首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active eicosanoids. The primary epoxidation products are four regioisomers of cis-epoxyeicosatrienoic acid (EET): 5,6-, 8,9-, 11,12-, and 14,15-EET. CYP2J2, CYP2C8, and CYP2C9 are the predominant epoxygenase isoforms involved in EET formation. CYP2J and CYP2C gene families in humans are abundantly expressed in the endothelium, myocardium, and kidney. The cardiovascular effects of CYP epoxygenases and EETs range from vasodilation, anti-hypertension, pro-angiogenesis, anti-atherosclerosis, and anti-inflammation to anti-injury caused by ischemia-reperfusion. Using transgenic animals for in vivo analyses of CYP epoxygenases revealed comprehensive and marked cardiovascular protective effects. In contrast, CYP epoxygenases and their metabolites, EETs, are upregulated in human tumors and promote tumor progression and metastasis. These biological effects result from the anti-apoptosis, pro-mitogenesis, and anti-migration roles of CYP epoxygenases and EETs at the cellular level. Importantly, soluble epoxide hydrolase (sEH) inhibitors are anti-hypertensive and anti-inflammatory and, therefore, protect the heart from damage, whereas the terfenadine-related, specific inhibitors of CYP2J2 exhibit strong anti-tumor activity in vitro and in vivo. Thus, CYP2J2 and arachidonic acid-derived metabolites likely play important roles in regulating cardiovascular functions and malignancy under physiological and/or pathological conditions. Moreover, although challenges remain to improving the drug-like properties of sEH inhibitors and identifying efficient ways to deliver sEH inhibitors, sEH will likely become an important therapeutic target for cardiovascular diseases. In addition, CYP2J2 may be a therapeutic target for treating human cancers and leukemia.  相似文献   

2.
1. Arachidonic acid (AA) is metabolized by cytochrome P450 (CYP)-dependent pathways to epoxyeicosatrienoic acids (EET) and 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney and the peripheral vasculature. 2. The present short review summarizes the renal and cardiovascular actions of these important mediators. 3. Epoxyeicosatrienoic acids are vasodilators produced by the endothelium that hyperpolarize vascular smooth muscle (VSM) cells by opening Ca2+-activated K+ (KCa) channels. 20-Hydroxyeicosatetraenoic acid is a vasoconstrictor that inhibits the opening of KCa channels in VSM cells. Cytochrome P450 4A inhibitors block the myogenic response of small arterioles to elevations in transmural pressure and autoregulation of renal and cerebral blood flow in vivo. Cytochrome P450 4A blockers also attenuate the vasoconstrictor response to elevations in tissue PO2, suggesting that this system may serve as a vascular oxygen sensor. Nitric oxide and carbon monoxide inhibit the formation of 20-HETE and a fall in 20-HETE levels contributes to the activation of KCa channels in VSM cells and the vasodilator response to these gaseous mediators. 20-Hydroxyeicosatetraenoic acid also mediates the inhibitory actions of peptide hormones on sodium transport in the kidney and the mitogenic effects of growth factors in VSM and mesangial cells. A deficiency in the renal production of 20-HETE is associated with the development of hypertension in Dahl salt-sensitive rats. 4. In summary, the available evidence indicates that CYP metabolites of AA play a central role in the regulation of renal, pulmonary and vascular function and that abnormalities in this system may contribute to the pathogenesis of cardiovascular diseases.  相似文献   

3.
硫化氢在心血管系统中的作用   总被引:1,自引:0,他引:1  
<正>随着科技的发展,人们认识到硫化氢(Hydrogen sulfide, H2S)是继一氧化氮(Nitric oxide,NO)和的一氧化碳(Carbon monoxide,CO)后发现的第三个内源性气体信使(Endothelia gasotransmitter),目前对作为气体信号分子系统的新成员—H2S的生物学效应报道较少,已有实验证实H2S在循环系统、神经系统、消化系统、泌尿系统均有重要生理效应。本文着重讨论H2S在心血管系统中的生理作用和在发病机制中的作用。  相似文献   

4.
Hydrogen sulphide (H(2)S) is now viewed as an important endogenous gasotransmitter, which exhibits many beneficial effects on the cardiovascular system. H(2)S is biosynthesized in mammalian tissues by both non-enzymatic processes and several enzymatic pathways ensured by cystathionine-β-synthase and cystathionine-γ-lyase. H(2)S is endowed with the antioxidant properties of inorganic and organic sulphites, being a scavenger of reactive oxygen species. Furthermore, H(2)S triggers other important effects and the activation of ATP-sensitive potassium channels (KATP) accounts for its vasorelaxing and cardioprotective effects. H(2)S also inhibits smooth muscle proliferation and platelet aggregation. Conversely, the impairment of H(2)S contributes to the pathogenesis of hypertension and is involved in cardiovascular complications associated with diabetes mellitus. There is also evidence of a link between H(2)S and endothelial nitric oxide (NO). Recent observations indicate a possible pathogenic link between deficiencies of H(2)S activity and the progress of endothelial dysfunction. These biological aspects of endogenous H(2)S led to consider this mediator as "the new NO" and to evaluate new attractive opportunities to develop innovative classes of drugs. In this review, the main roles played by H(2)S in the cardiovascular system and the first examples of H(2)S-donor drugs are discussed. Some hybrid drugs are also addressed in this review. In such compounds opportune H(2)S-releasing moieties are conjugated to well-known drugs to improve their pharmacodynamic profile or to reduce the potential for adverse effects.  相似文献   

5.
Despite current drug therapies, including those that target enzymes, channels and known G-protein-coupled receptors (GPCRs), cardiovascular disease remains the major cause of ill health, which suggests that other transmitter systems might be involved in this disease. In humans, approximately 175 genes have been predicted to encode 'orphan' GPCRs, where the endogenous ligand is not yet known. As a result of intensive screening using 'reverse pharmacology', an increasing number of orphan receptors are being paired with their cognate ligands, many of which are peptides. The existence of some of these peptides such as urotensin-II and relaxin had been known for some time but others, including ghrelin and apelin, represent novel sequences. The pharmacological characterization of these emerging peptide-receptor systems is a tantalising area of cardiovascular research, with the prospect of identifying new therapeutic targets.  相似文献   

6.
Continuing investigations of the roles of cytochrome P450 (CYP) arachidonic acid epoxygenase metabolites in the regulation of cardiovascular physiology and pathophysiology have revealed their complex and diverse biological effects. Often these metabolites demonstrate protective properties that are revealed during cardiovascular disease. In this regard, the epoxyeicosatrienoic acids (EETs) are an emerging target for pharmacological manipulation aimed at enhancing their cardiac and vascular protective mechanisms. This review will focus on the role of EETs in the regulation of vascular tone, with emphasis on the coronary circulation, their role in limiting platelet aggregation, vascular inflammation and EET contribution to preconditioning of the ischemic myocardium. Production and metabolism of EETs as well as their specific cellular signaling mechanisms are discussed.  相似文献   

7.
Investigation of endothelial regulation of vascular reactivity and tone has led to the discovery of chemical mediators such as nitric oxide (NO) and prostacyclin (PGI2). Evidence has emerged indicating another as yet unidentified hyperpolarizing agent (endothelium-derived hyperpolarizing factor or EDHF) that is different from NO and PGI2 and exerts it effects through calcium-activated potassium channels (KCa). Previous studies to identify EDHF have been carried out using inhibitors that block NOS and COX before application of KCa channel and/or muscarinic receptor antagonists. Such pharmacological manipulation has complicated interpretation of results, clearly pointing to the need for altered approaches to verify previous studies. Evidence has emerged that potential EDHF candidates vary with vessel size, species and tissue beds, indicating that there may be more than one EDHF. To date, the most commonly described and best characterized of them all are a set of arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs). These compounds are synthesized both intra- and extravascularly. Until recently, methodology to detect EETs in the microvasculature has been tedious and expensive, limiting the experimentation that is necessary to confirm EETs as an EDHF. This review describes state-of-the-art methods for assaying EETs in biological samples, after summarizing evidence for EETs as an EDHF and introducing emerging concepts of the role of extravascular EETs in linking neuronal activity to localized blood flow during functional hyperemia.  相似文献   

8.
9.
Prostanoids, consisting of the prostaglandins (PGs) and thromboxanes (TXs), exert various actions through activation of their specific receptors. They include the DP, EP, FP, IP, and TP receptors for PGD2, PGE2, PGF2alpha, PGI2, and TXA2, respectively. Moreover, EP receptors are classified into four subtypes, the EP1, EP2, EP3 and EP4 receptors. Using mice lacking prostanoid receptors, we intended to clarify in vivo roles of prostanoids under pathophysiological conditions of the cardiovascular system, which include ischemia-induced cardiac injury, pressure overload-induced cardiac hypertrophy, renovascular hypertension, tachycardia during systemic inflammation and thromboembolism. The results demonstrated that 1) PGI2 plays an important role in attenuating the ischemic injury and the pressure overload-induced hypertrophy of the hearts, and also contributes to the development of renovascular hypertension; 2) PGE2 plays a cardioprotective role against the ischemic injury via both the EP3 and EP4, and also participates in acute thromboembolism via the EP3; and 3) both PGF2alpha and TXA2, which have been produced during systemic inflammation, are responsible for tachycardia.  相似文献   

10.
1. The present study was designed to determine the mechanisms responsible for functional vasodilation of arterioles paired and unpaired with venules in the rat spinotrapezius muscle. 2. The spinotrapezius muscle (from Sprague-Dawley rats) was treated with combinations of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L), the cyclo-oxygenase inhibitor indomethacin (10 micromol/L) and the epoxygenase inhibitor 6-(2-propargyloxyphenyl) hexanoic acid (PPOH; 30 micromol/L) to determine vascular responses to muscle stimulation. Both paired and unpaired arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following 2 min muscle stimulation before and 30 min after subsequent application of each inhibitor. 3. In all cases, L-NAME treatment resulted in decreased basal diameter that was restored to control levels by the addition of sodium nitroprusside (0.01-0.1 micromol/L) to the superfusion solution. N(G)-Nitro-L-arginine methyl ester significantly inhibited the functional dilation in both paired (-20 +/- 3%) and unpaired (-29 +/- 3%) arterioles, whereas these inhibitory effects of L-NAME were diminished after pretreatment with indomethacin and PPOH. Indomethacin treatment attenuated the dilation in paired (-33 +/- 5%) but not unpaired (-6 +/- 4%) arterioles. Treatment with PPOH had no effect on the functional dilation in either set of arterioles. Approximately 50% of the vasodilatory responses remained in the presence of L-NAME, indomethacin and PPOH. 4. These results suggest that both nitric oxide and vasodilator prostanoid(s) are involved in mediating functional vasodilation in the rat spinotrapezius. The vasodilator prostanoid(s) released from venules is responsible for a portion of the vasodilation of the paired arteriole. The results also suggest possible interactions between the synthesis of nitric oxide and prostaglandin or epoxyeicosatrienoic acids during muscle contraction.  相似文献   

11.
Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) are lipid signalling molecules that elicit vasodilatation and modulate various intracellular signalling cascades. The generation of EETs by epoxygenases expressed in the vascular endothelium has been linked with endothelial cell proliferation, migration and angiogenesis. The EETs also possess anti-inflammatory properties and can attenuate monocyte infiltration. Although an increase in CYP epoxygenase expression or activity should theoretically be beneficial, many of these enzymes generate reactive oxygen species which in themselves are pro-inflammatory and promote processes that functionally antagonize those of the EETs. There is potential for selecting the anti-inflammatory actions of the EETs by preventing their metabolism by the soluble epoxide hydrolase.  相似文献   

12.
1. In anaesthetized dogs, intra-left atrial administration of 5-hydroxytryptamine (5-HT) and selected tryptamine analogues (5-carboxamidotryptamine, 5-CT; 5-methyl tryptamine, 5-MT; alpha-methyl 5-hydroxytryptamine, alpha-HT; sumatriptan, Sum) in the presence of ketanserin and MDL72222 (5-HT2 and 5-HT3 receptor antagonists, respectively), produced dose-related changes in carotid, coronary and renal vascular conductance mediated by vascular 5-HT1-like receptors. 2. In the carotid vascular bed, 5-HT, 5-MT, alpha-HT and Sum were vasoconstrictors with a rank order of potency (comparing ED50 values) of 5-HT = Sum > 5-MT > alpha-HT. By contrast in this vascular bed, 5-CT was a potent vasodilator. 3. In the coronary vascular bed, 5-HT, 5-CT, 5-MT and alpha-HT were vasodilators with a rank order of potency (comparing ED50 values) of 5-CT > 5-HT > 5-MT > alpha-HT. In this vascular bed, Sum was without effect. 4. In the renal vascular bed, 5-HT, 5-CT, 5-MT, alpha-HT and Sum were vasoconstrictors with a rank order of potency (comparing ED50 values) of 5-CT > 5-HT > Sum > 5-MT > alpha-HT. 5. The coronary (and carotid) vasodilator responses to 5-CT were antagonized by the 5-HT1-like receptor antagonists, spiperone (1 mg kg-1) and methiothepin (0.1 mg kg-1), whereas the renal vasoconstrictor responses to this tryptamine analogue were antagonized only by methiothepin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In coronary arteries, bradykinin opens endothelial intermediate- and small-conductance Ca2+-sensitive K+ channels (IK(Ca) and SK(Ca)) and, additionally, releases epoxyeicosatrienoic acids (EETs) from the endothelium. To clarify the involvement of these pathways in endothelium-dependent myocyte hyperpolarization, bradykinin-induced electrical changes in endothelial cells and myocytes of porcine coronary arteries (following nitric oxide (NO) synthase and cyclooxygenase inhibition) were measured using sharp microelectrodes. Hyperpolarization of endothelial cells by bradykinin (27.0 +/- 0.9 mV, n = 4) was partially inhibited (74%) by blockade of IK(Ca) and SK(Ca) channels using 10 microM TRAM-39 (2-(2-chlorophenyl)-2,2-diphenylacetonitrile) plus 100 nM apamin (leaving an iberiotoxin-sensitive component), whereas the response to substance P was abolished. After gap junction blockade with HEPES, (N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulphonic acid)) hyperpolarization of the endothelium by 100 nM bradykinin was abolished by TRAM-39 plus apamin, whereas myocyte hyperpolarization still occurred (12.9 +/- 1.0 mV, n=4). The residual hyperpolarizations to 100 nM bradykinin were antagonized by the EET antagonist, 14,15-EEZE (14,15-epoxyeicosa-5(Z)-enoic acid) (10 microM), and abolished by iberiotoxin. Bradykinin-induced myocyte hyperpolarizations were also reduced by 14,15-EEZE-mSI (14,15-EEZE-methylsulfonylimide) (5,6- and 14,15-EET antagonist), whereas those to exogenous 11,12-EET were unaffected. These data show that bradykinin-induced hyperpolarization of endothelial cells (due to the opening of IK(Ca) and SK(Ca) channels) is electrotonically transferred to the myocytes via gap junctions. Bradykinin (but not substance P) also hyperpolarizes myocytes by a mechanism (independent of endothelial cell hyperpolarization) which involves endothelial cell production of EETs (most likely 14,15- and/or 11,12-EET). These open endothelial IK(Ca) and SK(Ca) channels and also activate large-conductance calcium-sensitive K+ channels (BK(Ca)) on the surrounding myocytes.  相似文献   

14.
The heart is richly endowed with K(ATP) channels, which function as biological sensors, regulating membrane potentials and electrical excitability in response to metabolic alterations. We recently reported that the cytochrome P450 metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), potently activate cardiac K(ATP) channels by reducing channel sensitivity to ATP. In the present study, we further demonstrate that 11(S),12(R)-EET activated the cardiac K(ATP) channels with an EC(50) of 39.5 nM, whereas 11(R),12(S)-EET was totally inactive. In addition, 11(S),12(R)-EET but not 11(R),12(S)-EET hyperpolarized the resting membrane potentials and shortened the duration of cardiomyocyte action potentials. By studying homologs and analogs of 11,12-EET, we also found that all four EET regioisomers are equipotent activators of the K(ATP) channels, reducing the ATP sensitivity by more than 10-fold; however, neither altered chain length, double bond number, epoxide position, nor methylation of the carboxyl group affected channel inhibitions by ATP. All the fatty epoxides studied are potent K(ATP) channel activators, but the omega-3 homolog was particularly potent, reducing ATP sensitivity 27-fold. Together, the results indicate that the presence of an epoxide group in a particular three-dimensional configuration is a critical determinant for K(ATP) channel activation, and its effect is augmented by a double bond at omega-3 position. The results also suggest that fatty epoxides are important modulators of cardiac electrical excitability.  相似文献   

15.
B cell targeted therapies have enjoyed recent success in the treatment of systemic autoimmune diseases. Among these, Belimumab, which blocks the B cell survival cytokine BLyS, was recently approved for the treatment of Systemic Lupus Erythematosus. It is therefore important to consider the roles BLyS plays in B cell tolerance. Herein, we review how BLyS contributes to the negative selection of autoreactive B cell clones from the preimmune repertoire as well as its role in regulating both germinal center and extrafollicular peripheral B cell responses. We further examine the complex role of Toll-like receptors (TLRs) in humoral autoimmunity, pointing out potential crosstalk between BLyS and TLR pathways.  相似文献   

16.
BACKGROUND AND PURPOSE: Red blood cells (RBCs) are reservoirs of vasodilatory, antiaggregatory, and antiinflammatory lipid mediators-epoxyeicosatrienoic acids (EETs). This study addresses the formation and release of erythrocyte-derived EETs in response to ATP receptor stimulation that may represent an important mechanism regarding circulatory regulation. EXPERIMENTAL APPROACH: Erythrocyte EET formation and release were investigated by incubating rat RBCs in physiological salt solution with agents that effected ATP release via P2 receptor stimulation of phospholipase A2 and epoxygenase-like activities with activation of the ATP secretory mechanism. EETs were analyzed by gas and liquid chromatography-mass spectrometry. KEY RESULTS: EETs were released from rat RBCs: 14,15-, 11,12-, 8,9- and 5,6-EETs in a ratio of 1.2:1.0:0.9:0.8. EETs were produced by epoxidation of arachidonic acid catalyzed by hemoglobin. Spontaneous release of EETs, 0.66+/-0.14 ng per 10(9) RBCs, was dose-dependently increased by an ATP analog, BzATP, and inhibited by P2X(7) receptor antagonists. 5 microM ATP increased release of EETs over 20% to 0.83+/-0.15 ng per 10(9) RBCs; 10 microM BzATP tripled the amount of EET release to 1.87+/-0.20 ng per 10(9) RBCs. EET release by ATP or BzATP was not associated with hemolysis. Carbenoxolone, a gap junction inhibitor that inhibits ATP release, and glibenclamide, an inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), which is required for ATP release, inhibited the spontaneous and stimulated EET release from RBCs. CONCLUSIONS AND IMPLICATIONS: EETs are produced and released from RBCs via a mechanism that is mediated by ATP stimulation of P2X(7) receptors coupled to ATP transporters, pannexin-1 and CFTR.  相似文献   

17.
Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ET(A)- and ET(B)-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ET(B)-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ET(A)- or nonselective ET(A)/ET(B)-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ET(B) receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ET(B) receptor, in CVD.  相似文献   

18.
Neuropeptide Y (NPY), a sympathetic co-transmitter, acts through multiple G protein-coupled receptors (Y1 to y6) to elicit its vast range of effects in the cardiovascular, immune, and central and peripheral nervous systems. Initially, the focus of the function of NPY in the cardiovascular system involved its acute actions, such as vasoconstriction via the Y1 receptor. However, recent studies have shown that NPY is a potent growth and angiogenic factor, which acts on multiple receptor subtypes. To be more specific, NPY-mediated vascular smooth muscle cell growth, leading to neointima formation, involves Y1 and Y1 receptors, while the angiogenic effects of NPY include Y2 and Y5 receptor activation. The presence of dipeptidyl peptidase IV also influences the cardiovascular responses of NPY by acting as a converting enzyme, shifting NPY activities away from Y1. Thus, agonists and antagonists aimed at the NPY system represent a new avenue for drug treatment, which may help alleviate several cardiovascular disorders in which vascular remodeling plays a major role, such as atherosclerosis, restenosis following balloon angioplasty, hypertension and peripheral vascular disease.  相似文献   

19.
RNA interference (RNAi) is an adaptive defense mechanism through which double stranded RNAs silence cognate genes in a sequence-specific manner. It has been employed widely as a powerful tool in functional genomics studies, target validation and therapeutic product development. Similarly, the application of small interfering RNA (siRNA) to the silencing of the disease-causing genes involved in cardiovascular diseases has made great progress. In this overview, we attempt to provide a brief outline of the current understanding of the mechanism of RNAi and its potential application to the cardiovascular system, with particular emphasis on its ability to identify the pathophysiological function of genes related to several important cardiovascular disorders. The prospects of RNAi-based therapeutics, as well as the advantages and potential problems, are also discussed.  相似文献   

20.
A liquid chromatographic method with fluorescence detection coupled with a solid-phase extraction was applied to the rapid determination of epoxyeicosatrienoic acids (EETs) in the rabbit renal artery. The EETs were extracted with an acetonitrile from renal artery homogenate and concentrated by a solid-phase extraction method. The concentrated EETs were reacted directly with a 6, 7-dimethoxy-1-methyl-2 (1H)-quinoxalinone-3-propionyl-carboxylic acid (DMEQ) hydrazide and separated by a reversed-phase HPLC with eluting a combination of a step-wise and a gradient of a mixture of methanol and water. The content of EETs in the renal arteries was significantly greater in the 0.5% cholesterol fed rabbits than in control rabbits. It is suggested that hyperchlesterolemia increases the production of EETs in the rabbit renal artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号