首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Natural food products such as resveratrol have gained considerable attention as cancer chemopreventive agents. In the present study, we investigated the potential of resveratrol to overcome the resistance of tumour cells against TRAIL. While resveratrol enhanced TRAIL-induced apoptosis through G1 cell cycle arrest and survivin depletion, resveratrol failed to sensitise cells with high expression levels of Bcl-2 or FADD-DN. Interestingly, overexpression of Bcl-2 or FADD-DN did not interfere with resveratrol-mediated cell cycle arrest or survivin depletion, but blocked release of cytochrome c and Smac from mitochondria into the cytosol, enhanced caspase activation and apoptosis upon combined treatment with resveratrol and TRAIL indicating that overexpression of Bcl-2 or FADD-DN decoupled the effect of resveratrol on the cell cycle and apoptosis. Similarly, cell cycle arrest at G1 using the cell cycle specific inhibitor mimosine or downregulation of survivin expression by antisense oligonucleotides failed to enhance TRAIL-induced apoptosis in Bcl-2- or FADD-DN-transfected cells. Likewise, inhibition of caspase activity using the broad range caspase inhibitor zVAD.fmk did not interfere with resveratrol-mediated cell cycle arrest and survivin depletion, while blocking apoptosis upon combined treatment with resveratrol and TRAIL. Thus, resveratrol is a potent sensitiser for TRAIL in certain tumours. However, it may be ineffective in others, e.g. in tumours with enhanced Bcl-2 expression or defective death receptor signalling.  相似文献   

3.
PURPOSE: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic antibodies targeting its receptors are promising cancer therapies because of their tumor selectivity, many tumors are resistant to TRAIL-based therapies. We examined whether the nonsteroidal anti-inflammatory drug aspirin sensitized cancer cells to TRAIL agonists in vitro and in vivo and investigated the underlying mechanism. EXPERIMENTAL DESIGN: The effects of aspirin on sensitivity to TRAIL agonists and expression of apoptosis regulators was determined in human breast cancer cell lines and xenograft tumors. The specific role of survivin depletion in the TRAIL-sensitizing effects of aspirin was determined by silencing survivin. RESULTS: Aspirin sensitized human breast cancer cells, but not untransformed human mammary epithelial cells, to TRAIL-induced caspase activation and apoptosis by a cyclooxygenase-2-independent mechanism. Aspirin also sensitized breast cancer cells to apoptosis induced by a human agonistic TRAIL receptor-2 monoclonal antibody (lexatumumab). Aspirin treatment led to G1 cell cycle arrest and a robust reduction in the levels of the antiapoptotic protein survivin by inducing its proteasomal degradation, but did not affect the levels of many other apoptosis regulators. Silencing survivin with small interfering RNAs sensitized breast cancer cells to TRAIL-induced apoptosis, underscoring the functional role of survivin depletion in the TRAIL-sensitizing actions of aspirin. Moreover, aspirin acted synergistically with TRAIL to promote apoptosis and reduce tumor burden in an orthotopic breast cancer xenograft model. CONCLUSIONS: Aspirin sensitizes transformed breast epithelial cells to TRAIL-based therapies in vitro and in vivo by a novel mechanism involving survivin depletion. These findings provide the first in vivo evidence for the therapeutic utility of this combination.  相似文献   

4.
Human Hepatocellular carcinoma (HCC) cell types exhibit a major resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death, and the key determinants of mechanisms accounting for TRAIL susceptibility, still remain controversial. Our previous studies showed that overexpression of survivin reduced sensitivity of HCC cells to TRAIL. The aim of this study is to investigate how tumor cells escape TRAIL-mediated surveillance through survivin expression and how to reverse the resistance of TRAIL-inducing apoptosis. Seven tumor cell lines were treated with or without TRAIL protein and antisense oligodeoxynucleotides (ODNs) against survivin in culture. HepG(2) and SMMC7721 cells were treated with mimosine, thymidine or nocodazole to synchronize their cell cycle phases and then used to test their sensitivity to TRAIL. In vivo effects of TRAIL plasmid alone or in combination with survivin antisense ODNs on tumor growth were evaluated in a nude mouse hepatoma model of HepG(2) cell grafts. Varied levels of survivin mRNA in various cell lines were evaluated and negatively correlated to TRAIL-induced apoptosis. Hepatoma HepG(2) and SMMC7721 cells in G (1) or S phase are more sensitive to TRAIL than those in G(2) phase. Treatment with survivin antisense ODNscaused S phase arrest and significantly enhanced TRAIL-induced apoptosis. TRAIL protein caused G(2)/M arrest and resulted in an increase of survivin in HepG(2) cells. Combined TRAIL plasmid and survivin antisense ODNs significantly supressed the growth of tumor xenografts as compared to TRAIL plamid or antisense ODNs alone during four weeks of observation. The findings indicate that survivin may play a role in tumor cell resistance to TRAIL-induced apoptosis, at least in part, through cell cycle regulation. Manipulation of survivin expression levels may sensitizes tumor cells to TRAIL-induced apoptosis.  相似文献   

5.
Kim EH  Kim SU  Shin DY  Choi KS 《Oncogene》2004,23(2):446-456
The cytotoxic effect of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is limited in many glioma cell lines. However, treatment with TRAIL in combination with subtoxic doses of roscovitine, a specific inhibitor of Cdc2 and Cdk2, induced rapid apoptosis in TRAIL-resistant glioma cells. Roscovitine could sensitize Bcl-2- or Bcl-xL-overexpressing glioma cells, but not human astrocytes, to TRAIL-induced apoptosis, offering an attractive strategy for safely treating resistant gliomas. Treatment with roscovitine significantly inhibited Cdc2 activity, and expression of a dominant-negative Cdc2 mutant sensitized glioma cells to TRAIL-induced apoptosis. While the proteolytic processing of procaspase-3 by TRAIL was partially blocked in U87MG and T98 glioma cells, treatment with roscovitine recovered TRAIL-induced activation of caspases very efficiently in these cells. We found that treatment with roscovitine or expression of a dominant-negative Cdc2 mutant downregulated the protein levels of survivin and XIAP, two major caspase inhibitors. Overexpression of survivin or XIAP attenuated the apoptosis induced by roscovitine and TRAIL. Taken together, these results suggest that downregulation of survivin and XIAP by subtoxic doses of roscovitine contributes to the amplification of caspase cascades, thereby overcoming glioma cell resistance to TRAIL-mediated apoptosis.  相似文献   

6.
Sulforaphane (SFN), a naturally occurring isothiocyanate, is an attractive agent because of its potent anticancer effects. SFN suppresses the proliferation of various cancer cells in vitro and in vivo. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is also one of the most promising candidates for cancer therapeutics owing to its ability to selectively induce apoptosis in tumor cells. In this study, we report that SFN enhances TRAIL-induced apoptosis in human osteosarcoma cells, Saos2 and MG63. The apoptosis induced by co-treatment with SFN and TRAIL was markedly blocked by a dominant negative form of the TRAIL receptor or caspase inhibitors. The combined use of SFN and TRAIL effectively induced Bid cleavage and the activation of caspases 8, 10, 9 and 3 at ineffective concentrations for each agent. SFN upregulated the expression of death receptor 5 (DR5), a receptor for TRAIL, at mRNA and protein levels in a dose-dependent manner. In addition, the SFN-mediated sensitization to TRAIL was reduced by DR5 siRNA, suggesting that the sensitization was at least partially mediated through the induction of DR5 expression. Furthermore, SFN sensitized TRAIL-induced apoptosis in a p53-independent manner. On the other hand, SFN neither induced DR5 protein expression or enhanced TRAIL-induced apoptosis in normal human peripheral blood mononuclear cells. Thus, combined treatment with SFN and TRAIL might be a promising therapy for osteosarcoma.  相似文献   

7.

Purpose

TRAIL, a tumor selective anticancer agent, may be used for the treatment of non-small cell lung cancer (NSCLC). However, TRAIL resistance is frequently encountered. Here, the combined use of TRAIL with trifluorothymidine (TFT), a thymidylate synthase inhibitor, was examined for sensitizing NSCLC cells to TRAIL.

Methods

Interactions between TRAIL and TFT were studied in NSCLC cells using growth inhibition and apoptosis assays. Western blotting and flow cytometry were used to investigate underlying mechanisms.

Results

The combined treatment of TFT and TRAIL showed synergistic cytotoxicity in A549, H292, H322 and H460 cells. For synergistic activity, the sequence of administration was important; TFT treatment followed by TRAIL exposure did not show sensitization. Combined TFT and TRAIL treatment for 24 h followed by 48 h of TFT alone was synergistic in all cell lines, with combination index values below 0.9. The treatments affected cell cycle progression, with TRAIL inducing a G1 arrest and TFT, a G2/M arrest. TFT activated Chk2 and reduced Cdc25c levels known to cause G2/M arrest. TRAIL-induced caspase-dependent apoptosis was enhanced by TFT, whereas TFT alone mainly induced caspase-independent death. TFT increased the expression of p53 and p21/WAF1, and p53 was involved in the increase of TRAIL-R2 surface expression. TFT also caused downregulation of cFLIP and XIAP and increased Bax expression.

Conclusions

TFT enhances TRAIL-induced apoptosis in NSCLC cells by sensitizing the apoptotic machinery at different levels in the TRAIL pathway. Our findings suggest a possible therapeutic benefit of the combined use of TFT and TRAIL in NSCLC.  相似文献   

8.
The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.  相似文献   

9.
Yoon MJ  Park SS  Kang YJ  Kim IY  Lee JA  Lee JS  Kim EG  Lee CW  Choi KS 《Carcinogenesis》2012,33(3):492-500
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. In this study, we examined whether Aurora B, which is frequently overexpressed in cancer cells, is associated with TRAIL resistance. The protein levels of Aurora B were higher in TRAIL-resistant cancer cell lines than in TRAIL-sensitive cancer cell lines. Exogenously expressed Aurora B attenuated TRAIL-induced apoptosis in the tested TRAIL-sensitive cancer cell lines, whereas the small interfering RNA-mediated suppression of Aurora B expression stimulated TRAIL-mediated apoptosis in the tested TRAIL-resistant cancer cell lines. Furthermore, combined treatment with TRAIL and ZM447439, a specific inhibitor of Aurora B, synergistically induced apoptosis in various TRAIL-resistant cancer cells, suggesting that this combined regimen may represent an attractive strategy for effectively treating TRAIL-resistant malignant cancers. Mechanistically, the inhibition of Aurora B activity in various cancer cells commonly downregulated survivin protein levels and potentiated the activation of caspase-3. In addition, Aurora B inhibition induced mitotic catastrophe, which also contributed to the sensitization of cells to TRAIL-mediated apoptosis. Interestingly, forced overexpression of Aurora B increased the protein levels of survivin, but not those of a non-phosphorylatable survivin mutant in which threonine 117 was replaced by alanine, indicating that phosphorylation of survivin is required for this effect. Furthermore, TRAIL-induced apoptosis in MDA-MB-435S cells was attenuated by wild-type survivin but not by the non-phosphorylatable survivin mutant. Collectively, our results demonstrate that Aurora B confers TRAIL resistance to cancer cells via phosphorylation of survivin.  相似文献   

10.
Shi RX  Ong CN  Shen HM 《Cancer research》2005,65(17):7815-7823
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an important member of the TNF superfamily with great potential in cancer therapy. Luteolin is a dietary flavonoid commonly found in some medicinal plants. Here we found that pretreatment with a noncytotoxic concentration of luteolin significantly sensitized TRAIL-induced apoptosis in both TRAIL-sensitive (HeLa) and TRAIL-resistant cancer cells (CNE1, HT29, and HepG2). Such sensitization is achieved through enhanced caspase-8 activation and caspase-3 maturation. Further, the protein level of X-linked inhibitor of apoptosis protein (XIAP) was markedly reduced in cells treated with luteolin and TRAIL, and ectopic expression of XIAP protected against cell death induced by luteolin and TRAIL, showing that luteolin sensitizes TRAIL-induced apoptosis through down-regulation of XIAP. In search of the molecular mechanism responsible for XIAP down-regulation, we found that luteolin and TRAIL promoted XIAP ubiquitination and proteasomal degradation. Next, we showed that protein kinase C (PKC) activation prevented cell death induced by luteolin and TRAIL via suppression of XIAP down-regulation. Moreover, luteolin inhibited PKC activity, and bisindolylmaleimide I, a general PKC inhibitor, simulated luteolin in sensitizing TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of luteolin and support its potential application in cancer therapy in combination with TRAIL. In addition, our data reveal a new function of PKC in cell death: PKC activation stabilizes XIAP and thus suppresses TRAIL-induced apoptosis.  相似文献   

11.
Modulation of TRAIL-induced tumor cell apoptosis in a hypoxic environment   总被引:2,自引:0,他引:2  
Hypoxia induces Hif-1alpha and selects for loss of wild-type p53 function, both of which can promote tumor cell survival. We evaluated the ability of TRAIL to induce apoptosis of human tumor cell lines exposed to hypoxia. H460 lung cancer cells express low levels of Hif-1alpha, stabilize wild-type p53 during hypoxia, and undergo TRAIL-induced apoptosis. In U2OS osteosarcoma or PA1 ovarian teratocarcinoma cells, high levels of Hif-1alpha and low levels of stable p53 are detected during hypoxia, and cells undergo low levels of TRAIL-induced apoptosis as compared to H460 cells. H460 cells are sensitized to TRAIL-induced apoptosis, whereas U2OS are protected, and little apoptosis is observed in relatively TRAIL-resistant PA1 during hypoxia. Forced expression of Hif-1alpha is also surprisingly a potent inducer of apoptosis in wild-type p53 expressing H460 cells and further promotes TRAIL-induced apoptosis. TRAIL-sensitive wild-type p53-expressing HCT116 colon carcinoma cells modestly elevate Hif-1alpha levels and are equally or slightly more sensitive to TRAIL during hypoxia. In contrast, p53-null HCT116 have higher levels of Hif-1alpha during normoxia and are extremely sensitive to TRAIL, but are protected from TRAIL-induced apoptosis during hypoxia. We hypothesize that a hypoxic tumor microenvironment may alter sensitivity to TRAIL, which may be impacted by Hif-1alpha levels and p53 status. These findings suggest that particular attention to hypoxic regions of tumors and sensitizers to hypoxia-induced cell death may be required to optimize therapeutic combinations using TRAIL.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines that induces apoptosis in some tumor cells but not in normal cells. Unfortunately, many human cancer cell lines are refractory to TRAIL-induced cell death, and the molecular mechanisms underlying resistance are unclear. Here we report that TRAIL resistance was reversed in human bladder and prostate cancer cell lines by the proteasome inhibitor bortezomib (PS-341, Velcade). Synergistic induction of apoptosis occurred within 4 to 6 hours in cells treated with TRAIL plus bortezomib and was associated with accumulation of p21(WAF-1/Cip-1) (p21) and inhibition of cyclin-dependent kinase (cdk) activity. Roscovitine, a specific cdk1/2 inhibitor, also sensitized cells to TRAIL. Silencing p21 expression reduced levels of DNA fragmentation by 50% in cells treated with bortezomib and TRAIL, confirming that p21 was required for the response. Analysis of the TRAIL pathway revealed that caspase-8 processing was enhanced in a p21-dependent fashion in cells exposed to TRAIL and bortezomib as compared with cells treated with TRAIL alone. Thus, all downstream components of the pathway (Bid cleavage, cytochrome c release, and caspase-3 activation) were amplified. These data strongly suggest that p21-mediated cdk inhibition promotes TRAIL sensitivity via caspase-8 activation and that TRAIL and bortezomib should be combined in appropriate in vivo models as a possible approach to solid tumor therapy.  相似文献   

13.
Esculetin has been shown to selectively induce tumor apoptosis in several types of cancers and is regarded as a promising chemotherapeutic agent. In this study, we showed that esculetin significantly suppressed the growth of oral cancer SAS cells in a dose-dependent manner. DNA content flow cytometry and TUNEL assay revealed that esculetin induced cell cycle arrest and apoptosis. Western blotting showed esculetin increased DR5 protein expression and activated caspase-8, which differed from previous studies conducted in other cell types. Furthermore, treatment with esculetin significantly increased TRAIL-induced apoptosis in SAS cells and the TRAIL-sensitizing effect was blocked by DR5/Fc chimera protein. Our results indicate that esculetin enhances TRAIL-induced apoptosis primarily through upregulation of DR5. Combination of esculetin and TRAIL may be a novel treatment strategy for oral cancers.  相似文献   

14.
Kim EH  Kim HS  Kim SU  Noh EJ  Lee JS  Choi KS 《Oncogene》2005,24(46):6877-6889
In TNF-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells, co-treatment with nontoxic doses of sodium butyrate and TRAIL resulted in a marked increase of TRAIL-induced apoptosis. This combined treatment was also cytotoxic to glioma cells overexpressing Bcl-2 or Bcl-xL, but not to normal human astrocytes, thus offering an attractive strategy for safely treating resistant gliomas. Cotreatment with sodium butyrate facilitated completion of proteolytic processing of procaspase-3 that was partially blocked by treatment with TRAIL alone. We also found that treatment with sodium butyrate significantly decreased the protein levels of survivin and X-linked inhibitor of apoptosis protein (XIAP), two major caspase inhibitors. Overexpression of survivin and XIAP attenuated sodium butyrate-stimulated TRAIL-induced apoptosis, suggesting its involvement in conferring TRAIL resistance to glioma cells. Furthermore, the kinase activities of Cdc2 and Cdk2 were significantly decreased following sodium butyrate treatment, accompanying downregulation of cyclin A and cyclin B, as well as upregulation of p21. Forced expression of Cdc2 plus cyclin B, but not Cdk2 plus cyclin A, attenuated sodium butyrate/TRAIL-induced apoptosis, overriding sodium butyrate-mediated downregulation of survivin and XIAP. Therefore, Cdc2-mediated downregulation of survivin and XIAP by sodium butyrate may contribute to the recovery of TRAIL sensitivity in glioma cells.  相似文献   

15.
TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis in susceptible cells by binding to death receptors 4 (DR4) and 5 (DR5). TRAIL preferentially induces apoptosis in transformed cells and the identification of mechanisms by which TRAIL-induced apoptosis can be enhanced may lead to novel cancer chemotherapeutic strategies. Here we show that reovirus infection induces apoptosis in cancer cell lines derived from human breast, lung and cervical cancers. Reovirus-induced apoptosis is mediated by TRAIL and is associated with the release of TRAIL from infected cells. Reovirus infection synergistically and specifically sensitizes cancer cell lines to killing by exogenous TRAIL. This sensitization both enhances the susceptibility of previously resistant cell lines to TRAIL-induced apoptosis and reduces the amount of TRAIL needed to kill already sensitive lines. Sensitization is not associated with a detectable change in the expression of TRAIL receptors in reovirus-infected cells. Sensitization is associated with an increase in the activity of the death receptor-associated initiator caspase, caspase 8, and is inhibited by the peptide IETD-fmk, suggesting that reovirus sensitizes cancer cells to TRAIL-induced apoptosis in a caspase 8-dependent manner. Reovirus-induced sensitization of cells to TRAIL is also associated with increased cleavage of PARP, a substrate of the effector caspases 3 and 7.  相似文献   

16.
In this study, we demonstrate for the first time that cystamine, an inhibitor of transglutaminase 2 (TG2), enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in Caki cells, but not in normal human mesangial cells. Cystamine plus TRAIL-induced down-regulation of c-FLIP was recovered to basal levels by addition of the pancaspase inhibitor, z-VAD. The forced expression of c-FLIP attenuated cystamine plus TRAIL-mediated apoptosis in Caki cells. Although, cells expressing high levels of TG2 were more sensitive to cystamine plus TRAIL-mediated apoptosis than were cells expressing low levels of TG2, cystamine plus TRAIL-mediated apoptosis in the cell line expressing high levels of TG2 was reduced when TG2 levels were knocked down with siRNA. These results indicate that the level of TG2 modulates cystamine plus TRAIL-induced apoptosis. Taken together, the present findings suggest that cystamine may be an effective sensitizer of TRAIL-induced apoptosis in cancer cells expressing high levels of TG2.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the family of programmed cell death-inducing cytokines. Apo2L/TRAIL induces apoptosis in a wide variety of tumor cells. Tumor cells that are resistant to Apo2L/TRAIL-induced apoptosis can be sensitized by chemotherapeutic drugs and other agents via an unknown mechanism. Here we report that PG490 (triptolide), a diterpene triepoxide extracted from the Chinese herb Tripterygium wilfordii and used in traditional Chinese medicine, sensitizes lung cancer but not normal human bronchial epithelial cells to Apo2L/TRAIL-induced apoptosis. Sensitization was accompanied by caspase-3 and caspase-8 activation, whereas no cleavage of caspase-9 was observed. Determination of cell surface receptors by flow cytometry demonstrated no difference in Apo2L/TRAIL-R1 and -R2 expression, the two receptors with functional death domains, between resistant and sensitized cells. In cells treated with the combination of Apo2L/TRAIL and PG490, we observed activation of ERK2, a member of the mitogen-activated protein kinase family. Furthermore, sensitization could be blocked by the ERK inhibitor U0126 but not the p38 inhibitor SB203580, suggesting that activation of ERK2 is required for this effect. In addition, sensitization of lung cancer cells was also seen in ex vivo culture of lung cancer tissue from four patients who underwent surgery. Immunohistochemical staining showed a clear reduction in proliferation cell nuclear antigen (PCNA) in tissue treated with Apo2L/TRAIL and PG490. In conclusion, apoptosis induced by the combination of Apo2L/TRAIL and PG490 warrants further evaluation as a potential new strategy for the treatment of lung cancer.  相似文献   

18.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate cancer cells, to TRAIL-induced apoptosis. The tunicamycin-mediated enhancement of TRAIL-induced apoptosis was markedly blocked by a recombinant human DR5/Fc chimeric protein. Tunicamycin and TRAIL cooperatively activated caspase-8, -10, -9, and -3 and Bid cleavage and this activation was also blocked in the presence of the DR5/Fc chimera. Tunicamycin up-regulated DR5 expression at the mRNA and protein levels in a dose-dependent manner. Furthermore, the tunicamycin-mediated sensitization to TRAIL was efficiently reduced by DR5 small interfering RNA, suggesting that the sensitization was mediated through induction of DR5 expression. Tunicamycin increased DR5 promoter activity and this enhanced activity was diminished by mutation of a CHOP-binding site. In addition, suppression of CHOP expression by small interfering RNA reduced the tunicamycin-mediated induction of DR5. Of note, tunicamycin-mediated induction of CHOP and DR5 protein expression was not observed in normal human peripheral blood mononuclear cells. Moreover, tunicamycin did not sensitize the cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may be a promising candidate for prostate cancer therapy.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising anti-cancer agents, but some tumor types develop resistance to TRAIL. Here, we report that chetomin, an inhibitor of hypoxia-inducible factors, is a potent enhancer of TRAIL-induced apoptosis. TRAIL or chetomin alone weakly induced apoptosis, but the combination of chetomin and TRAIL synergistically induced apoptosis in prostate cancer PC-3 cells. The combination of chetomin and TRAIL induces the activation of caspase-3, -8, -9 and -10. Among the apoptotic factors related to the TRAIL pathway, chetomin markedly decreased the X-linked inhibitor of apoptosis (XIAP) protein levels in a dose-dependent manner, but other IAP family members, TRAIL receptors and Bcl-2 family members were not altered by chetomin. Using XIAP siRNA instead of chetomin, down-regulation of XIAP sensitized PC-3 cells to TRAIL-induced apoptosis. Conversely, transient transfection of XIAP reduced the apoptotic response to combined treatment with chetomin and TRAIL. Treatment with chetomin induced a rapid decrease in XIAP protein levels but had no effect on XIAP mRNA levels. Since chetomin-mediated XIAP down-regulation was completely prevented by proteasome inhibitors, it was suggested that chetomin induces the degradation of the XIAP protein in a proteasome-dependent manner. Additionally, chetomin also sensitized renal cancer Caki-1 cells and bladder cancer UM-UC-3 cells to TRAIL-induced apoptosis via down-regulation of XIAP. Co-treatment of chetomin and TRAIL did not enhance apoptosis in normal peripheral blood mononuclear cells (PBMC). Taken together, these findings suggest that TRAIL and chetomin synergistically induce apoptosis in human urogenital cancer cells through a mechanism that involves XIAP down-regulation by chetomin.  相似文献   

20.
Malignant glioma cells are generally resistant or only weakly sensitive to tumor necrosis factor family of cell death-inducing ligands, including TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L. The chemopreventive activity of polyphenolic compounds present in plant-derived food products has been well recognized in epidemiological studies; however, the mechanism of chemoprevention by these dietary constituents largely remains unknown. Curcumin, the yellow pigment in the spice turmeric, has profound anti-inflammatory activity and exhibits chemopreventive and tumor growth inhibitory activity. In the present study, we investigated whether curcumin sensitizes malignant glioma cell lines U251MG and U87MG to TRAIL-induced apoptosis. Treatment with low concentrations (5-20 microM) of curcumin alone had no effect on the viability of either cell line. At low concentration (5 ng/ml) TRAIL induced cytotoxicity in U251MG cells but not in U87MG cells. Whereas curcumin at subtoxic concentration sensitized U87MG cells to TRAIL-induced cytotoxicity, it had no effect on TRAIL-mediated cytotoxicity in U251MG cells. The combined curcumin and TRAIL treatment enhanced accumulation of hypo-diploid U87MG cells in sub G1 cell cycle phase and induced the cleavage of procaspases-3, -8, -9 and release of cytochrome c from mitochondria. These data indicate that curcumin differentially sensitizes glioma cells to TRAIL-induced apoptosis through the activation of both extrinsic (receptor-mediated) and intrinsic (chemical-induced) pathways of apoptosis. These results define a potential use of curcumin to sensitize glioma cells for TRAIL-mediated immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号