首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive stages of apicomplexan parasites enter their host cells through mechanisms which are largely conserved throughout the phylum. Host cell invasion is divided into two distinct events, namely, adhesion onto the host cell surface and the actual host cell entry process. The former is mediated largely through microneme proteins which are secreted at the onset of establishing contact with the host cell surface. Many of the microneme proteins identified so far contain adhesive domains. We here present the genomic and corresponding cDNA sequences coding for a 460-amino-acid (aa) microneme protein in Neospora caninum tachyzoites which, due to its homology to MIC1 in Toxoplasma gondii (TgMIC1), was named NcMIC1. The deduced NcMIC1 polypeptide sequence contains an N-terminal signal peptide of 20 aa followed by two tandemly internal repeats of 48 and 44 aa, respectively. Integrated into each repeat is a CXXXCG sequence motif reminiscent of the thrombospondin-related family of adhesive proteins. The positioning of this motif is strictly conserved in TgMIC1 and NcMIC1. The C-terminal part, comprised of 278 aa, was expressed in Escherichia coli, and antibodies affinity purified on recombinant NcMIC1 were used to confirm the localization within the micronemes by immunofluorescence and immunogold transmission electron microscopy of tachyzoites. Immunohistochemistry of mouse brains infected with tissue cysts showed that expression of this protein is reduced in the bradyzoite stage. Upon initiation of secretion by elevating the temperature to 37 degrees C, NcMIC1 is released into the medium supernatant. NcMIC1 binds to trypsinized, rounded Vero cells, as well as to Vero cell monolayers. Removal of glycosaminoglycans from the host cell surface and modulation of host cell surface glycosaminoglycan sulfation significantly reduces the binding of NcMIC1 to the host cell surface. Solid-phase binding assays employing defined glycosaminoglycans confirmed that NcMIC1 binds to sulfated glycosaminoglycans.  相似文献   

2.
In apicomplexan parasites, host cell adhesion and subsequent invasion involve the sequential release of molecules originating from secretory organelles named micronemes, rhoptries, and dense granules. Microneme proteins have been shown to be released at the onset of the initial contact between the parasite and the host cell and thus mediate and establish the physical interaction between the parasite and the host cell surface. This interaction most likely involves adhesive domains found within the polypeptide sequences of most microneme proteins identified to date. NcMIC3 is a microneme-associated protein found in Neospora caninum tachyzoites and bradyzoites, and a large portion of this protein is comprised of a stretch of four consecutive epidermal growth factor (EGF)-like domains. We determined the subcellular localization of NcMIC3 prior to and following host cell invasion and found that NcMIC3 was secreted onto the tachyzoite surface immediately following host cell lysis in a temperature-dependent manner. Surface-exposed NcMIC3 could be detected up to 2 to 3 h following host cell invasion, and at later time points the distribution of the protein was again restricted to the micronemes. In vitro secretion assays using purified tachyzoites showed that following secretion onto the surface, NcMIC3 was largely translocated towards the posterior end of the parasite, employing a mechanism which requires a functional actin microfilament system. Following this, the protein remained bound to the parasite surface, since it could not be detected in a soluble form in respective culture supernatants. Secretion of NcMIC3 onto the surface resulted in an outward exposure of the EGF-like domains and coincided with an increased capacity of N. caninum tachyzoites to adhere to Vero cell monolayers in vitro, a capacity which could be inhibited by addition of antibodies directed against the EGF-like domains. NcMIC3 is a prominent component of Triton X-100 lysates of tachyzoites, and cosedimentation assays employing prefixed Vero cells showed that the protein binds to the Vero cell surface. In addition, the EGF-like domains, expressed as recombinant proteins in Escherichia coli, also interacted with the Vero cell surface, while binding of NcSRS2 and NcSAG1, the major immunodominant surface antigens, was not as efficient. Our data are indicative of a functional role of NcMIC3 in host cell infection.  相似文献   

3.
We report on an optimized method for the in vitro culture of tissue cyst-forming Neospora caninum bradyzoites in Vero cells and the separation of viable parasites from host cells. Treatment of tachyzoite-infected Vero cell cultures with 17 microM sodium nitroprusside for 8 days severely scaled down parasite proliferation, led to reduced expression of tachyzoite surface antigens, and induced the expression of the bradyzoite marker NcBAG1 and the cyst wall antigen recognized by the monoclonal antibody MAbCC2. Transmission electron microscopy demonstrated that intracellular parasites were located within parasitophorous vacuoles that were surrounded by a cyst wall-like structure, and the dense granule antigens NcGRA1, NcGRA2, and NcGRA7 were incorporated into the cyst wall. Adhesion-invasion assays employing purified tachyzoites and bradyzoites showed that tachyzoites adhered to, and invaded, Vero cells with higher efficiency than bradyzoites. However, removal of terminal sialic acid residues from either the host cell or the parasite surface increased the invasion of Vero cells by bradyzoites, but not tachyzoites.  相似文献   

4.
5.
Thrombospondin-related anonymous protein (TRAP) family members participate in attachment and invasion of host cells by apicomplexan parasites. A TRAP homologue in Neospora caninum strain Nc-1 (NcMIC2) was cloned, sequenced and found to be 61% identical (75% similar) at the amino acid level to Toxoplasma gondii MIC2 (TgMIC2). Similar to TgMIC2, the predicted amino acid sequence of NcMIC2 contains one integrin-like domain (I or A domain), five thrombospondin (TSP) repeats, a putative transmembrane spanning region and intracellular C-terminus, and was localized to micronemes by cryo-immunoelectron microscopy. The secretion of NcMIC2 was temperature dependent and was induced at or above 25 degrees C. The secreted form of NcMIC2 released into the medium was found to be proteolytically processed such that it lacked the C-terminal domain. Secretion of NcMIC2 was regulated by calcium, since several agents which raise intracellular calcium levels were shown to promote NcMIC2 secretion and chelation of [Ca(2+)](i) abrogated release. As a member of the growing family of apicomplexan TRAP proteins, NcMIC2 may play an important role in attachment and invasion by N. caninum into host cells.  相似文献   

6.
The cross-reactive antigens of Neospora caninum and Toxoplasma gondii are important in the exploration to determine the common mechanisms of parasite-host interaction. In this study, a gene encoding N. caninum apical membrane antigen 1 (NcAMA1) was identified by immunoscreening of a N. caninum tachyzoite cDNA expression library with antisera from mice immunized with recombinant T. gondii apical membrane antigen 1 (TgAMA1). NcAMA1 was encoded by an open reading frame of 1695 bp, which encoded a protein of 564 amino acids. The single-copy NcAMA1 gene was interrupted by seven introns. NcAMA1 showed 73.6% amino acid identity to TgAMA1. Mouse polyclonal antibodies raised against the recombinant NcAMA1 (rNcAMA1) recognized a 69-kDa native parasite protein by Western blotting. Immunofluorescence analysis showed that NcAMA1 was localized to the apical end of tachyzoites. Two-dimensional electrophoresis and Western blotting indicated that an approximately 57-kDa cleavage product was released into the excretory/secretory products of N. caninum. Preincubation of free tachyzoites with anti-rNcAMA1 IgG antibodies inhibited the invasion into host cells by N. caninum and T. gondii. These results indicated that AMA1 is a cross-reactive antigen between N. caninum and T. gondii and a potential common vaccine candidate to control two parasites.  相似文献   

7.
We report a study on the variations in the protein expression profiles of tachyzoites and bradyzoites of Neospora caninum. The in vitro stage conversion of N. caninum-infected Vero cells was induced by continuous treatment of infected cultures with 70 muM sodium nitroprusside (SNP) for up to 9 days. The stage conversion indicated by the expression of the bradyzoite-specific antigen BAG1 was analyzed by immunofluoresence assay. Morphological changes between tachyzoites and bradyzoites and localization of nuclei were demonstrated by transmission electron microscopy. Notably, we showed the differential protein expression profiles of tachyzoites and bradyzoites of N. caninum upon treatment with SNP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated different protein patterns between tachyzoites and bradyzoites. Furthermore, Western blotting using rabbit polyclonal antibodies directed against tachyzoites revealed several reactive bands, one of which represented a tachyzoite-specific antigen of approximately 40 kDa remarkably expressed in the tachyzoite stage, but was absent from bradyzoites. Moreover, rabbit polyclonal serum raised against bradyzoites recognized a significant increased expression of an antigen with a MW of approximately 25 kDa in bradyzoites by Western blotting, suggesting that this protein is specifically expressed at the bradyzoite stage. Taken together, our data showed that differential protein expression profiling is a useful tool for discriminating between the two stages during tachyzoite-bradyzoite interconversion in N. caninum infections.  相似文献   

8.
Neospora caninum is a recently identified coccidian parasite which shares many features with, but is clearly distinct from, Toxoplasma gondii. N. caninum tachyzoites infect a wide range of mammalian cells both in vivo and in vitro. The mechanisms by which infection is achieved are largely unknown. Recent evidence has suggested that a receptor-ligand system in which one or several host cell receptors bind to one or several parasite ligands is involved. Parasite cell surface-associated molecules such as the recently identified Nc-p43 antigen are prime suspects for being implicated in this physical interaction. In this study it is shown that invasion of Vero cell monolayers by N. caninum tachyzoites in vitro is impaired on incubation of parasites with subagglutinating amounts of affinity-purified antibodies directed against Nc-p43. Postembedding immunogold labeling with anti-Nc-p43 antibodies demonstrated that Nc-p43 is localized not only on the parasite cell surface but also within dense granules and rhoptries. The fate of Nc-p43 during intracellular proliferation of N. caninum tachyzoites and subsequent maturation of the parasitophorous vacuole was also studied.  相似文献   

9.
The characterization of the cross-reactive antigens of two closely related apicomplexan parasites, Neospora caninum and Toxoplasma gondii, is important to elucidate the common mechanisms of parasite-host interactions. In this context, a gene encoding N. caninum ribosomal phosphoprotein P0 (NcP0) was identified by immunoscreening of a N. caninum tachyzoite cDNA expression library with antisera from mice immunized with T. gondii tachyzoites. The NcP0 was encoded by a gene with open reading frame of 936 bp, which encoded a protein of 311 amino acids. The NcP0 gene existed as a single copy in the genome and was interrupted by a 432 bp intron. The NcP0 showed 94.5% amino acid identity to T. gondii P0 (TgP0). Anti-recombinant NcP0 (rNcP0) sera recognized a native parasite protein with a molecular mass of 34 kDa in Western blot analysis. Immunofluorescence analysis showed that the NcP0 was localized to the surface of N. caninum tachyzoites. A purified anti-rNcP0 IgG antibody inhibited the growth of N. caninum and T. gondii in vitro in a concentration-dependent manner. These results indicate that P0 is a cross-reactive antigen between N. caninum and T. gondii and a potential common vaccine candidate to control both parasites.  相似文献   

10.
Neospora caninum is a recently identified coccidian parasite that is closely related to Toxoplasma gondii. Molecules associated with the surface of N. caninum tachyzoites are likely to be involved in the process of adhesion and invasion of host cells. They probably also participate in the interaction of the parasite with the immune system, and they could play an important role in the pathogenesis of the parasite. To identify such surface molecules, we performed subcellular fractionation studies of isolated N. caninum tachyzoites. Employing the nonionic detergent Triton-X-114, we prepared a membrane fraction. Immunoblot analysis of this fraction using polyclonal antisera directed against tachyzoites of N. caninum and T. gondii resulted in the identification of a protein of approximately 43 kDa (Nc-p43). This molecule was present in two isolates of Neospora (Nc-1 and Liverpool) but was absent in Toxoplasma (RH-strain) tachyzoites. Further immunofluorescence and immunogold transmission electron microscopy (TEM) studies using affinity-purified anti-Nc-p43 antibodies demonstrated the presence of this molecule on the surface of N. caninum tachyzoites.  相似文献   

11.
12.
Neospora caninum, a protozoan parasite closely related to Toxoplasma gondii, causes abortion and congenital infection in cattle. To investigate specific methods of antemortem diagnosis, the antibody responses of infected cows were evaluated by immunoblot assay and competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA) by using a monoclonal antibody (MAb), MAb 4A4-2, against N. caninum tachyzoites. MAb 4A4-2 bound diffusely to the exterior surface of N. caninum tachyzoites and recognized a single 65-kDa band in immunoblots. MAb 4A4-2 was unreactive to antigens of two closely related apicomplexan protozoa, Toxoplasma gondii and Sarcocystis cruzi. Binding of MAb 4A4-2 was inhibited by mild periodate treatment of N. caninum antigen, demonstrating the carbohydrate nature of the epitope. Immunoblot analysis of N. caninum tachyzoite antigens with sera from cows with confirmed Neospora-induced abortion revealed at minimum 14 major antigens ranging from 11 to 175 kDa. Although the recognized antigens varied from cow to cow, antigens of 116, 65, and 25 kDa were detected in all cows with abortion confirmed to be caused by N. caninum. The binding of MAb 4A4-2 to N. caninum tachyzoite antigen was consistently inhibited by sera from Neospora-infected cows in a CI-ELISA format and was not inhibited by sera from Neospora antibody-negative cows. Furthermore, sera from cattle experimentally infected with T. gondii, S. cruzi, Sarcocystis hominis, or Sarcocystis hirsuta, which had cross-reactive antibodies recognizing multiple N. caninum antigens by immunoblot assay, did not inhibit binding of MAb 4A4-2 in the CI-ELISA. Thus, MAb 4A4-2 binds a carbohydrate epitope on a single N. caninum tachyzoite surface antigen that is recognized consistently and specifically by Neospora-infected cattle.  相似文献   

13.
The characterization of the cross-reactive and species-specific antigens of Neospora caninum and Toxoplasma gondii is important in the exploration to determine the common mechanisms of parasite-host interaction and to improve the serological diagnosis; it is also useful for the selection of the cross-reactive antigens that could be used in the development of vaccines or drugs for controlling the diseases caused by these two parasites. In this study, cross-reactive and species-specific antigens between N. caninum and T. gondii tachyzoites were comprehensively investigated using a proteomics approach with the application of two-dimensional gel electrophoresis, immunoblot analysis, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), and MALDI-TOF/TOF-MS analysis. Immunoblotting and mass spectrometry analysis revealed that at least 42 individual protein spots of N. caninum were reacted with the anti-N. caninum serum, among which at least 18 protein spots were cross-reacted with the anti-T. gondii serum. Moreover, at least 31 protein spots of T. gondii were reacted with the anti-T. gondii serum, among which at least 19 protein spots were cross-reacted with the anti-N. caninum serum. Furthermore, some new specific proteins were also identified in the N. caninum protein profile by searching Toxoplasma sequences or sequences from other organisms. This study substantiates the usefulness of proteomics in the immunoscreening of the cross-reactive or species-specific antigens of both parasites. In addition, the present study showed that there was significant homology in the antigenic proteome profiles between the two parasites. These observations have implications for the design of multicomponent common vaccines against both parasite infections.  相似文献   

14.
The purpose of the present study was to identify antigens of the protozoan Neospora caninum that could be useful for the diagnosis of neosporosis in domestic animals. As revealed by immunoblotting, immune sera from a wide range of animal species exhibited a similar recognition pattern of four major and several minor N. caninum antigens. In contrast to preinoculation sera, all tested immune sera recognized nonreduced immunodominant 17-, 29-, 30-, and 27-kDa antigens. A 46-kDa protein which showed faint recognition by preimmune sera also exhibited a strong response by immune sera. Immunolocalization of the four immunodominant N. caninum antigens was investigated by immunogold electron microscopy using monospecific polyclonal antisera. The 17-kDa antigen appears to be associated with the body part of the rhoptries, while the 29- and 30-kDa antigens were associated with the dense granules, network, and limiting membrane of the parasitophorous vacuole. Studies were also conducted to compare antibody responses to N. caninum and the related protozoan Toxoplasma gondii. Although N. caninum and T. gondii (RH strain) tachyzoites shared a few cross-reacting antigens, the immunodominant antigens of both parasites were not recognized by heterologous sera. Also, immunogold staining with rabbit anti-Neospora hyperimmune serum exhibited almost no labeling of external membranes of Neospora tachyzoites compared with the very marked labeling seen when Toxoplasma tachyzoites (RH strain) were incubated with rabbit anti-Toxoplasma hyperimmune serum. These unique antigenic differences should be useful in developing a diagnostic assay for N. caninum.  相似文献   

15.
Natural killer (NK) cells are considered to be key players in the early innate responses to protozoan infections, primarily indirectly by producing gamma interferon (IFN-gamma) in response to cytokines, like interleukin 12 (IL-12). We demonstrate that live, as well as heat-inactivated, tachyzoites of Neospora caninum, a Toxoplasma-like protozoan, directly trigger production of IFN-gamma from purified, IL-2-activated bovine NK cells. This response occurred independently of IL-12 but was increased by the addition of the cytokine. A similar IFN-gamma response was measured in cocultures of NK cells and N. caninum-infected autologous fibroblasts. However, no NK cell-derived IFN-gamma response was detected when cells were cultured with soluble antigens from the organism, indicating that intact tachyzoites or nonsoluble components are necessary for NK cell triggering. Furthermore, N. caninum-infected autologous fibroblasts had increased susceptibility to NK cell cytotoxicity compared to uninfected fibroblasts. This cytotoxicity was largely mediated by a perforin-mediated mechanism. The activating receptor NKp46 was involved in cytotoxicity against fibroblasts but could not explain the increased cytotoxicity against infected targets. Interestingly, N. caninum tachyzoites were able to infect cultured NK cells, in which tachyzoites proliferated inside parasitophorous vacuoles. Together, these findings underscore the role of NK cells as primary responders during a protozoan infection, describe intracellular protozoan infection of NK cells in vitro for the first time, and represent the first functional study of purified bovine NK cells in response to infection.  相似文献   

16.
Invasion of Plasmodium falciparum merozoites into host erythrocyte involves a series of highly specific and sequential interaction between merozoite and host erythrocyte surface protein. The key step in the invasion process is the formation of a tight protein–protein interaction between host and parasite called as moving junction. A number of parasite proteins secreted from two organelles, microneme and rhoptry, play a role in initial interaction and junction formation between merozoite with host red blood cells (RBCs) during the invasion process. In the present study, we investigated the role of different domains of a P. falciparum rhoptry neck protein PfRON2. Immunofluorescence assay revealed close association of PfAMA1 and PfRON2 in the merozoites during the invasion process. PfRON2 domains were expressed on COS-7 cell surface, and their interaction was analysed with host RBCs and PfAMA1 protein by rosetting assays. The rosetting assays suggest that the C-terminal cysteine-rich domain of PfRON2 plays a role in binding with host erythrocyte. The C-terminal as well as the central cysteine-rich domain of PfRON2 interact with PfAMA1; this binding can be inhibited by monoclonal antibody (mAb 4 G2) against PfAMA1, suggesting that the hydrophobic groove of PfAMA1 binds to PfRON2. These results suggest that PfRON2 plays a role in merozoite invasion and thus it can be an important vaccine candidate antigen.  相似文献   

17.
Micronemes are secretory organelles of the invasive stages of apicomplexan parasites and contain proteins that are important for parasite motility and host cell invasion. We have examined the induction of microneme secretion in the coccidian Eimeria tenella. When sporozoites were added to MDBK cells in culture, microneme proteins were secreted, capped backwards over the parasite surface and deposited onto underlying host cells from the posterior end of gliding parasites. Induction of secretion was also achieved by the addition of foetal calf serum, or purified albumin, to extracellular sporozoites. Microneme secretion per se was not dependent on parasites being able to move or to invade host cells. However, in the presence of cytochalasin D, which disrupts actin polymerisation and prevents parasite movement, microneme proteins were secreted from the apical tip but were not capped backwards over the sporozoite surface. These observations support the hypothesis that microneme proteins function as ligands which, when secreted out onto the parasite surface, form a link, either directly or indirectly, between the sub-pellicular actin–myosin cytoskeletal motor of the parasite and the surface of target host cells.  相似文献   

18.
Micronemes are secretory organelles of the invasive stages of apicomplexan parasites and contain proteins that are important for parasite motility and host cell invasion. We have examined the induction of microneme secretion in the coccidian Eimeria tenella. When sporozoites were added to MDBK cells in culture, microneme proteins were secreted, capped backwards over the parasite surface and deposited onto underlying host cells from the posterior end of gliding parasites. Induction of secretion was also achieved by the addition of foetal calf serum, or purified albumin, to extracellular sporozoites. Microneme secretion per se was not dependent on parasites being able to move or to invade host cells. However, in the presence of cytochalasin D, which disrupts actin polymerisation and prevents parasite movement, microneme proteins were secreted from the apical tip but were not capped backwards over the sporozoite surface. These observations support the hypothesis that microneme proteins function as ligands which, when secreted out onto the parasite surface, form a link, either directly or indirectly, between the sub-pellicular actin–myosin cytoskeletal motor of the parasite and the surface of target host cells.  相似文献   

19.
The baculovirus expression system has proved to be a useful tool for the production of recombinant proteins. Here we have characterized the Neospora caninum surface protein NcSRS2 produced by two types of the recombinant virus and also have developed an enzyme-linked immunosorbent assay (ELISA) using recombinant NcSRS2 for the serologic diagnosis of Neospora infection. Western blot analysis showed two major protein bands that were detectable in insect cells infected with each recombinant baculovirus, and a lower-molecular-weight protein was detected in culture supernatants from a cell infected with the recombinant virus lacking the hydrophobic C-terminal tail. Analysis of the N-terminal amino acids showed that the secreted NcSRS2 lacked 6 kDa of the N-terminal signal peptide. Moreover, the detergent-soluble protein of insect cells infected with the recombinant baculovirus expressing the full-length NcSRS2 gene was used to develop an ELISA system based on specificity and reactivity to antisera against Toxoplasma gondii, Hammondia heydorni, or N. caninum. Anti-N. caninum mouse, dog, and bovine sera recognized the recombinant NcSRS2 on Western blots. Furthermore, we have shown that the developed ELISA system consistently discriminates indirect fluorescent-antibody test (IFAT)-positive bovine sera against N. caninum from IFAT-negative sera. These results indicate that the ELISA using baculovirus-expressed NcSRS2 can be useful for effective and reliable serodiagnosis of N. caninum infection.  相似文献   

20.
Characterization of microneme proteins of Toxoplasma gondii   总被引:6,自引:0,他引:6  
Three microneme proteins of Toxoplasma gondii have been characterized using 3 monoclonal antibodies and a recombinant protein specific antiserum. In all cases, apical labeling of tachyzoites and bradyzoites was observed by indirect immunofluorescence assay. Immunogold localization on ultrathin sections of bradyzoites or tachyzoites showed a specific labeling of micronemes. The following proteins were characterized using 2-dimensional gel electrophoresis and Western immunoblotting: Mic 1 (60 kDa, Pi 6.5), Mic 2 (120 kDa, Pi 5) and Mic 3 (90 kDa, Pi 6.75). The 90-kDa protein (Mic 3) is a heterodimer of two 38-kDa polypeptides (Pi 6.7 and 6.75 respectively) linked by disulfide bridges. Metabolic labeling and immunoprecipitation assays showed that at least one of the 38-kDa polypeptides was processed from a 40-kDa precursor. No processing was observed during the biosynthesis of the 120- and 60-kDa polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号