首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Injections of HRP in the nucleus raphe magnus and adjoining medial reticular formation in the cat resulted in many labeled neurons in the lateral part of the bed nucleus of the stria terminalis (BNST) but not in the medial part of this nucleus. HRP injections in the nucleus raphe pallidus and in the C2 segment of the spinal cord did not result in labeled neurons in the BNST. Injections of 3H-leucine in the BNST resulted in many labeled fibers in the brain stem. Labeled fiber bundles descended by way of the medial forebrain bundle and the central tegmental field to the lateral tegmental field of pons and medulla. Dense BNST projections could be observed to the substantia nigra pars compacta, the ventral tegmental area, the nucleus of the posterior commissure, the PAG (except its dorsolateral part), the cuneiform nucleus, the nucleus raphe dorsalis, the locus coeruleus, the nucleus subcoeruleus, the medial and lateral parabrachial nuclei, the lateral tegmental field of caudal pons and medulla and the nucleus raphe magnus and adjoining medial reticular formation. Furthermore many labeled fibers were present in the solitary nucleus, and in especially the peripheral parts of the dorsal vagal nucleus. Finally some fibers could be traced in the marginal layer of the rostral part of the caudal spinal trigeminal nucleus. These projections appear to be virtually identical to the ones derived from the medial part of the central nucleus of the amygdala (Hopkins and Holstege 1978). The possibility that the BNST and the medial and central amygdaloid nuclei must be considered as one anatomical entity is discussed.Abbreviations AA anterior amygdaloid nucleus - AC anterior commissure - ACN nucleus of the anterior commissure - ACO cortical amygdaloid nucleus - AL lateral amygdaloid nucleus - AM medial amygdaloid nucleus - APN anterior paraventricular thalamic nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BIC brachium of the inferior colliculus - BL basolateral amygdaloid nucleus - BNSTL lateral part of the bed nucleus of the stria terminalis - BNSTM medial part of the bed nucleus of the stria terminalis - BP brachium pontis - CA central nucleus of the amygdala - Cd caudate nucleus - CI inferior colliculus - CL claustrum - CN cochlear nucleus - CP posterior commissure - CR corpus restiforme - CSN superior central nucleus - CTF central tegmental field - CU cuneate nucleus - D nucleus of Darkschewitsch - EC external cuneate nucleus - F fornix - G gracile nucleus - GP globus pallidus - HL lateral habenular nucleus - IC interstitial nucleus of Cajal - ICA internal capsule - IO inferior olive - IP interpeduncular nucleus - LC locus coeruleus - LGN lateral geniculate nucleus - LP lateral posterior complex - LRN lateral reticular nucleus - MGN medial geniculate nucleus - MLF medial longitudinal fascicle - NAdg dorsal group of nucleus ambiguus - NPC nucleus of the posterior commissure - nV trigeminal nerve - nVII facial nerve - OC optic chiasm - OR optic radiation - OT optic tract - P pyramidal tract - PAG periaqueductal grey - PC cerebral peduncle - PO posterior complex of the thalamus - POA preoptic area - prV principal trigeminal nucleus - PTA pretectal area - Pu putamen - PUL pulvinar nucleus - R red nucleus - RF reticular formation - RM nucleus raphe magnus - RP nucleus raphe pallidus - RST rubrospinal tract - S solitary nucleus - SC suprachiasmatic nucleus - SCN nucleus subcoeruleus - SI substantia innominata - SM stria medullaris - SN substantia nigra - SO superior olive - SOL solitary nucleus - SON supraoptic nucleus - spV spinal trigeminal nucleus - spVcd spinal trigeminal nucleus pars caudalis - ST stria terminalis - TRF retroflex tract - VC vestibular complex - VTA ventral tegmental area of Tsai - III oculomotor nucleus - Vm motor trigeminal nucleus - VI abducens nucleus - VII facial nucleus - Xd dorsal vagal nucleus - XII hypoglossal nucleus  相似文献   

2.
Somatostatin 28- and neuropeptide Y-containing innervations were mapped in the human medial forebrain (eight control brains) with immunohistochemistry, using the sensitive avidin-biotin-peroxidase method. Peptidergic perikarya and fibers had an extensive distribution: they were densest in the ventral striatum (nucleus accumbens, olfactory tubercle and bed nucleus of the stria terminalis) and infralimbic cortex, of intermediate density in the medial septal area and of lowest density in the dorsal and caudal lateral septal nucleus. Somatostatin-like immunoreactive perikarya and fibers were generally more numerous than the neuropeptide Y-like immunoreactive ones, but more faintly labeled. Their pattern of distribution was strikingly similar in some of the limbic structures studied but clearly distinct in others. Excellent overlap of neuropeptide Y and somatostatin-like immunoreactivity was detected in: (1) the medial septal area, where innervation occasionally formed perivascular clusters; (2) the nucleus accumbens and olfactory tubercle, characterized by dense patchy innervation; and (3) the laterodorsal septal nucleus, scarcely innervated. In the latter structures, most peptidergic neurons were double-labeled. On the other hand, both peptidergic innervations clearly differed in the lateroventral septal nucleus and the bed nucleus of the stria terminalis which contained distinct clusters of somatostatin-like immunoreactive neurons devoid of neuropeptide Y-like immunoreactivity. Also, the perineuronal and peridendritic axonal plexuses ('woolly fibers') present in these structures were only labeled with somatostatin. In the infralimbic cortex, the relation between the peptides varied according to the cortical laminae. Coexistence of somatostatin and neuropeptide Y frequently occurred in layer VI and in the subcortical white matter, whereas layer V and particularly layers II and III contained a contingent of neurons labeled only with somatostatin. Dense horizontal terminal networks in layers I and VI however were similar for both peptides. These findings support the existence of two different types of somatostatin-like immunoreactive perikarya as regards colocalization with neuropeptide Y. Their particular topographical segregation within the cortical and subcortical structures analysed suggest that they could have different connections and functional properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The interstitial nucleus of the posterior limb of the anterior commissure is, like the striatum, very rich in tyrosine hydroxylase and acetylcholinesterase, but on the basis of most other neurochemical criteria displays features that are typical of the extended amygdala (Alheid, de Olmos and Beltramino, 1995). Its afferent connections were examined in the rat with retrograde (cholera toxin B subunit) and anterograde (Phaseolus vulgaris leucoagglutinin) tracers and compared to those of the neighboring amygdalostriatal transition area and central amygdaloid nucleus. Deposits of cholera toxin B subunit in the interstitial nucleus of the posterior limb of the anterior commissure result in retrograde labeling that is similar to that seen after cholera toxin B subunit injections in the central amygdaloid nucleus. Retrogradely labeled cells are found in insular, infralimbic, prelimbic, piriform, amygdalopiriform transition, entorhinal and perirhinal cortices, as well as in temporal field CA1 of Ammon horn and ventral subiculum, amygdala (nucleus of the lateral olfactory tract, anterior amygdaloid area, anterior cortical, posterolateral cortical, anterior and posterior basomedial, intercalated cells, basolateral and lateral nuclei), and extended amygdala, primarily in its central division. The latter includes the lateral bed nucleus of the stria terminalis, dorsal portions of the sublenticular region, the lateral pocket of the supracapsular bed nucleus of the stria terminalis and the central amygdaloid nucleus. Retrogradely labeled cells are also seen in midline thalamic nuclei, lateral hypothalamus, ventral tegmental area, retrorubral field, dorsal raphe nucleus, pedunculopontine and dorsolateral tegmental nuclei, locus coeruleus and parabrachial area. The central extended amygdala, lateral hypothalamus and parabrachial area display a substantial retrograde labeling only when the injection involves districts of the interstitial nucleus of the posterior limb of the anterior commissure apposed to the pallidum, i.e. its medial part. Our anterograde results confirm that projections from the lateral bed nucleus of the stria terminalis and central amygdaloid nucleus to the interstitial nucleus of the posterior limb of the anterior commissure target its medial part. They also indicate that structures which provide major afferents to the central extended amygdala (the lateral and posterior basolateral amygdaloid nuclei and the amygdalopiriform transition area) innervate chiefly the medial part of the interstitial nucleus of the posterior limb of the anterior commissure and, to a much lesser degree, its lateral part. The piriform cortex, which has well-acknowledged projections to the ventral striatum, innervates only the rostral sector of the interstitial nucleus of the posterior limb of the anterior commissure. Taken together, these data indicate that the medial part of the interstitial nucleus of the posterior limb of the anterior commissure is closely related to the central extended amygdala. Rostral and lateral parts of the interstitial nucleus of the posterior limb of the anterior commissure, on the other hand, appear as transitional territories between the central extended amygdala and ventral striatum. The afferent connections of the zone traditionally termed amygdalostriatal transition area are in general similar to those of the caudate-putamen, which does not receive projections from the central extended amygdala. After cholera toxin B subunit injections in the caudoventral globus pallidus, a dense retrograde labeling is observed in the amygdalostriatal transition area and overlying striatum, but not in the interstitial nucleus of the posterior limb of the anterior commissure. Our results suggest that the interstitial nucleus of the posterior limb of the anterior commissure and the amygdalostriatal transition area are engaged in distinct forebrain circuits; the former is a dopamine-rich territory intimately related to the central ext  相似文献   

4.
Summary The sensory neurons of the olfactory epithelium, as a consequence of their odor detection function, contact both the external environment and the central nervous system. The possibility that substances applied to the epithelium might reach the central nervous system was investigated by the intranasal application of peroxidase-conjugated wheat germ agglutinin (WGA-HRP). WGA-HRP was transported through olfactory receptor axons to the glomerulus of the olfactory bulb. Reaction product was localized electron microscopically to tubulovesicular profiles and dense bodies in sensory axons. Evidence of transneuronal transport was indicated by reaction product localized in dense bodies in dendrites postsynaptic to receptor cell axons. Periglomerular, tufted and mitral cells in the olfactory bulb also were transneuronally labeled. Anterograde transneuronal labeling occured in the olfactory tubercle, piriform cortex and surrounding the lateral olfactory tract. Retrograde transneuronal label was found in neurons of the basal forebrain with the largest number of perikarya in the lateral nucleus of the horizontal limb of the diagonal band, a major source of cholinergic afferents to the olfactory bulb. These data suggest that substances, specifically those which bind to receptors, are transported from the olfactory receptor neurons in the nasal epithelium to the brain. Thus, the olfactory system may provide a route of entry for exogenous substances to the basal forebrain.Abbreviations AC anterior commissure - CC corpus callosum - CI internal capsule - CP caudate putamen - DBB diagonal band of Broca - FX fornix - GP globus pallidus - IC island of Callelae - LV lateral ventricle - MS medial septum - OC optic chiasm - PIR piriform cortex - RF rhinal fissure - SON supraoptic nucleus - SCN suprachiasmatic nucleus - SM stria medullaris - ST stria terminalis - TOL lateral olfactory tract - TUO olfactory tubercle - III third ventricle  相似文献   

5.
In this study an antiserum generated against synthetic ACTH1–39 is used to provide a neuroanatomical map of ACTH-immunoreactivity in rat brain. Groups of ACTH-immunoreactive cell bodies were located in the basal hypothalamus, extending from the retrochiasmatic region to the mammillary nuclei. The fiber distribution indicates a broad innervation of structures in the hypothalamus, which include the medial preoptic region; bed nucleus of the anterior commissure and stria terminalis; perifornical region; periventricular stratum; and paraventricular, dorsomedial, arcuate, and mammillary nuclei. Fibers from the hypothalamus reach the amygdaloid nuclei directly in two separate bundles. A large dorsal ACTH-immunoreactive bundle emerges from the anterior hypothalamic region, distributes to the periventricular thalamic nuclei, and continues more posteriorly to the midbrain periaquaductal gray. It is speculated that the cell bodies in the ventral tuberal region of the hypothalamus are responsible for the vast innervation of fibers to the forebrain, diencephalon, and brainstem.  相似文献   

6.
Summary The distribution and morphology of neurons containing the dopamine- and cyclic AMP-regulated phosphoprotein, DARPP-32, were investigated in the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (CeA). DARPP-32 immunoreactive neurons are numerous in both regions, but are restricted to the lateral dorsal and the lateral juxtacapsular subdivisions of the BST, and the central lateral and lateral capsular subdivisions of the CeA. Immunoreactive neurons in the lateral dorsal BST, and the central lateral and lateral capsular CeA are similar morphologically, while those in the juxtacapsular BST appear to be a subpopulation of striatal mediumsized spiny neurons. The distribution of DARPP-32 immunoreactive neurons in the BST and CeA overlaps considerably with axonal plexuses containing tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), and calcitonin gene-related peptide (CGRP). These studies provide further evidence of the close relationship between the CeA and BST, and also provide anatomical evidence for possible interactions between neurotransmitters, neuropeptides, and phosphoproteins.Abbreviations ac anterior commissure - BLA basolateral amygdaloid nucleus - BST bed nucleus of the stria terminalis - BSTL bed nucleus of the stria terminalis, lateral - BSTLD bed nucleus of the stria terminalis, lateral dorsal - BSTLJ bed nucleus of the stria terminalis, juxtacapsular - BSTM bed nucleus of the stria terminalis, medial - BSTV bed nucleus of the stria terminalis, ventral - CeA central nucleus of the amygdala - CGRP calcitonin gene-related peptide - CL central amygdaloid nucleus, lateral central - CLC central amygdaloid nucleus, lateral capsular - CM central amygdaloid nucleus, medial - CPu caudate-putamen - DARPP-32 dopamine- and cyclic AMP-regulated phosphoprotein with an apparent molecular weight of 32000 Daltons - GP globus pallidus - ic internal capsule - I intercalated mass of the amygdala - IMG intramedullary gray - LA lateral amygdaloid nucleus - LV lateral ventricle - LS lateral septal nucleus - Me medial amygdaloid nucleus - ot optic tract - SHy septohypothalamic nucleus - st stria terminalis - TH tyrosine hydroxylase - VIP vasoactive intestinal polypeptide  相似文献   

7.
应用WGA-HRP顺行轴突运输研究大鼠视前内侧区传出性神经纤维投射。结果表明:视前内侧区的上行投射向嘴侧经斜角带进入外侧隔核;经髓纹进入缰核;经无名质进入杏仁前区及经终纹进入杏仁内侧核,另有标记纤维经内侧前脑束向外下行,经视束上方进入杏仁内侧核。下行投射经内侧前脑束进入下丘脑室旁核、外侧区、内侧核、后核、弓状核、乳头体前腹核和乳头体上核。继续向尾侧,标记纤维进入中脑腹侧背盖区,并投射到中缝正中核及中缝背核。  相似文献   

8.
We examined the regions projecting to the supramammillary nucleus of the rat with retrograde transport of WGA-HRP and WGA, and anterograde transport of Phaseolus vulgaris leucoagglutinin. The supramammillary nucleus receives major descending afferents from the infralimbic cortex, the dorsal peduncular cortex, the nucleus of the diagonal band of Broca, the medial and lateral preoptic nuclei, bilaterally. The major ascending afferents come from the pars compacta of the nucleus centralis superior, the ventral tegmental nucleus, and the laterodorsal tegmental nucleus. The supramammillary nucleus also receives a few (but distinct) fibers from the anterior and lateral hypothalamic nuclei, the ventral premammillary nucleus, the interpeduncular nucleus, the cuneiform nucleus, the dorsal raphe nucleus, the incertus nucleus, and the C3 region including the prepositus hypoglossi nucleus. All descending fibers run through the medial forebrain bundle. Almost all ascending fibers from the pars compacta of the nucleus centralis superior and the laterodorsal tegmental nucleus run through the mammillary peduncle, and terminate throughout the supramammillary nucleus. A few fibers from the laterodorsal tegmental nucleus and the C3 region run through the fasciculus longitudinalis dorsalis and terminate in the dorsal part of the supramammillary nucleus including the supramammillary decussation.Abbreviations a anterior commissure - AC accumbens nucleus - AR arcuate nucleus - BS bed nucleus of the stria terminalis - C3 C3 adrenergic region - CA interstitial nucleus of Cajal - CC pars compacta of the nucleus centralis superior - CS nucleus centralis superior - CU cuneiform nucleus - CX cingulate cortex - DB nucleus of the diagonal band of Broca - DH dorsomedial hypothalamic nucleus - ds decussation of the superior cerebellar peduncle - DX dorsal peduncular cortex - f fornix - fld fasciculus longitudinalis dorsalis - flm fasciculus longitudinalis medialis - IN incertus nucleus - IX infralimbic cortex - LC nucleus of the locus ceruleus - le lemniscus medialis - LH lateral hypothalamic nucleus - LM lateral mammillary nucleus - LO lateral preoptic nucleus - LS lateral septal nucleus - LT laterodorsal tegmental nucleus - mfb medial forebrain bundle - MM medial mammillary nucleus - MO medial preoptic nucleus - mp mammillary peduncle - mt mammillothalamic tract - MV medial vestibular nucleus - PD dorsal premammillary nucleus - PH prepositus hypoglossi nucleus - PV ventral premammillary nucleus - RD dorsal raphe nucleus - rf fasciculus retroflexus - SUM supramammillary nucleus - sx supramammillary decussation - T tenia tecta - TD dorsal tegmental nucleus - TM tuberomammillary nucleus - TV ventral tegmental nucleus - VT ventral tegmental area of Tsai  相似文献   

9.
Summary The efferent connections of the medial (MHb) and the lateral (LHb) habenular nuclei in the monitor lizard were studied using experimental degeneration techniques. The MHb was found to project to the interpeduncular nucleus and the parvocellular nucleus of the superior raphe via the core portion of the habenulo-peduncular tract (HPT). The LHb fibers form the mantle portion of the HPT and curve laterally to collect again in the ventral tegmentum. From here, they follow either (1) the medial forebrain bundle to terminate in hypothalamus, ventromedial thalamus, preoptic area, and septum, or (2) they continue caudally to terminate in the superior raphe and the paramedian reticular formation, or (3) they decussate and follow in smaller numbers the ascending and descending pathways on the other side. Some fibers enter the midline and reach the periventricular zone of the midbrain. Short range projections exist to the dorsomedial thalamic nucleus and the paramedian central gray and pretectum. The habenular projections are bilateral, however, much smaller on the contralateral side. Although distinct terminal fields were not found in the substahtia nigra and the central gray of the isthmic region, the overall pattern of habenular pathways is strikingly similar to those found in mammals which confirms a long presumed phylogenetic stability of habenular connections.Abbreviations AC anterior commissure - DLA nucleus dorsolateralis anterior thalami - DM nucleus dorsomedialis thalami - EP entopeduncular nucleus - GLd nucleus geniculatus lateralis, pars dorsalis - GLv nucleus geniculatus lateralis, pars ventralis - GPT nucleus geniculatus praetectalis - Hb habenula - HbC habenular commissure - HPT habenulo-peduncular tract - Hy hypothalamus - IP interpeduncular nucleus - LFB lateral forebrain bundle - LHb lateral habenular nucleus - LHy nucleus lateralis hypothalami - MFB medial forebrain bundle - MHb medial habenular nucleus - N neostriatum - NIII oculomotor nucleus - nIII oculomotor nerve - nIV trochlear nerve - Pa paleostriatum - PC posterior commissure - PD nucleus posterodorsalis - PHy nucleus paraventricularis hypothalami - Ra raphe nuclei - Re nucleus reuniens - Rt nucleus rotundus - Ru nucleus ruber - RMS nucleus magnocellularis raphe superior - RPS nucleus parvocellularis raphe superior - SAP stratum album periventriculare - SGP stratum griseum periventriculare - Se septum - SMe stria medullaris - SRF superior reticular formation - TO nucleus opticus tegmenti - VHy nucleus ventralis hypothalami - VL nucleus ventrolateralis thalami - VM nucleus ventromedialis thalami Supported by a postdoctoral fellowship to H. Distel from the Alfred Sloan Foundation and by the Alexander von Humboldt Stiftung  相似文献   

10.
The central actions of oxytocin on reproduction-related functions and behaviors are strongly steroid-dependent and gender specific. This study characterizes sexual differences in the oxytocin binding site expression in forebrain and spinal cord of the rat. Using film autoradiography, we quantified the density of oxytocin binding sites in the ventromedial hypothalamic nucleus, the medial and central nuclei of the amygdala, the medial bed nucleus of the stria terminalis and the spinal cord dorsal horns both in adult male and female rats, and during development. In addition, neonatal castrated males and intact neonatal females treated with a single injection of testosterone (1 mg) were examined. Data showed a sexual dimorphism in the expression of oxytocin binding sites in the spinal cord dorsal horns and in restricted areas of the forebrain that are sensitive to gonadal steroids such as the ventromedial hypothalamic nucleus, but not in gonadal steroid insensitive sites such as the central nucleus of the amygdala. Adult males had higher oxytocin binding site densities in the ventromedial hypothalamic nucleus and dorsal horns than females. In the forebrain, but not in the dorsal horn, this sexual difference required a perinatal exposure to testosterone. Neonatal castration only abolished the sexual difference in the ventromedial hypothalamic nucleus of adults, but not in the dorsal horn. Furthermore, females that received a single injection of testosterone 1 day after birth showed significant increases in the density of oxytocin binding sites in the ventromedial hypothalamic nucleus, medial nucleus of the amygdala and medial bed nucleus of the stria terminalis. In addition, the findings suggest that the sexual difference in the ventromedial hypothalamic nucleus also requires gonadal hormones in adulthood. Our data support the hypothesis that sexually dimorphic oxytocin binding sites may contribute to the regulatory central actions of oxytocin in gender specific functions and behaviors such as nociception and reproduction.  相似文献   

11.
Summary Afferent pathways to the rostral reticular thalamic nucleus (Rt) in the rat were studied using anterograde and retrograde lectin tracing techniques, with sensitive immunocytochemical methods. The analysis was carried out to further investigate previously described subregions of the reticular thalamic nucleus, which are related to subdivisions of the dorsal thalamus, in the paraventricular and midline nuclei and three segments of the mediodorsal thalamic nucleus. Cortical inputs to the rostral reticular nucleus were found from lamina VI of cingulate, orbital and infralimbic cortex. These projected with a clear topography to lateral, intermediate and medial reticular nucleus respectively. Thalamic inputs were found from lateral and central segments of the mediodorsal nucleus to the lateral and intermediate rostral reticular nucleus respectively and heavy paraventricular thalamic inputs were found to the medial reticular nucleus. In the basal forebrain, afferents were found from the vertical and horizontal limbs of the diagonal band, substantia innominata, ventral pallidum and medial globus pallidus. Brainstem projections were identified from ventrolateral periaqueductal grey and adjacent sites in the mesencephalic reticular formation, laterodorsal tegmental nucleus, pedunculopontine nucleus, medial pretectum and ventral tegmental area. The results suggest a general similarity in the organisation of some brainstem Rt afferents in rat and cat, but also show previously unsuspected inputs. Furthermore, there appear to be at least two functional subdivisions of rostral Rt which is reflected by their connections with cortex and thalamus. The studies also extend recent findings that the ventral striatum, via inputs from the paraventricular thalamic nucleus, is included in the circuitry of the rostral Rt, providing further evidence that basal ganglia may function in concert with Rt. Evidence is also outlined with regard to the possibility that rostral Rt plays a significant role in visuomotor functions.Abbreviations ac anterior commissure - aca anterior commissure, anterior - Acb accumbens nucleus - AI agranular insular cortex - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BST bed nucleus of stria terminalis - Cg cingulate cortex - CG central gray - CL centrolateral thalamic nucleus - CM central medial thalamic nucleus - CPu caudate putamen - DR dorsal raphe nucleus - DTg dorsal tegmental nucleus - EP entopeduncular nucleus - f fornix - Fr2 Frontal cortex, area 2 - G gelatinosus thalamic nucleus - GP globus pallidus - Hb habenula - HDB horizontal limb of diagonal band - IAM interanterodorsal thalamic nucleus - ic internal capsule - INC interstitial nucleus of Cajal - IF interfascicular nucleus - IL infralimbic cortex - IP interpeduncular nucleus - LC locus coeruleus - LDTg laterodorsal tegmental nucleus - LH lateral hypothalamus - LHb lateral habenular nucleus - ll lateral lemniscus - LO lateral orbital cortex - LPB lateral parabrachial nucleus - MD mediodorsal thalamic nucleus - MDL mediodorsal thalamic nucleus, lateral segment - Me5 mesencephalic trigeminal nucleus - MHb medial habenular nucleus - mlf medial longitudinal fasciculus - MnR median raphe nucleus - MO medial orbital cortex - mt mammillothalamic tract - OPT olivary pretectal nucleus - pc posterior commissure - PC paracentral thalamic nucleus - PF parafascicular thalamic nucleus - PPTg pedunculopontine tegmental nucleus - PrC precommissural nucleus - PT paratenial thalamic nucleus - PV paraventricular thalamic nucleus - PVA paraventricular thalamic nucleus, anterior - R red nucleus - Re reuniens thalamic nucleus - RRF retrorubral field - Rt reticular thalamic nucleus - Scp superior cerebellar peduncle - SI substantia innominata - sm stria medullaris - SNR substantia nigra, reticular - st stria terminalis - TT tenia tecta - VL ventrolateral thalamic nucleus - VO ventral orbital cortex - VP ventral pallidum - VPL ventral posterolateral thalamic nucleus - VTA ventral tegmental area - 3 oculomotor nucleus - 3V 3rd ventricle - 4 trochlear nucleus  相似文献   

12.
The widespread distribution of neurons containing alpha-atrial natriuretic polypeptide-like immunoreactivity in the rat brain was demonstrated using radioimmunoassay and immunohistochemistry in conjunction with specific antisera. The highest concentrations of alpha-atrial natriuretic polypeptide-like immunoreactivity were in the hypothalamus and septum, with low but still appreciable concentrations in the mesencephalon, cerebral cortex, olfactory bulb and thalamus by radioimmunoassay. Immunohistochemical studies clearly showed that the perikarya of immunoreactive neurons are most prevalent in the ventral part of the lateral septal nucleus, periventricular preoptic nucleus, bed nucleus of the stria terminalis, periventricular and dorsal parts of the paraventricular hypothalamic nucleus, ventromedial nucleus, dorsomedial nucleus, arcuate nucleus, median mamillary nucleus, supramamillary nucleus, zona incerta, medial habenular nucleus and the periaqueductal grey matter. Scattered neurons were seen in the cingulate cortex, endopiriform nucleus, lateral hypothalamic area, and pretectal and dorsal thalamic areas. In addition to the areas mentioned above, high concentrations of immunoreactive varicose fibers were seen in the glomerular layer of the olfactory bulb, external layer of the median eminence, central to paramedian parts of the interpeduncular nucleus and the paraventricular hypothalamic nucleus. The globus pallidus, medial and central amygdaloid nuclei, dorsal raphe, dorsal parabrachial nucleus, locus coeruleus, vagal dorsal motor nucleus, solitary nucleus and some circumventricular organs, including the subfornical organ and organum vasculosum laminae terminalis, contained considerable numbers of immunoreactive varicose fibers. In dehydrated rats and homozygous Brattleboro rats, the pattern of alpha-atrial natriuretic polypeptide-immunoreactive neurons and varicose fibers was qualitatively similar to that seen in normal conditioned rats. This study gives an atlas of the distribution of the alpha-atrial natriuretic polypeptide-containing neuronal system in the rat brain and provides the groundwork for studying the influence of this new peptide on various brain functions.  相似文献   

13.
Axonal connections between the amygdala and the hypothalamic paraventricular nucleus were examined by combined anterograde-retrograde tract tracing. Iontophoretic injections of the retrograde tracer Fluorogold were placed in the paraventricular nucleus, and the anterograde tracer PHA-L in the ipsilateral central or medial amygdaloid nuclei. Single and double-label immunohistochemistry were used to detect tracers. Single label anterograde and retrograde tracing suggest limited evidence for direct connections between the central or medial amygdala and the paraventricular nucleus. In general, scattered PHA-L-positive terminals were seen in autonomic subdivisions of the paraventricular nucleus (lateral parvocellular, dorsal parvocellular and ventral medial parvocellular subnuclei) following central or medial amygdaloid nulcleus injection. Double-label studies indicate that central and medial amygdaloid nucleus efferents contact paraventricular nucleus -projecting cells in several forebrain nuclei. In the case of central nucleus injections, PHA-L positive fibers occasionally contacted Fluorogold-labeled neurons in the anteromedial, ventromedial and preoptic subnuclei of the bed nucleus of the stria terminalis. Overall, such contacts were quite rare, and did not occur in the bed nucleus of the stria terminalis regions showing greatest innervation by the central amygdaloid nucleus. In contrast, medial amygdala injections resulted in a significantly greater overlap of PHA-L labeling and Fluorogold-labeled neurons, with axosomatic appositions observed in medial divisions of the bed nucleus of the stria terminalis, anterior hypothalamic area and preoptic area. The results provide anatomical evidence that a substantial proportion of amygdaloid connections with hypophysiotrophic paraventricular nucleus neurons are likely multisynaptic, relaying in different subregions of the bed nucleus of the stria terminalis and hypothalamus.  相似文献   

14.
Immunocytochemistry, radioimmunological assay after surgical cuts, anterograde degeneration and retrograde tracing of fluorescent dyes were used in order to elucidate the cholecystokinin-containing afferents to the ventral striatum (nucleus accumbens, olfactory tubercle and ventral part of the caudate-putamen). In agreement with the report by Hökfelt et al.,37 midbrain cholecystokinin-containing cells supply the posteromedial parts of the nucleus accumbens and olfactory tubercle, as well as the subcommissural part of caudate-putamen. Brainstem cholecystokinin afferents also reach more rostral parts of the ventral striatum including the rostrolateral olfactory tubercle. The ascending cholecystokinin axons enter the medial forebrain bundle at the meso-diencephalic border and maintain a rough medial to lateral topography at the caudal diencephalon. A second major cholecystokinin pathway, with possible origin in the piriform and medial prefrontal cortices and/or the amygdala, projects to the subcommissural caudate-putamen, the olfactory tubercle, the lateral part of the nucleus accumbens and the dorsal part of the bed nucleus of stria terminalis. Finally, the rostral part of the dorsal caudate-putamen receives a substantial cholecystokinin innervation from the basolateral amygdala and possibly from the neocortex. According to radioimmunological data, the descending telencephalic cholecystokinin system accounts for about 60% of all cholecystokinin in the rostral forebrain.The combined use of morphological and biochemical methods provided evidence for a partially overlapping distribution and possible interaction between an ascending brainstem and descending telencephalic cholecystokinin fiber systems within the striatum and related rostral forebrain areas.  相似文献   

15.
Summary Eye and head movements are strongly interconnected, because they both play an important role in accurately determining the direction of the visual field. The rostral brainstem includes two areas which contain neurons that participate in the control of both movement and position of the head and eyes. These regions are the caudal third of Field H of Forel, including the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) and the interstitial nucleus of Cajal with adjacent reticular formation (INC-RF). Lesions in the caudal Field H of Forel in monkey and man result in vertical gaze paralysis. Head tilt to the opposite side and inability to maintain vertical eye position follow lesions in the INC-RF in cat and monkey. Projections from these areas to extraocular motoneurons has previously been observed. We reported a study of the location of neurons in Field H of Forel and INC-RF that project to spinal cord in cat. The distribution of these fiber projections to the spinal cord are described. The results indicate that: 1. Unlike the neurons projecting to the extra-ocular muscle motoneurons, the major portion of the spinally projecting neurons are not located in the riMLF or INC proper but in adjacent areas, i.e. the ventral and lateral parts of the caudal third of the Field H of Forel and in the INCRF. A few neurons were also found in the nucleus of the posterior commissure and ventrally adjoining reticular formation. 2. Neurons in caudal Field H of Forel project, via the ventral part of the ventral funiculus, to the lateral part of the upper cervical ventral horn. This area includes the laterally located motoneuronal cell groups, innervating cleidomastoid, clavotrapezius and splenius motoneurons. At lower cervical levels labeled fibers are distributed to the medial part of the ventral horn. Projections from the caudal Field H of Forel to thoracic or more caudal spinal levels are sparse. 3. Neurons in the INC-RF, together with a few neurons in the area of the nucleus of the posterior commissure, project bilaterally to the medial part of the upper cervical ventral horn, via the dorsal part of the ventral funiculus. This area includes motoneurons innervating prevertebral flexor muscles and some of the motoneurons of the biventer cervicis and complexus muscles. Further caudally, labeled fibers are distributed to the medial part of the ventral horn (laminae VIII and adjoining VII) similar to the projections of Field H of Forel. A few INC-RF projections were observed to low thoracic and lumbosacral levels. It is argued that the neurons in the caudal Field H of Forel, which project to the spinal cord are especially involved in the control of those fast vertical head movements which occur in conjunction with saccadic eye movements. In contrast the INC-RF projections to the spinal cord are responsible for slower, smaller movements controlling the position of the head in the vertical plane.Abbreviations Aq aquaduct of Sylvius - BIC brachium of the inferior colliculus - CGL lateral geniculate body - CGLd lateral geniculate body (dorsal part) - CGLv lateral geniculate body (ventral part) - CGM medial geniculate body - CGMd medial geniculate body, dorsal part - CGMint medial geniculate body, interior division - CGMp medial geniculate body, principal part - CM centromedian thalamic nucleus - CP posterior commissure - CS superior colliculus - D nucleus of Darkschewitsch - EW nucleus Edinger-Westphal - F fornix - FR/fRF fasciculus retroflexus - Hab habenular nucleus - HPA posterior hypothalamus area - HT hypothalamus - IN interpeduncular nucleus - INC interstitial nucleus of Cajal - LD nucleus lateralis dorsalis of the thalamus - LHA lateral hypothalamic area - LP lateral posterior nucleus - LV lateral ventricle - MB mammillary body - MC nucleus medialis centralis of the thalamus - MD nucleus medialis dorsalis of the thalamus - ML medial lemniscus - MTN medial terminal nucleus - ND nucleus of Darkschewitsch - NOT nucleus of the optic tract - NOTL lateral nucleus of the optic tract - NOTM medial nucleus of the optic tract - OL olivary pretectal nucleus - OT optic tract - PAG periaqueductal gray - PC pedunculus cerebri - PCN/NPC nucleus of the posterior commissure - PP posterior pretectal nucleus - PTA anterior pretectal nucleus - PTM medial pretectal nucleus - Pul pulvinar nucleus of the thalamus - PV posterior paraventricular nucleus of the thalamus - PVG periventricular gray - R reticular nucleus of the thalamus - riMLF rostral interstitial nucleus of the MLF - RN red nucleus - SM stria medullaris - SN substantia nigra - ST subthalamic nucleus - STT stria terminalis - SUB subiculum - VB ventrobasal complex of the thalamus - VTA ventral tegmental area of Tsai - ZI zona incerta - III oculomotor nucleus On leave of absence from Dept. Anatomy Erasmus University, Rotterdam, The Netherlands  相似文献   

16.
Wood RI  Swann JM 《Neuroscience》2005,135(1):155-179
The bed nucleus of the stria terminalis is a key part of a ring of cells extending between the centromedial amygdala and bed nucleus of the stria terminalis referred to as the extended amygdala. The present study describes the architecture of the bed nucleus of the stria terminalis and the connections of subnuclei in posterior bed nucleus of the stria terminalis. The hamster bed nucleus of the stria terminalis is readily allotted to anterior and posterior divisions separated by the fibers of the body of the anterior commissure. The anterior division has four subnuclei: anteromedial, anterointermediate, anterolateral, and anteroventral. Within the posterior division, there are three distinct regions: posteromedial, posterointermediate, and posterolateral. In hamsters, the posterior bed nucleus of the stria terminalis contributes to male sexual behavior, particularly chemoinvestigation. Moreover, the posterior bed nucleus of the stria terminalis is part of a neural circuit essential for mating, including the medial amygdaloid nucleus and medial preoptic area. The connections of bed nucleus of the stria terminalis, posteromedial part, bed nucleus of the stria terminalis, posterointermediate part and bed nucleus of the stria terminalis, posterolateral part were visualized by co-injection of anterograde (Phaseolus vulgaris leucoagglutinin) and retrograde (cholera toxin B) tract tracers. The bed nucleus of the stria terminalis, posterointermediate part and bed nucleus of the stria terminalis, posteromedial part have dense bidirectional connections with medial amygdaloid nucleus and cortical amygdala via the stria terminalis and ventral amygdalofugal pathway. These subnuclei also maintain bidirectional connections with steroid-concentrating areas including lateral septum, medial preoptic area, hypothalamus, and periaqueductal gray. The bed nucleus of the stria terminalis, posterointermediate part and bed nucleus of the stria terminalis, posteromedial part receive projections from the subiculum and send projections to deep mesencephalic nuclei. By contrast, the bed nucleus of the stria terminalis, posterolateral part is connected with the central amygdala, lateral hypothalamus, subthalamic nucleus, nucleus accumbens, substantia innominata, substantia nigra and thalamus. Thus, the bed nucleus of the stria terminalis, posterointermediate part and bed nucleus of the stria terminalis, posteromedial part have similar connections with areas involved in social behaviors. The bed nucleus of the stria terminalis, posterolateral part maintains connections with areas involved in motivational circuits. This supports the concept of distinct circuits within the extended amygdala which differentially link the centromedial amygdala and bed nucleus of the stria terminalis.  相似文献   

17.
大鼠胃肠道伤害性刺激引起的中枢神经系统c-fos表达   总被引:24,自引:6,他引:24  
本文应用Fos免疫组织化学(ABC法)对大鼠胃肠道伤害性刺激后中枢神经系统内的c-fos表达进行了观察,结果表明:(1)多数核团或部位的c-fos表达于伤害性刺激后的30min开始,2h达高峰,4h后逐渐降低,12h基本恢复正常。(2)Fos免疫反应阳性神经元呈双侧性分布,定位于胸髓(Rexed Ⅰ、Ⅱ、Ⅴ和Ⅹ层)、孤束核、延髓腹外侧区、臂旁外侧核、脑桥室周灰质、中脑导水管周围灰质、楔形核、中缝背核、下丘、丘脑(中线核团、背内侧核、腹后内侧核小细胞部)、外侧缰核、内侧膝状体大细胞部、下丘脑(背内侧核、腹内侧核、室周核等)、中央杏仁核、终纹床核、伏核、外侧隔核、梨状区皮质等。本文对以上部位的c-fos表达规律及其意义进行了初步探讨。  相似文献   

18.
R P Vertes 《Neuroscience》1984,11(3):669-690
The origins of projections within the medial forebrain bundle from the upper brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in approximately 15 upper brainstem nuclei following injections of a conjugate of horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Labeled nuclei included (from caudal to rostral): dorsal and ventral parabrachial nuclei; Kolliker-Fuse nucleus; dorsolateral tegmental nucleus; A7 (lateral pontine tegmentum medial to lateral lemniscus); median and dorsal raphe nuclei; distinct group of cells oriented mediolaterally in the dorsal pontine tegmentum below the central gray; B9 (ventral midbrain tegmentum dorsal to medial lemniscus); retrorubral nucleus; nucleus of Darkschewitsch, interfascicular nucleus; rostral and caudal linear nuclei; ventral tegmental area; medial part of substantia nigra, pars compacta; and the supramammillary nucleus. With the exception of the ventral parabrachial nucleus, Kolliker-Fuse, A7, B9 and substantia nigra, pars compacta, each of the nuclei mentioned above sent strong projections along the medial forebrain bundle to the rostral forebrain. Sparse labeling was observed throughout the pontine and midbrain reticular formation. With the exception of the dorsal raphe nucleus, projections to the most anterior regions of the medial forebrain bundle (level of the anterior commissure) essentially only arose from presumed dopamine-containing nuclei-retrorubral nucleus (A8 area), interfascicular nucleus, rostral and caudal linear nuclei, substantia nigra pars compacta, and ventral tegmental area. Evidence was reviewed indicating that major forebrain sites of termination for these dopaminergic nuclei are structures that have been collectively referred to as the 'ventral striatum'. It is concluded from the present findings that several pontine and mesencephalic cell groups are in a position to exert a strong, direct effect on structures in the anterior forebrain and that the medial forebrain bundle is the main communication route between the upper brainstem and the forebrain.  相似文献   

19.
J L Fudge  S N Haber 《Neuroscience》2001,104(3):807-827
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier.From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.  相似文献   

20.
Light microscope radioautography was used to visualize ascending serotonin (5-HT) systems in adult rat brain, following prolonged latero-ventricular instillation of [3H]5-HT. In paraventricular and paracisternal regions, the cell bodies, axonal projections and terminal fields of 5-HT neurons were distinctly labelled, allowing comprehensive analysis of their organizational features. Two major systems of ascending 5-HT fibers could be defined: a transtegmental system originating mainly from nucleus raphe dorsalis (B-7 and B-6) and less prominently from nucleus raphe medianus (B-8), and a periventricular system predominantly issuing from the rostral pole of nucleus raphe dorsalis (B-7). The transtegmental system converges ventral-ward across the decussation of the superior cerebellar peduncles and sweeps rostral-ward, through the ventral tegmental decussation, to enter the ventral tegmental area. The periventricular system closely follows the dorsal longitudinal fasciculus of Schu¨tz. It branches off dorsally toward the superior and inferior colliculi and the subcommissural organ, but the bulk of its fibres arch abruptly ventralward, beneath the posterior commissure, to reach the dorsal hypothalamus. Along their way, these axons most likely contribute to the dense 5-HT innervation of the periventricular gray matter of the midbrain and caudal diencephalon. Both ascending 5-HT systems merge in the medial forebrain bundle area of caudal hypothalamus, wherefrom their fibres borrow several limbic pathways to reach distant territories of innervation: fasciculus retroflexus to medial habenula; striae medullaris and terminalis toward the habenula and the amygdala, respectively; fornix to hippocampus; diagonal band of Broca to septum; induseum griseum and cingulate bundle to hippocampus and neocortex. Other fibers spread more laterally, across the internal capsule, to innervate the globus pallidus and neostriatum. Finally, at the base of anterior forebrain, some 5-HT axons traverse the anterior olfactory nucleus and end in the glomerular layer of olfactory bulb.These and additional results concerning the heterogeneous distribution of 5-HT axonal varicosities in various parts of forebrain (e.g. thalamus, hypothalamus, septal area and amygdaloid complex) complement earlier data gathered by means of other neuroanatomical techniques and make it possible to present a useful model of the general organization of ascending 5-HT systems in the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号