓬子皂苷甲(bigelovii A,BA)诱导细胞凋亡的作用及其机制。方法使用MTT实验检测BA对肿瘤细胞增殖的抑制作用;流式细胞仪分析BA对细胞凋亡的影响;Western blot分析p-STAT3、STAT3、p-STAT5、STAT5、SHP-1、SHP-2的表达。结果20和40μmol·L^-1 BA可诱导HepG2细胞发生凋亡,具有剂量依赖性。10、20和40μmol·L^-1 BA可抑制IL6诱导的STAT3和STAT5磷酸化,但酪氨酸磷酸酶抑制剂过钒酸钠可逆转该抑制作用,且20μmol·L^-1 BA能激活蛋白酪氨酸磷酸酶SHP-1和SHP-2。结论BA可能通过SHP-1/SHP-2和STAT3/STAT5通路诱导HepG2细胞凋亡。  相似文献   

5.
The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-α and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors.  相似文献   

6.
7.
8.

BACKGROUND AND PURPOSE

Aberrant activation of STAT3 is frequently encountered and promotes proliferation, survival, metastasis and angiogenesis in hepatocellular carcinoma (HCC). Here, we have investigated whether emodin mediates its effect through interference with the STAT3 activation pathway in HCC.

EXPERIMENTAL APPROACH

The effect of emodin on STAT3 activation, associated protein kinases and apoptosis was investigated using various HCC cell lines. Additionally, we also used a predictive tumour technology to analyse the effects of emodin. The in vivo effects of emodin were assessed in an orthotopic mouse model of HCC.

KEY RESULTS

Emodin suppressed STAT3 activation in a dose- and time-dependent manner in HCC cells, mediated by the modulation of activation of upstream kinases c-Src, JAK1 and JAK2. Vanadate treatment reversed emodin-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase and emodin induced the expression of the tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Interestingly, silencing of the SHP-1 gene by siRNA abolished the ability of emodin to inhibit STAT3 activation. Finally, when administered i.p., emodin inhibited the growth of human HCC orthotopic tumours in male athymic nu/nu mice and STAT3 activation in tumour tissues.

CONCLUSIONS AND IMPLICATIONS

Emodin mediated its effects predominantly through inhibition of the STAT3 signalling cascade and thus has a particular potential for the treatment of cancers expressing constitutively activated STAT3.  相似文献   

9.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines. TRAIL selectively induces apoptotic cell death in various tumors and cancer cells, but it has little or no toxicity in normal cells. Agonism of TRAIL receptors has been considered to be a valuable cancer-therapeutic strategy. However, more than 85% of primary tumors are resistant to TRAIL, emphasizing the importance of investigating how to overcome TRAIL resistance. In this report, we have found that nemadipine-A, a cell-permeable L-type calcium channel inhibitor, sensitizes TRAIL-resistant cancer cells to this ligand. Combination treatments using TRAIL with nemadipine-A synergistically induced both the caspase cascade and apoptotic cell death, which were blocked by a pan caspase inhibitor (zVAD) but not by autophagy or a necrosis inhibitor. We further found that nemadipine-A, either alone or in combination with TRAIL, notably reduced the expression of survivin, an inhibitor of the apoptosis protein (IAP) family of proteins. Depletion of survivin by small RNA interference (siRNA) resulted in increased cell death and caspase activation by TRAIL treatment. These results suggest that nemadipine-A potentiates TRAIL-induced apoptosis by down-regulation of survivin expression in TRAIL resistant cells. Thus, combination of TRAIL with nemadipine-A may serve a new therapeutic scheme for the treatment of TRAIL resistant cancer cells, suggesting that a detailed study of this combination would be useful.  相似文献   

10.
Hepatocellular carcinoma (HCC) displays a striking resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Therefore, the characterization of pharmacological agents that overcome this resistance may provide new therapeutic modalities for HCC. Here, we examined whether glycogen synthase kinase-3 (GSK-3) inhibitors could restore TRAIL sensitivity in hepatoma cells. To this aim, the effects of two GSK-3 inhibitors, lithium and SB-415286, were analyzed on TRAIL apoptotic signaling in human hepatoma cell lines in comparison with normal hepatocytes. We observed that both inhibitors sensitized hepatoma cells, but not normal hepatocytes, to TRAIL-induced apoptosis by enhancing caspase-8 activity and the downstream recruitment of the mitochondrial machinery. GSK-3 inhibitors also stabilized p53 and the down-regulation of p53 by RNA interference abolished the sensitizing effect of lithium on caspase-3 activation. Concomitantly, GSK-3 inhibitors strongly activated c-Jun N-terminal kinases (JNKs). The pharmacological inhibition of JNKs with AS601245 or SP600125 resulted in an earlier and stronger induction of apoptosis indicating that activated JNKs transduced protective signals and provided an anti-apoptotic balance to the pro-apoptotic effects of GSK-3 inhibitors. These findings demonstrate that GSK-3 exerts a negative and complex constraint on TRAIL apoptotic signaling in hepatoma cells, which can be greatly alleviated by GSK-3 inhibitors. Therefore, GSK-3 inhibitors may open new perspectives to enhance the anti-tumor activity of TRAIL in HCC.  相似文献   

11.
12.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L), a member of the TNF gene superfamily, induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, some human hepatoma cells are particularly resistant to the effects of TRAIL. In this study, we show that J7, a novel methyl jasmonate analogue, sensitizes TRAIL-resistant HepG2 human hepatocarcinoma cells to TRAIL-mediated apoptosis. Our results indicate that J7 substantially enhances TRAIL-induced apoptosis, compared with treatment with either agent alone. Combined treatment with J7 and TRAIL effectively induced Bid cleavage, down-regulation of XIAP, cIAP-1 and Bcl-xL, activation of caspases, and cleavage of poly(ADP-ribose) polymerase and phopholipase γ-1. In addition, generation of reactive oxygen species (ROS) showed a significant increase in cells following exposure to J7 in a time-dependent manner. However, the cytotoxic effects induced by co-treatment with J7 and TRAIL were markedly attenuated by caspase inhibitors, indicating an important role for caspases. Administration of N-acetyl cysteine, a scavenger of ROS, also resulted in significant inhibition of apoptosis induced by combinatory treatment with J7 and TRAIL. These results support a mechanism whereby J7 plus TRAIL induces apoptosis of HepG2 human hepatoma cells through a signaling cascade involving a ROS-mediated caspase pathway.  相似文献   

13.
Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is frequently encountered, requiring combined treatments with sensitizing agents. It is, therefore, important to find nontoxic drugs which can be used together with TRAIL. In this study, we investigated natural compounds that can overcome resistance to TRAIL, and found that butein, a polyphenol, exhibits significant synergism with TRAIL. Treatment with TRAIL in combination with subtoxic concentrations of butein sensitizes TRAIL-resistant human leukemia U937 cells to apoptosis. Butein increased caspase-3 activity and expression of death receptor DR5. The apoptotic cell death induced by combined treatment was significantly reduced by z-DEVD-fmk, a caspase-3 inhibitor, suggesting a critical role of caspase-3 in apoptosis. These results indicate that butein sensitizes TRAIL-resistant U937 cells to TRAIL-induced apoptosis in a caspase-3 dependent manner which might be correlated with upregulation of death receptor DR5. Our data suggests that combined treatment with butein and TRAIL may provide a safe and effective strategy for treating cancer.  相似文献   

14.
Guggulsterone (GGS) has anti-tumor and anti-angiogenesis potential by suppressing nuclear factor-κB and STAT3 activity. Although GGS has been suggested as a potential therapeutic agent for treating various cancers, the underlying molecular mechanisms are unknown. Therefore, we investigated whether GGS sensitizes hepatocellular carcinoma cells (HCC) to apoptosis mediated by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). The apoptotic mechanism induced by treatment with a GGS/TRAIL combination involved the loss of mitochondrial transmembrane potential and consequent activation of caspases. GGS also induced upregulation of the death receptor DR5 for TRAIL. The effects seemed to be associated with eIF2α and CHOP activation, which are related to the endoplasmic reticulum (ER) stress response and apoptosis. This relationship was suggested by the observation that CHOP downregulation by specific siRNA attenuated both GGS-mediated DR5 upregulation and the cytotoxicity induced by GGS/TRAIL co-treatment. Moreover, salubrinal, a specific eIF-2α phosphorylation-inducing agent, enhanced the expression of CHOP and DR5 induced by GGS and sensitized cells to GGS/TRAIL-induced apoptosis. Thus, GGS-induced eIF2α phosphorylation seems to be important for CHOP and DR5 upregulation. Furthermore, these events were accompanied by an increase in the generation of reactive oxygen species. Pretreatment with N-acetyl-l-cysteine and glutathione inhibited GGS-induced ER-stress, and CHOP and DR5 upregulation and almost completely blocked GGS/TRAIL-induced apoptosis. These results collectively indicate that DR5 induction via eIF-2α and CHOP is crucial for the marked synergistic effects induced by TRAIL and GGS. Taken together, these results indicate that a GGS/TRAIL combination could represent a novel important tool for cancer therapy.  相似文献   

15.
Hepatocellular carcinoma (HCC) cells are intrinsically resistant to tumour necrosis factor‐related apoptosis ligand (Apo2L/TRAIL), in part, due to the compensatory activation of nuclear factor‐kappaB (NF‐κB). To broaden the clinical utilization of Apo2L/TRAIL in HCC, OSU‐A9, a potent indole‐3‐carbinol‐derived Akt/NF‐κB signalling inhibitor was used to overcome the intrinsic resistance. The antitumour effects of OSU‐A9, Apo2L/TRAIL and the therapeutic combination were assessed by MTT assay, caspase activation and PARP cleavage, and the synergistic interactions were determined by Calcusyn analysis. NF‐κB reporter gene and RT‐PCR were tested for the activation of NF‐κB and the expression of death receptors (DR)4 and 5. OSU‐A9 could sensitize HCC cells to Apo2L/TRAIL with high potency through down‐regulation of Akt/NF‐κB signalling. OSU‐A9 dose‐dependently reduced Akt phosphorylation and the expression and nuclear localization of RelA/p65, accompanied by parallel decreases in the expression of NF‐κB target products, including Bcl‐xL, Mcl‐1, cIAP1, cIAP2 and survivin. Moreover, OSU‐A9 increased DR5 expression through a reactive oxygen species (ROS)‐dependent mechanism. Concertedly, these mechanisms underlie the synergistic interaction between OSU‐A9 and Apo2L/TRAIL in mediating apoptotic death in HCC cells. The ability of OSU‐A9 to accentuate Apo2L/TRAIL‐induced apoptosis by inactivating Akt/NF‐κB signalling might foster a promising therapeutic strategy for HCC.  相似文献   

16.
TNF-related apoptosis-inducing ligand (TRAIL) is a promising agent for management of cancer because of its selective cytotoxicity to cancer cells. However, some cancer cells have resistance to TRAIL. Accordingly, novel treatment strategies are required to overcome TRAIL resistance. Here, we examined the synergistic apoptotic effect of apigenin in combination with TRAIL in Huh-7 cells. We found that combined treatment of TRAIL and apigenin markedly inhibited Huh-7 cell growth compared to either agent alone by inducing apoptosis. Combined treatment with apigenin and TRAIL induced chromatin condensation and the cleavage of poly (ADP-ribose) polymerase (PARP). In addition, enhanced apoptosis by TRAIL/apigenin combination was quantified by annexin V/PI flow cytometry analysis. Western blot analysis suggested that apigenin sensitizes cells to TRAIL-induced apoptosis by activating both intrinsic and extrinsic apoptotic pathway-related caspases. The augmented apoptotic effect by TRAIL/apigenin combination was accompanied by triggering mitochondria-dependent signaling pathway, as indicated by Bax/Bcl-2 ratio up-regulation. Our results demonstrate that combination of TRAIL and apigenin facilitates apoptosis in Huh-7 cells.  相似文献   

17.
We investigated whether verrucarin A (VA) sensitizes HepG2 hepatoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis. We found that VA alone induces little apoptosis, but when combined with TRAIL (VA/TRAIL), it triggered significant apoptosis, causing little or no toxicity in normal mouse splenocytes. VA/TRAIL-induced cell death is involved in the loss of mitochondrial transmembrane potential and the consequent activation of caspases. Because nuclear factor (NF)-κB inhibition has been known as a critical target in TRAIL-mediated apoptosis, we also investigated the role of NF-κB in VA/TRAIL treatment. We found that VA upregulated the DNA binding activity of NF-κB, but that the antioxidants glutathione and N-acetyl-l-cysteine, as well as NF-κB inhibitor MG132, and mutant-IκB (m-IκB) transfection, significantly downregulated VA/TRAIL-induced cell death by inhibiting caspase-3 and NF-κB activities. Transfection of mutant-eIF2α also resulted in a decrease in VA/TRAIL-induced cell death by inhibiting of caspase-3, but not NF-κB activity. Although VA/TRAIL treatment led to an increase of DR5 expression, transfection of m-IκB had no influence on the DR5 expressional level. Finally, we showed that NF-κB-mediated Fas expression is critical to VA/TRAIL-induced apoptosis. Taken together, these results indicate that VA/TRAIL sensitizes HepG2 cells to apoptosis via NF-κB-mediated overexpression of Fas.  相似文献   

18.
目的研究白细胞介素-12(IL-12)的抗NK/T细胞淋巴瘤活性及机制。方法培养NK/T细胞淋巴瘤的YTS细胞株并分为对照组、IL-12组、NC siRNA组、JAK2 siRNA组、空白质粒组、JAK2表达质粒组,用含有0.625、1.25、2.5、5.0、10.0、20.0 ng·mL^-1 IL-12的培养基处理或转染NC siRNA、JAK2 siRNA、空白质粒、JAK2表达质粒,检测细胞活力、细胞凋亡、细胞周期及细胞中JAK2及STAT3的表达;选择C57小鼠并建立移植瘤模型,随机分为对照组及IL-12组后,测定移植瘤质量及JAK2、STAT3的表达。结果在YTS细胞中,IL-12以及JAK2 siRNA能够抑制细胞活力、细胞周期及细胞中p-JAK2、p-STAT3的表达,诱导细胞凋亡(P<0.05);转染JAK2的表达质粒能够使20.0 ng·mL^-1的IL-12抑制细胞活力、细胞周期、细胞中p-JAK2、p-STAT3表达及诱导细胞凋亡的作用减弱;在移植瘤小鼠中,IL-12干预后,移植瘤质量及移植瘤中p-JAK2、p-STAT3的表达均明显下降(P<0.05)。结论IL-12具有抗NK/T细胞淋巴瘤的活性且其机制与抑制JAK2/STAT3信号通路的激活有关。  相似文献   

19.
Hepatocellular carcinoma (HCC) is the fifth most malignant tumor worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Lup-20(29)-en-3H-ol (Lupeol), a novel dietary triterpene, is found in fruits, vegetables, and medicinal plants and possesses multiple bio-activities with very low toxicity. In the current study, we investigated its growth-inhibitory effects in HCC cell lines SMMC7721 and HepG2. In the in vitro studies, lupeol treatment alone caused decrease of cell viability in two HCC cell lines in a dose-dependent manner. It also induced apoptosis and caused cell accumulation in S phase. Further analysis revealed the induction of active caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage by lupeol treatment. In the in vivo studies, nude mice implanted with SMMC7721 cells subcutaneously were treated with lupeol three times a week and tumor development was significantly inhibited. We further investigated the combination anti-tumor effect of lupeol and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HCC, considering TRAIL treatment alone could not achieve high level of anti-tumor effect. The results demonstrated that lupeol could exert a combinational effect with TRAIL, resulting in chemosensitization of HCC. Our results suggested that lupeol alone or as an adjuvant to therapeutic agents could be developed as a potential agent for treating HCC.  相似文献   

20.
目的探讨藤梨根提取物通过白细胞介素 -6/信号传导因子及转录激活因子 3(IL-6/STAT3)信号通路调控食管癌 EC9706细胞生物学行为的研究。方法本实验研究自 2018年 10月到 2019年 6月,分别用 1、5、10、100、500、1 000 mg/L的藤梨根提取物处理食管癌 EC-9706细胞,选取 100 mg/L作为最佳逆转实验浓度;用 IL-6/STAT3信号通路激活剂处理食管癌 EC-9706细胞。甲基噻唑基四唑( MTT)检测细胞的毒性;流式细胞术检测细胞的凋亡率; Transwell法检测细胞的迁移和侵袭;划痕实验检测细胞的运动能力;蛋白免疫印迹法( Western blotting)检测细胞周期蛋白 1(Cyclin D1)、周期蛋白依赖性激酶抑制因子(P21)、 B淋巴细胞瘤 -2相关蛋白(Bax)、 B淋巴细胞瘤 -2(Bcl-2)基质金属蛋白酶 -2(MMP-2)、基质金属蛋白酶 -9(MMP-9)、信号传导及转录活化因子 3(STAT3)、磷酸化的信号传导与转录激活因、子-3(p-STAT3)蛋白的表达。结果藤梨根提取物明显促进了食管癌 EC-9706细胞凋亡( 37.35±2.37)并抑制了细胞增殖( 21.33±3.91)、迁移( 106.31±3.20)和侵袭( 67.29±2.99)(P<0.05);下调 CyclinD1(0.25±0.01)、 Bcl-2(0.26±0.03),、MMP-2(0.27±0.03)、 MMP-9(0.25±0.01)、 STAT3(0.34±0.03)、 p-STAT3(0.20±0.01)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号