首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oncolytic virus therapy has recently been recognized as a promising new option for cancer treatment. Oncolytic viruses replicate selectively in cancer cells, thus killing them without harming normal cells. Notably, T‐VEC (talimogene laherparepvec, formerly called OncoVEXGMCSF), an oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in October 2015, and was subsequently approved in Europe and Australia in 2016. The efficacies of many types of oncolytic viruses against urological cancers have been investigated in preclinical studies during the past decade, and some have already been tested in clinical trials. For example, a phase I trial of the third‐generation oncolytic Herpes simplex virus type 1, G47Δ, in patients with prostate cancer was completed in 2016. We summarize the current status of clinical trials of oncolytic virus therapy in patients with the three major urological cancers: prostate, bladder and renal cell cancers. In addition to Herpes simplex virus type 1, adenoviruses, reoviruses, vaccinia virus, Sendai virus and Newcastle disease virus have also been used as parental viruses in these trials. We believe that oncolytic virus therapy is likely to become an important and major treatment option for urological cancers in the near future.  相似文献   

2.
Therapeutic intervention using oncolytic viruses is called virotherapy. This type of virus is defined by the ability to replicate in tumor cells only and to destroy these cells upon replication. In addition, this virus type is able to induce a tumor-directed immune response. Early clinical trials have confirmed the safety profile of oncolytic viruses. Currently, different groups are working on the development of oncolytic viruses with a focus on treatment of nonmuscle invasive bladder cancer (NMIBC). A preliminary active recruiting clinical phase II/III trial ongoing in patients with a NMIBC was recently implemented in the United States. Our research group developed an oncolytic adenovirus that will soon enter a clinical phase I trial in patients diagnosed with glioma. This virus is being further modified for the treatment of NMIBC. In this review article, recent developments in the design and use of virotherapy in bladder cancer are summarized.  相似文献   

3.
目的:研究一氧化氮(NO)对肿瘤组织特异性溶瘤病毒转染过程的影响及对外源基因表达的调节作用。方法:构建组织特异性溶瘤腺病毒,常规培养膀胱肿瘤BIU-87和5637细胞株,以硝普钠作为外源性NO的供体。应用PTIO和L-NMMA分别作为内源性NO的清除剂和诱导型一氧化氮合酶(NOS)的抑制剂。采用Nitrate/Nitrite Assay Kit检测NO和(或)病毒作用前后膀胱肿瘤细胞培养液中的NO水平。应用四甲基偶氮唑盐(MTT)法检测NO对重组病毒抗肿瘤细胞增殖的影响;透射电镜观察腺病毒颗粒进入细胞情况和亚细胞结构变化。结果:膀胱肿瘤细胞BIU-87和5637本身培养液中NO水平很低,给予外源性NO供体后NO水平随时间延长而升高。重组病毒Ad-UPⅡ-E1A能通过E1A基因发挥溶瘤作用。NO能够促进该病毒转染入BIU-87、5637细胞。50μmol/L和100μmol/L的NO联合Ad-UPⅡ-E1A 30MOI作用后能够促进肿瘤细胞的增殖,而200μmol/L的NO联合重组腺病毒作用后则促进肿瘤细胞的死亡。NO对Ad-UPⅡ-E1A的作用具有时间依赖性。透射电镜观察发现,重组病毒Ad-UPⅡ-E1A能够进入并在膀胱肿瘤细胞内复制,而NO能够提高病毒的转染效率并引起肿瘤细胞自吞噬和凋亡。结论:NO能够促进溶瘤腺病毒Ad-UPIIE1A转染膀胱肿瘤细胞的效率,但NO因其浓度不同对溶瘤腺病毒的溶瘤效果具有双向调节作用,低剂量的NO能够下调重组病毒E1A的表达从而促进肿瘤细胞增殖,而高剂量的NO通过上调E1A的表达因而发挥溶瘤效应。  相似文献   

4.
BackgroundDespite mankind's many achievements, we are yet to find a cure for cancer. We are now approaching a new era which recognises the promise of harnessing the immune system for anti-cancer therapy. Pathogens have been implicated for decades as potential anti-cancer agents, but implementation into clinical therapy has been plagued with significant drawbacks. Newer ‘designer’ agents have addressed some of these concerns, in particular, a new breed of oncolytic virus: JX-594, a genetically engineered pox virus, is showing promise.ObjectiveTo review the current literature on the use of oncolytic viruses in the treatment of cancer; both by direct oncolysis and stimulation of the immune system. The review will provide a background and historical progression for the surgeon on tumour immunology, and the interplay between oncolytic viruses, immune cells, inflammation on tumourigenesis.MethodsA literature review was performed using the Medline database.ConclusionsViral therapeutics hold promise as a novel treatment modality for the treatment of disseminated malignancy. It provides a multi-pronged attack against tumour burden; direct tumour cell lysis, exposure of tumour-associated antigens (TAA), induction of immune danger signals, and recognition by immune effector cells.  相似文献   

5.
Hypoxia is a common tumor condition associated with metastases, therapeutic resistance, and poor patient survival. Forty percent of breast cancers are hypoxic, with a median oxygen concentration of 3.9%, and a third of tumors have regions less than 0.3%. Normal breast tissue is reported to have oxygen concentrations greater than 9%. This tumor hypoxia in breast cancer confers resistance to conventional radiation therapy and chemotherapy, as well as making estrogen-receptor-positive tumors less sensitive to hormonal therapy. Novel treatment modalities are needed to target hypoxic tumor cells. Lower tumor oxygen levels compared with surrounding normal tissues may be utilized to target and enhance herpes oncolytic viral therapy in breast cancer. Attenuated oncolytic herpes simplex viruses offer a unique cancer treatment by specifically infecting, replicating within, and lysing tumor cells. They carry genetically engineered mutations to reduce their virulence and attenuate their ability to infect normal tissues. Studies have shown the safety and efficacy of oncolytic herpes simplex viruses in treating breast cancer both in humans and in preclinical models. The placement of essential viral genes under the control of a hypoxia-responsive enhancer, which is upregulated selectively in hypoxic tissue, represents a promising strategy to target oncolytic viruses precisely to hypoxic cancer cells. In this review we describe strategies to harness hypoxia as a trigger for oncolytic viral gene expression in breast cancer, thereby increasing the specificity of viral infection, replication, and cytotoxicity to hypoxic areas of tumor. Such a targeted approach will increase efficacy in the therapy of hypoxic tumors while achieving a reduction in total dose of viral therapy.Supported in part by AACR-Astra Zeneca Cancer Research and Prevention Foundation Fellowship (P.S.A), grants RO1 CA 75416 and RO1 CA/DK80982 (Y.F.) from the National Institutes of Health, grant MBC-99366 (Y.F.) from the American Cancer Society, grant BC024118 from the US Army (Y.F.), grant IMG0402501 from the Susan G. Komen Breast Cancer Foundation (Y.F. and P.S.A.) and grant 032047 from Flight Attendant Medical Research Institute (Y.F. and P.S.A.)  相似文献   

6.
Viral oncolysis represents a unique strategy to exploit the natural process of viral replication to kill tumor cells. Although this concept dates back nearly a century, recent advances in the fields of molecular biology and virology have enabled investigators to genetically engineer viruses with greater potency and tumor specificity. In this article we review the general mechanisms by which oncolytic viruses achieve their antineoplastic efficacy and specificity. We focus on the development of several classes of oncolytic viruses for the treatment of malignant liver tumors, including adenoviruses, vaccinia viruses, and herpes simplex viruses, and discuss the results of clinical trials for these viruses. We also describe results from our laboratory research program, which is focused on developing effective, liver tumor–specific Herpes simplex virus 1 mutants.  相似文献   

7.
胰腺癌是消化道常见恶性肿瘤之一,早期诊断困难,手术切除率低,预后差,且发病率呈逐年上升趋势。胰腺癌的常规治疗方式包括手术治疗、放疗、化疗,但90%的患者在就诊时已失去手术机会,且胰腺癌对放疗、化疗均不敏感。相对于以上传统的治疗方式,基因治疗是一个充满活力的研究领域,近年来备受关注,其中很多研究已进入Ⅰ/Ⅱ临床试验阶段。...  相似文献   

8.
OBJECTIVE: To assess the strategy of combining oncolytic herpes simplex virus (HSV) therapy with immunomodulatory therapy as treatment for experimental colon cancer. The oncolytic HSV recombinant NV1023 and the interleukin 12 (IL-12)-secreting oncolytic NV1042 virus were evaluated in vitro and in vivo with respect to antitumor efficacy. SUMMARY BACKGROUND DATA: Genetically engineered, replication-conditional, attenuated HSVs have shown oncolytic activity against a wide variety of solid malignancies. Other strategies for treating cancer have involved immunomodulation and cytokine gene transfer using viral vectors. This study has combined both of these strategies by inserting the murine IL-12 gene into a replication-competent HSV. This approach allows oncolytic therapy to replicate selectively within and lyse tumor cells while providing the host immune system with the cytokine stimulus necessary to recruit and activate inflammatory cells needed to enhance the antitumor effect. METHODS: NV1023 is a multimutant HSV based on the wild-type HSV-1 F strain. NV1042 was created by insertion of the mIL-12 gene into NV1023. Cytotoxicity and viral proliferation of both NV1023 and NV1042 within murine CT26 colorectal cancer cells were first shown. Cells infected with NV1042 were then shown to produce significant levels of IL-12. Using an experimental flank model of colon cancer, mice were treated with both high and low doses of NV1023 or NV1042 and were followed up for both cure and reduction in tumor burden. RESULTS: Both viruses could replicate within and kill CT26 cells in vitro, with 100% cytotoxicity achieved after infection by either virus. Only NV1042 could produce mIL-12. Therapy using high viral doses to treat animals in vivo showed equal efficacy between NV1023 and NV1042, with five of seven cures for each virus. When viral doses were lowered, only the cytokine-producing NV1042 virus could reduce tumor burden and cure animals of their disease. CONCLUSIONS: Both NV1023 and NV1042 have the oncolytic potential to kill colon cancer cells at higher doses. Cytokine production by NV1042 may allow lower doses of viral therapy to be used without losing antitumor efficacy. The combination of oncolytic viral therapy and immunomodulatory strategies should be further investigated as treatment for colon cancer.  相似文献   

9.
Gene therapy for brain tumors: the fundamentals   总被引:2,自引:0,他引:2  
BACKGROUND: Over the past two decades, significant advances have been made in the fields of virology and molecular biology, and in understanding the genetic alterations present in brain tumors. The knowledge gained has been exploited for use in gene therapy. OBJECTIVE: The purpose of this article is to present an introduction to the field of brain tumor gene therapy for the practicing clinician. RESULTS: A variety of gene therapy strategies have now been used in the laboratory and in clinical trials for brain tumors. They can be divided into five categories: 1) gene-directed enzyme prodrug ("suicide gene") therapy (GDEPT); 2) gene therapy designed to boost the activity of the immune system against cancer cells; 3) oncolytic virus therapy; 4) transfer of potentially therapeutic genes--such as tumor suppressor genes--into cancer cells; and 5) antisense therapy. GDEPT is the strategy that has been most extensively studied. CONCLUSIONS: To date, gene therapy has been found to be reasonably safe and concerns related to adverse events such as insertional mutagenesis have not been realized. Although patients have not been cured, the development of this therapy could still be considered to be at an early stage. Current research is addressing factors that could be limiting the successful clinical application of gene therapy, which remains an intriguing experimental option for patients with malignant brain tumors.  相似文献   

10.
Background  Viral oncolytic therapy, which seeks to exploit the use of live viruses to treat cancer, has shown promise in the treatment of cancers resistant to conventional anticancer therapies. Among the most difficult to treat cancers is advanced pancreatic adenocarcinoma. Our study investigates the ability of a novel oncolytic agent, myxoma virus, to infect, productively replicate in, and kill human pancreatic cancer cells in vitro. Methods  The myxoma virus vMyxgfp was tested against a panel of human pancreatic adenocarcinoma cell lines. Infectivity, viral proliferation, and tumor cell kill were assessed. Results  Infection of tumor cells was assessed by expression of the marker gene enhanced green fluorescent protein (e-GFP). vMyxgfp had the ability to infect all pancreatic cancer cell lines tested. Killing of tumor cells varied among the 6 cell lines tested, ranging from >90% cell kill at 7 days for the most sensitive Panc-1 cells, to 39% in the most resistant cell line Capan-2. Sensitivity correlated to replication of virus, and was found to maximally exhibit a four-log increase in foci-forming units for the most sensitive Panc-1 cells within 72 h. Conclusion  Our study demonstrates for the first time the ability of the myxoma virus to productively infect, replicate in, and lyse human pancreatic adenocarcinoma cells in vitro. These data encourage further investigation of this virus, which is pathogenic only in rabbits, for treatment of this nearly uniformly fatal cancer.  相似文献   

11.
BACKGROUND: Although conventional radiation therapy and surgery are potentially curative treatments for organ-confined prostate cancer, there are few effective treatments for metastatic disease. Oncolytic viruses have shown considerable promise for the treatment of solid tumors including prostate cancer. We recently demonstrated that incorporation of a cell membrane fusion capability into an oncolytic herpes simplex virus (HSV) can significantly increase the antitumor potency of the virus. METHODS: We used a mouse model of primary and metastatic human prostate cancer established from PC-3M-Pro4 to evaluate three different types of oncolytic HSVs: non-fusogenic Baco-1, singly fusogenic Synco-2, and doubly fusogenic Synco-2D. RESULTS: Our results show that Synco-2D has greater oncolytic activity than either Baco-1 or Synco-2 virus. Against lung metastases of human prostate cancer xenografts, intravenous administration of Synco-2D had produced a significant reduction of tumor nodules by day 40 post-inoculation as compared with Synco-2 (P < 0.05), Baco-1 (P < 0.01), and PBS control (P < 0.01). CONCLUSIONS: We conclude that the doubly fusogenic Synco-2D is an effective therapeutic agent for human metastatic prostate cancer.  相似文献   

12.
OBJECTIVE: To determine the effects of hypoxia-induced ribonucleotide reductase (RR) production on herpes oncolytic viral therapy. SUMMARY BACKGROUND DATA: Hypoxia is a common tumor condition correlated with therapeutic resistance and metastases. Attenuated viruses offer a unique cancer treatment by specifically infecting and lysing tumor cells. G207 is an oncolytic herpes virus deficient in RR, a rate-limiting enzyme for viral replication. METHODS: A multimerized hypoxia-responsive enhancer was constructed (10xHRE) and functionally tested by luciferase assay. 10xHRE was cloned upstream of UL39, the gene encoding the large subunit of RR (10xHRE-UL39). CT26 murine colorectal cancer cells were transfected with 10xHRE-UL39, incubated in hypoxia (1% O2) or normoxia (21% O2), and infected with G207 for cytotoxicity assays. CT26 liver metastases, with or without 10xHRE-UL39, were created in syngeneic Balb/C mice (n = 40). Livers were treated with G207 or saline. Tumors were assessed and stained immunohistochemically for G207. RESULTS: 10xHRE increased luciferase expression 33-fold in hypoxia versus controls (P < 0.001). In normoxia, 10xHRE-UL39 transfection did not improve G207 cytotoxicity. In hypoxia, G207 cytotoxicity increased 87% with 10xHRE-UL39 transfection versus nontransfected cells (P < 0.001). CT26 were resistant to G207 alone. Combining 10xHRE-UL39 with G207 resulted in a 66% decrease in tumor weights (P < 0.0001) and a 65% reduction in tumor nodules (P < 0.0001) versus G207 monotherapy. 10xHRE-UL39-transfected tumors demonstrated greater viral staining. CONCLUSIONS: Hypoxia-driven RR production significantly enhances viral cytotoxicity in vitro and reduces tumor burden in vivo. G207 combined with RR under hypoxic control is a promising treatment for colorectal cancer, which would otherwise be resistant to oncolytic herpes virus alone.  相似文献   

13.
New immunotherapeutic strategies have significantly improved the management of metastatic renal cell carcinoma, which is otherwise refractory to conventional chemotherapy and radiotherapy. Objective response rates of up to 40% have been achieved in clinical trials using systemic administration of interferon-, interleukin-2, adoptively-modified lymphokine-activated killer cells, or tumor-infiltrating lymphocytes. With the advent of recombinant genetics, approaches are now available for enhancing host antitumor immunity and improving tumor vaccine. In animal models, tumor vaccines expressing immunostimulatory cytokines have demonstrated the suppression of tumor growth and metastasis, elimination of pre-established tumors, and elicitation of immunity against tumor recurrence. However, most of these vaccines were not beneficial in human. Other approaches with the suppressor gene p53 and herpes simplex virus thymidine synthase gene as a suicide gene system have shown substantial tumor remission and clinical trials are currently underway. Gene therapy with multidrug resistance gene (MDR-1) also is applied for subsequent protection against myelosuppression during high-dose chemotherapy. Moreover, significant treatment improvements have resulted from combinations of gene therapy and immunotherapy along with cytotoxic agents, X irradiation, and biological response modifiers in experimental systems. In general, the future success of cancer gene therapy requires further development of techniques to regulate gene expression and enhancement of antitumor activity and choice of gene with appropriate bioactivity for individual tumors.  相似文献   

14.
Pancreatic cancer remains one of the most challenging malignancies to treat successfully. The majority of patients present with unresectable advanced-stage cancer, and only 20% of patients can undergo resection. Even if surgical resection is performed, the recurrence rate is high and the survival rate after surgery is poor. Therefore, effective adjuvant therapy is needed to improve the prognosis of patients with pancreatic cancer. Until now, no universally accepted standard adjuvant therapy for this disease has been available: chemoradiotherapy followed by chemotherapy is considered the optimal therapy in the United States, while chemotherapy alone is the current standard in Europe. However, recent randomized controlled trials (RTOG [Radiation Therapy Oncology Group] 9704; CONKO [Charité Onkologie]-001; and a Japanese study) have suggested a benefit of adjuvant chemotherapy with gemcitabine for patients with resectable pancreatic cancer. This article will review the clinical trials of adjuvant therapy for this disease, including the results of recent trials.  相似文献   

15.
Oncolytic herpes viruses are attenuated, replication-competent viruses that selectively infect, replicate within, and lyse cancer cells and are highly efficacious in the treatment of a wide variety of experimental cancers. The current study seeks to define the pharmacologic interactions between chemotherapeutic drugs and the oncolytic herpes viral strain NV1066 in the treatment of pancreatic cancer cell lines. The human pancreatic cancer cell lines Hs 700T, PANC-1, and MIA PaCa-2 were treated in vitro with NV1066 at multiplicities of infection (MOI; ratio of the number of viral particles per tumor cell) ranging from 0.01 to 1.0 with or without 5-fluorouracil (5-FU) or gemcitabine. Synergistic efficacy was determined by the isobologram and combination-index methods of Chou and Talalay. Viral replication was measured using a standard plaque assay. Six days after combination therapy, 76% of Hs 700T cells were killed compared with 43% with NV1066 infection alone (MOI = 0.1) or 0% with 5-FU alone (2 βmol/L) (P < .01). Isobologram and combination-index analyses confirmed a strongly synergistic pharmacologic interaction between the agents at all viral and drug combinations tested (LD5 to LD95) in the three cell lines. Dose reductions up to 6- and 78-fold may be achieved with combination therapy for NV1066 and 5-FU, respectively, without compromising cell kill. 5-FU increased viral replication up to 19-fold compared with cells treated with virus alone. Similar results were observed by combining gemcitabine and NV1066. We have demonstrated that 5-FU and gemcitabine potentiate oncolytic herpes viral replication and cytotoxicity across a range of clinically achievable doses in the treatment of human pancreatic cancer cell lines. The potential clinical implications of this synergistic interaction include improvements in efficacy, treatment-associated toxicity, tolerability of therapeutic regimens, and quality of life. These data provide the cellular basis for the clinical investigation of combined oncolytic herpes virus therapy and chemotherapy in the treatment of pancreatic cancer. Presented at the Forty-Sixth Annual Meeting of The Society for Surgery of the Alimentary Tract, Chicago, Illinois, May 141-18, 2005 (oral presentation). Supported in part by training grant T 32 CA09501 (D.P.E. and K.J.H.), AACR-AstraZeneca Cancer Research and Prevention fellowship (P.S.A), grants RO1 CA 76416 and RO1 CA/DK80982 (Y.F.) from the National Institutes of Health, grant BC024118 from the U.S. Army (Y.F.), grant IMG0402501 from the Susan G. Komen Foundation (Y.F.), and grant 032047 from Flight Attendant Medical Research Institute (Y.F.).  相似文献   

16.
BACKGROUND: Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. METHODS: Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. RESULTS: Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. CONCLUSIONS: Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.  相似文献   

17.
Hepatocyte-based gene therapy   总被引:4,自引:0,他引:4  
Hepatocyte-based gene therapy may be used to replace a missing gene product, confer proliferating ability to cultured hepatocytes, prevent allograft rejection, massively repopulate the host liver, or grow xenogeneic hepatocytes in mammalian liver. Gene transfer into isolated hepatocytes can be accomplished via nonviral or viral vectors, the viral vectors being more useful at this time. Common recombinant viruses that integrate into the host genome include murine leukemia retroviruses and lentiviruses, adenoassociated virus, and the T-antigen-deleted SV40 virus. Episomal viruses, such as adenoviruses, permit efficient gene transfer, but the transgene is lost upon proliferation of the transplanted hepatocyte in the host. Hybrid viruses that combine the high transduction efficiency of adenoviral vectors and the integrative capacity of other vectors, such as adenoassociated viruses, have been designed. Massive repopulation of the liver by transplanted hepatocytes can be achieved if a mitotic stimulus to the transplanted cells is combined with prevention of proliferation of the host hepatocytes. Treatment with a plant alkaloid or retrorsine, or preparative irradiation of the liver can be used to inhibit host hepatocellular proliferation, while partial hepatectomy, expression of Fas ligand, or thyroid hormone administration can be used as a mitotic stimulus to the transplanted cells. Received: July 4, 2000 / Accepted: October 13, 2000  相似文献   

18.
What's new in pancreatic cancer treatment?   总被引:2,自引:0,他引:2  
Pancreatic cancer represents a major challenge to oncologists because of its high chemoresistant nature and dismal outcomes. Conventional therapy for advanced disease relied for a long time on palliative 5-fluorouracil (5-FU)-based chemotherapy, but with unsatisfactory results. The introduction of the novel antimetabolite gemcitabine provides new optimism for patients with advanced pancreatic cancer, as multiple clinical trials have demonstrated the superiority of gemcitabine over 5-FU and other agents for these patients. The benefits of gemcitabine over conventional therapies include improved response rate and enhanced survival, as well as improvement in disease-related symptoms and quality of life in these patients. With these data, gemcitabine is widely accepted worldwide as the therapy of choice by many oncologists for advanced pancreatic cancer. The current review presents an overview of the clinical studies of gemcitabine over the past decade for the treatment of patients with advanced pancreatic cancer. Other investigational regimens or uses (e.g., fixed dose-rate infusion, intraarterial infusion, adjuvant use, chemo-radiation, etc) are also reviewed. Received: October 27, 2001 / Accepted: November 16, 2001  相似文献   

19.
The expanding knowledge of the genetic and cellular mechanisms of human diseases in the post-genomic era coupled with the development of different vector systems to efficiently transfer genes to a variety of cell types and organs in vivo gave rise to the concept of gene therapy as a promising therapeutic option for genetic and acquired diseases. Gene therapy has been the focus of both enthusiasm and critique in the past years. Major progress has been achieved in evaluating gene therapy in clinical trials. However, a number of hurdles must still be overcome to make gene therapy safe and applicable for human diseases. Increased knowledge of the interaction of the gene therapy vehicles with the host has resulted in modifications of existing and the development of new vector systems, as well as adjustments of future clinical applications. Adeno-associated virus vectors, retrovirus- and lentivirus-based vectors show great promise for the correction of monogenic diseases. Correction of the genetic defect can be attempted by either in vivo administration to directly target a diseased organ or by administration of ex vivo genetically modified cells, e.g., bone marrow stem cells. The lack of persistent expression and the immune responses of the host have limited the use of adenovirus vectors for the permanent correction of monogenic diseases. However, the ease of production and the number of cell types and organs that can be efficiently infected make adenovirus-based vectors a promising tool for applications where permanent gene expression is not the therapeutic goal or where the induction of immune responses is the desired response, as for genetic vaccines. Overall, gene therapy remains promising for the correction of genetic as well as acquired disorders, where permanent or transient expression of a gene product will be therapeutic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号