首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein synthesis at various recirculation times after 5-min transient forebrain ischemia was evaluated in gerbil hippocampal CA1 pyramidal neurons that had acquired tolerance to delayed-type ischemic injury. Evaluation was performed by observing polyribosomes under electron microscopy, and by [14C] leucine autoradiography. Hippocampal CA1 pyramidal neurons in the gerbils acquired stable and reproducible tolerance to delayed-type ischemic injury subsequent to a 5-min ischemia by pretreatment that consisted of loading two 2-min ischemic periods at a 1-day interval, followed by 48 h of recirculation. During the early phase following the 5-min ischemia, polyribosomal disaggregation, loss of dendritic microtubules, and significant suppression of radiolabeled leucine incorporation were observed in the tolerance-induced CA1 neurons as well as in the non-tolerance-induced neurons. While these findings persisted in the non-tolerance-induced neurons throughout the duration of the experiment, most of the tolerance-induced neurons demonstrated reaggregation of cytosomal ribosomes, increase in the number of dendritic microtubules, and restoration of impaired amino acid incorporation 24 h after the ischemia. These findings suggest that revovery of protein synthesis during the early post ischemic phase is essential for CA1 neuron survival after ischemic injury.Supported by the Ehime Health Foundation. This study was carried out in compliance with the Guidelines for Animal Experimentation at Ehime Univesity School of Medicine, Ehime, Japan  相似文献   

2.
Transient forebrain ischemia induces activation of calpain and proteolysis of a neuronal cytoskeleton, fodrin, in gerbil hippocampus. This phenomenon precedes delayed neuronal death in hippocampal CA1 neurons. We examined effects of a calpain inhibitor on delayed neuronal death after transient forebrain ischemia. In gerbils, a selective calpain inhibitor entrapped in liposome was given transvenously and 30 min later, 5-min forebrain ischemia was produced by occlusion of both common carotid arteries. On day 7, CA1 neuronal damage was examined in the hippocampal slices stained with cresyl violet. Calpain-induced proteolysis of fodrin was also examined by immunohistochemistry and immunoblot. Additionally, to assure entrapment of the inhibitor by CA1 neurons, the inhibitor-liposome complex was labeled with FITC and given to gerbils. Fluorescence in the hippocampal slices was examined by confocal laser scanning microscope. Selective CA1 neuronal damage induced by forebrain ischemia was prevented by administration of the inhibitor in a dose-dependent manner. Calpain-induced proteolysis of fodrin was also extinguished by the calpain inhibitor in a dose-dependent manner. Bright fluorescence of the FITC-labeled inhibitor was observed in the CA1 neurons. The data show an important role of calpain in the development of the ischemic delayed neuronal death. Calpain seems to produce neuronal damage by degrading neuronal cytoskeleton. Our data also show a palliative effect of the calpain inhibitor on the neurotoxic damage, which offers a new and potent treatment of transient forebrain cerebral ischemia.  相似文献   

3.
Mild hypothermia prevents ischemic injury in gerbil hippocampus   总被引:8,自引:0,他引:8  
The objective of this study was to define the degree of hypothermia required to diminish ischemic injury to CA1 hippocampal neurons following 5-min bilateral ischemia in the gerbil. The temperature of the body and head was regulated in three groups of animals at 37.5, 35.5, or 32.5 degrees C during 5-min bilateral carotid artery occlusion. Upon recirculation, normothermia was restored in all animals, and recovery was permitted for 1 week. Ischemic injury to CA1 hippocampus was determined using three endpoints: histologic injury, ATP content, and adenylate kinase activity. Reduction of head temperature to 35.5 and 32.5 degrees C during ischemia diminished histologic injury and improved CA1 levels of ATP and adenylate kinase activity in a dose-dependent manner. Indeed, 32.5 degrees C completely abolished ischemic injury to CA1 hippocampus, judging from each of the three endpoints. Reduction of head temperature to 32.5 degrees C delayed but did not prevent the depletion of ATP throughout the hippocampus during the 5-min ischemic insult. These results demonstrate that a decrease in head temperature of only 2 degrees C reduces the degree of CA1 injury in the gerbil model of 5-min bilateral ischemia. Thus, it is imperative to maintain strict normothermia in pharmacologic studies of ischemic protection. Finally, administration of nicardipine to normothermic gerbils failed to diminish ischemic injury in the CA1 hippocampus.  相似文献   

4.
Summary Following brief cerebral ischemia, tolerance to subsequent ischemia is induced in the hippocampal neurons. In this experiment, recovery of protein synthesis was investigated autoradiographically in gerbils with induced tolerance. The animals were subjected to single forebrain ischemia for 5 min (5-min ischemia group) or 2 min (2-min ischemia group). To observe the effect of tolerance acquisition, double forebrain ischemia (double ischemia group), 2-min ischemia followed by 5-min ischema was induced 2 days later. At various recircultion periods (90 min, 6 h, 1 day, and 4 days following ischemia), animals received a single dose of Lxxx-[2,3-3H]valine. In the 5-min ischemia group, protein synthesis in the CA1 sector was severely suppressed during the period from 90 min to 1 day of recirculation and never returned to the normal level even at 4 day of recirculation. In the 2-min ischemia group, protein synthesis recovered gradually and returned to near normal at 4 days of recirculation. On the other hand, in the double ischemia group, recovery of protein synthesis in the CA1 sector was rapid. At 1 day of recirculation, protein synthesis returned to near normal. Protein synthesis in the CA2 sector was inhibited during the 4 days of recirculation in this group. The present study revealed an early recovery of protein synthesis in the hippocampal CA1 neurons in the gerbil with induced tolerance. We suggest that recovery of protein synthesis is essential for the survival of neurons exposed to transient ischemia.Supported by a Grant-in Aid for Scientific Research on Priority Areas, Ministry of Education, Science and Culture, Japan, and by a research grant for cardiovascular diseases from the Ministry of Health and Welfare, Japan  相似文献   

5.
The hippocampal CA1 sector is especially vulnerable to brief forebrain ischemia. Excitotoxicity is widely thought to contribute to this cell death. Accordingly, drugs that presumably counteract excitotoxicity, such as GABAergic agonists, have been repeatedly tested and found to reduce CA1 cell loss. Post-ischemic diazepam reduces CA1 injury. However, diazepam also causes hypothermia, which by itself is neuroprotective. Most studies fail to adequately control for this confound. In this study, we tested whether diazepam reduces injury in temperature controlled gerbils subjected to brief forebrain ischemia. Furthermore, we tested whether diazepam augments hypothermic neuroprotection. All gerbils were implanted with a core temperature telemetry probe and a cannula for the subsequent insertion of a thermocouple probe to measure ischemic brain temperature. Subsequently, they were given a 5-min normothermic ischemic insult. In Experiment 1, two groups of gerbils were given 10 mg/kg doses of diazepam (i.p.) at both 30 and 90 min post-ischemia. Temperature was maintained in one group by heating lamps. Another group was administered saline. Diazepam reduced cell death at 7 days post-ischemia when the drug-induced hypothermia was permitted, but not when it was prevented. In Experiment 2, four groups of ischemic gerbils were treated starting at 12 h post-ischemia with prolonged hypothermia, diazepam and the combination or saline treatment. Hypothermia, but not diazepam, provided partial neuroprotection and diazepam did not augment hypothermic neuroprotection. Thus, neuroprotection with diazepam is solely due to hypothermia. These data do not support the clinical use of diazepam as a neuroprotectant after global ischemia.  相似文献   

6.
Adrenalectomy protects hippocampal pyramidal cells from transient ischemia in rats. We hypothesized that this effect of adrenalectomy could be generalized to the gerbil. We determined the effect of glucocorticoid manipulation on hippocampal CA1 cell death following transient forebrain ischemia in the gerbil. Adrenalectomy diminished hippocampal damage when performed immediately following transient forebrain ischemia, as in the rat, while glucocorticoid administration resulted in an increase in CA1 pyramidal cell damage. Furthermore adrenalectomy 24 h after the ischemic injury diminished hippocampal damage to roughly the same extent as immediate adrenalectomy. However, if gerbils were examined at longer survival periods after ischemia, the difference in hippocampal damage between adrenalectomized and sham-adrenalectomized was lost. These findings suggest that glucocorticoids influence the rate of hippocampal pyramidal cell disappearance following ischemia. Manipulation of glucocorticoids could be an important adjunct to therapy for preventing ischemic brain damage.  相似文献   

7.
It has been postulated that the central neurotoxicity of glutamate participates in the pathogenesis of the ischemia-induced neuronal death and the process of the neuronal death is initiated by overexcitation or depolarization of postsynaptic neurons induced by increased extracellular glutamate during ischemia. In the present study, in order to know whether ischemic neurons show the overexcitation, we studied changes of CA1 neuronal discharges in gerbil hippocampus induced by transient forebrain ischemia (1-5 min) using an extracellular unit recording technique. CA1 neurons showed the high frequency discharges shortly after ischemic insult of 90 sec, however, these discharges did not induce neuronal death. Delayed neuronal death in the CA1 sector was observed in animals with 5-min ischemia which did not induce high frequency discharges. Neuronal depolarization with no spike discharge may persist during and shortly after 5-min ischemia and initiate the delayed neuronal death.  相似文献   

8.
Summary Brief, non-lethal transient forebrain ischemia in the gerbil can injure selectively vulnerable neurons when such ischemia is induced repeatedly. The influence of the number and interval of the ischemic insults on neuronal damage, as well as the time course of damage, following repeated 2-min forebrain ischemia were examined. A single 2-min forebrain ischemia were examined. A single 2-min ischemic insult caused no morphological neuronal damage. A moderate number of hippocampal CA1 neurons were destroyed following two ischemic insults with a 1-h interval, and destruction of almost all CA1 neurons resulted from three or five insults at 1-h intervals. Three and five insults also resulted in moderate to severe damage to the striatum and thalamus, depending on the number of episodes. Although three ischemic insults at 1-h intervals caused severe neuronal damage, this number of insults at 5-min and 4-h intervals caused destruction of relatively few neurons, and non neurons were destroyed at 12-h intervals. Following three ischemic insults at 1-h intervals, damage to the striatum, neocortex, hippocampal CA4 subfield and thalamus was observed at 6–24 h of survival, whereas damage to the hippocampal CA1 subfield appeared at 2–4 days. The results indicate that even a brief non-lethal ischemic insult can produce severe neuronal damage in selectively vulnerable regions when it is induced repeatedly at a certain interval. The severity of neuronal damage was dependent on the number and interval of ischemic episodes.  相似文献   

9.
The purpose of our experiment was to examine whether the cyclooxygenase inhibitor indomethacin ameliorates neuronal injury in the gerbil hippocampal CA1 sector following 5 minutes of forebrain ischemia. Thirty minutes before bilateral carotid artery occlusion, Mongolian gerbils were injected intraperitoneally with 1 (n = 10), 2 (n = 10), 5 (n = 12), or 10 (n = 7) mg/kg of indomethacin. Seven days after occlusion, the gerbils were perfusion-fixed and neuronal density in the hippocampal CA1 sector was assessed. The mean +/- SEM neuronal density in nine unoperated normal gerbils was 307 +/- 9/mm, in 10 untreated ischemic gerbils 55 +/- 21/mm, and in seven vehicle-treated ischemic gerbils 15 +/- 9/mm. The mean +/- SEM neuronal density in ischemic gerbils treated with 1, 2, 5, or 10 mg/kg indomethacin was 132 +/- 28/mm, 154 +/- 29/mm, 176 +/- 30/mm, and 136 +/- 39/mm, respectively. Indomethacin at any dose significantly ameliorated ischemic neuronal damage in the gerbil hippocampal CA1 sector.  相似文献   

10.
Many glutamate antagonists have been reported to have a neuroprotective effect against ischemic brain damage; however, some of them have been also reported to induce hypothermia that confers remarkable neuroprotection against the damage. In order to avoid the confounding effects of hypothermia, we assembled a telemeter-based brain temperature control system that allows continuous monitoring and regulating of brain temperature during an ischemic insult and in the post-ischemic period in conscious and freely moving animals. Experiments were performed in gerbils that were subjected to administration of MK-801 (3, 5, and 10 mg/kg) and/or to 5-min ischemia. The system monitored continuous changes in brain temperature and regulated brain temperature at normothermic levels, revealing that a neuroprotective effect of 3 mg/kg MK-801 against ischemia-induced delayed hippocampal CA1 neuronal death was mainly due to hypothermia, whereas a high dose of MK-801 (5 and 10 mg/kg) produced a neuroprotective effect even when the brain temperature was maintained at normothermic levels. These results indicate that this system is very useful to test potential antiischemic agents, especially when the agents have hypothermic side effects. J. Neurosci. Res. 47:440–448, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The effect of a serotonin S2 antagonist, naftidrofuryl, on ischemic neuronal damage was examined in the gerbil. Naftidrofuryl was injected i.p. 5 min prior to a single 5-min forebrain ischemia or immediately after each of three 2-min forebrain ischemic insults at 60-min intervals. In both groups the number of intact hippocampal CA1 neurons were significantly higher than in the saline-treated group. These results indicate that serotonin S2 antagonists have a protective effect against ischemic neuronal damage.  相似文献   

12.
T Araki  H Kato  K Kogure 《Brain research》1990,528(1):114-122
We investigated the distribution of neuronal damage following brief cerebral transient ischemia and repeated ischemia at 1-h intervals in the gerbil, using light microscopy and 45Ca autoradiography as a marker for detection of ischemic damage. The animals were allowed to survive for 7 days after ischemia induced by bilateral carotid artery occlusion. Following 2-min ischemia, neuronal damage determined by abnormal calcium accumulation was not observed in the forebrain regions. Following 3-min ischemia, however, abnormal calcium accumulation was recognized only in the hippocampal CA1 sector and part of the striatum. Two 2-min ischemic insults caused extensive abnormal calcium accumulation in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the substantia nigra and the inferior colliculus. The ischemic insults were more severe than that of a single 3-min ischemia. However, three 1-min ischemic insults caused abnormal calcium accumulation only in the striatum. On the other hand, three 2-min ischemic insults caused severe abnormal calcium accumulation in the brain. The abnormal calcium accumulation was found in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the medial geniculate body, the substantia nigra and the inferior colliculus. Gerbils subjected to three 3-min ischemic insults revealed most severe abnormal calcium accumulation. Marked calcium accumulation was seen not only in the above sites, but also spread in the neocortex, the septum and the hippocampal CA3 sector. Morphological study after transient or repeated ischemia indicated that the distribution and frequency of the neuronal damage was found in the sites corresponding to most of the regions of abnormal calcium accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The neuroprotective effects of enhancing neuronal inhibition with a γ-aminobutyric acid (GABA) uptake inhibitor were studied in gerbil hippocampus following transient ischemia. We used in vivo microdialysis to determine a suitable dosing regimen for tiagabine (NNC 328) to elevate extracellular levels of GABA within the hippocampus. In anesthetized (normothermic) gerbils, tiagabine (45 mg/kg, i. p.) selectively elevated extracellular GABA levels 450% in area CA1 of the hippocampus. In gerbils subjected to cerebral ischemia via 5-min bilateral carotid occlusion, extracellular GABA levels increased 13-fold in area CA1, returning to baseline within 30–45 min. When tiagabine was injected 10 min following onset of reperfusion, GABA levels remained elevated (200–470%) for 90 min. In addition, tiagabine significantly reduced the ischemic-induced elevation of glutamate levels in area CA1 during the postischemic period when GABA levels were elevated. There was no effect of postischemic tiagabine on aspartate or six other amino acids. Using the same dosing regimen, we evaluated the degree of neuroprotection in the hippocampus of gerbils 4 and 21 days after ischemia. Tiagabine decreased body temperature a maximum of 2.7°C beginning 30 min into reperfusion and lasting 90 min. In untreated gerbils sacrificed 4 and 21 days after ischemia, there was severe necrosis (99%) of the pyramidal cell layer in area CA1. Whereas tiagabine significantly protected the CA1 pyramidal cell layer in ischemic gerbils at 4 days (overt necrosis confined to about 17% of area CA1), the protection diminished significantly 21 days postischemia. When normothermia was maintained both during and after ischemia in a separate group of tiagabine-treated animals, approximately 77% of the CA1 pyramidal cell layer was necrotic at 4 days. Based on these findings, we suggest that (1) tiagabine slows the development of hippocampal degeneration following ischemia, and (2) that mild, postischemic hypothermia is responsible, in large part, for the neuroprotective actions of this drug. We conclude that the histological outcome after administration of cerebral neuroprotectants should be assessed following long-term survival. © 1995 Wiley-Liss, Inc.  相似文献   

14.
H Kato  T Araki  K Kogure 《Brain research》1992,596(1-2):315-319
We induced repeated focal cerebral ischemia in gerbils. Single 5-min ischemia produced neuronal damage limited to the ipsilateral CA1 and CA4 hippocampus. Two 5-min ischemic insults spaced at a 1-h interval caused selective neuronal damage to the CA1, CA3 and CA4 hippocampus, striatum, neocortex, and thalamus. Three 5-min ischemic insults at 1-h intervals produced infarction. Thus, repeated focal ischemia produced cumulative brain damage by conversion of sublethal damage into selective neuronal damage and of the neuronal damage into infarction.  相似文献   

15.
Hyperthermia-induced neuronal protection against ischemic injury in gerbils   总被引:8,自引:0,他引:8  
We investigated the effect of hyperthermic pretreatment before induction of ischemia using a gerbil model of 5-min forebrain ischemia. A single hyperthermic treatment 18 h before ischemia exhibited a partial protective effect, and repetitive hyperthermic pretreatments at 18-h intervals before ischemia showed clear protection against neuronal death in the CA1 area of the hippocampus, whereas single hyperthermic treatment 3, 6, 24, or 50 h before ischemia exhibited little protective effect. This transient and cumulative neuroprotective effect of hyperthermic pretreatment strongly suggested the involvement of stress reactions after hyperthermia in the protective mechanism against ischemic neuronal death.  相似文献   

16.
Summary During brain ischemia temperature spontaneously declines. In animal experiments this decline is frequently prevented by stabilizing the temperature at the pre-ischemic level, using an external heat source. The present study examines whether this procedure influences the severity of ischemic injury. Wistar rats were submitted to 30-min four-vessel occlusion followed by 7 days recirculation. During ischemia and the 1st h of recirculation various systemic and electrophysiological variables were recorded. Seven days after the ischemia brains were perfusion-fixed for light microscopical examination. Three brain temperature profiles were compared: spontaneous decline of brain temperature during ischemia from 36° to 31°C (spontaneous hypothermia; n=5); constant brain temperature of 30°C induced by selective head cooling (induced hypothermia; n=5); and constant brain temperature of 36°C induced by selective head heating (normothermia; n=5). Core temperature was maintained constant at 37°C in all groups. In spontaneous hypothermia, 19% of CA1 neurons survived after 30-min ischemia. Induced hypothermia significantly increased this percentage to 69% (P<0.05); maintenance of brain temperature at normothermia decreased neuronal survival to 1%. Normothermia also led to morphological injury outside the vulnerable regions, an increase in mortality, marked loss of body weight and a prolongation of the electroencephalographic suppression. These findings demonstrate that stabilizing brain temperature at a constant normothermic level by an external heart source introduces an aggravating pathological element that may interfere in an unpredictable way with the manifestation or treatment of ischemic injury.  相似文献   

17.
The protective effect of hypothermia on DNA fragmentation following transient forebrain ischemia in mongolian gerbils was investigated. The DNA fragmentation demonstrated in situ in gerbil hippocampal CA1 was compared between intra- and post-ischemic hypothermia. Intra- ischemic hypothermia prevented the DNA fragmentation in hippocampal CA1 completely while severe DNA damage was observed in post-ischemic hypothermia group. The degree of DNA fragmentation of hippocampal CA1 in the post-ischemic hypothermia group was equal to that in the ischemic control group. The results suggest that hypothermia during a transient forebrain ischemia exerts a protective effect on the post-ischemic hippocampal damage by preventing the DNA fragmentation in CA1 neurons. [Neurol Res 1995; 17; 461-464]  相似文献   

18.
The effects of dizocilipine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor/channel antagonist, were tested on the dysfunction of neurotransmitter and signal transduction systems and morphological damage 7 days after transient forebrain ischemia in gerbils. Neurotransmitter system (adenosine A1, muscarinic cholinergic receptor) and signal transduction system (inositol 1,4,5-trisphosphate receptor: IP3, protein kinase C: PKC, L-type calcium channels) binding sites were mapped by in vitro quantitative receptor autoradiography. All ligands used in the present study decreased significantly in the CA1 subfield 7 days after ischemia. In normothermic animals, pretreatment with MK-801 failed to protect against decreased receptor binding in the hippocampus 7 days after ischemia. Moreover, in a morphological study, pre- and posttreatment of MK-801 failed to show protective effects against ischemic neuronal damage. On the other hand, pretreatment of MK-801, without maintaining body temperature, prevented the neuronal death of CA1 subfield 7 days after ischemia. These results weaken the hypothesis that NMDA receptor/channel may play a pivotal role in the pathogenesis of neuronal damage after transient forebrain ischemia.  相似文献   

19.
The Mongolian gerbil (Meriones unguiculatus) has been used extensively as a model of forebrain ischemia. Its unique susceptibility to ischemia was suggested to be due to an incomplete circle of Willis. The relative ease to which ischemia can be induced combined with highly reproducible delayed CA1 cell death following a 5 min occlusion made the model popular in neuroprotection studies. Presently, this assumption was tested that complete forebrain ischemia occurs in all gerbils because increased variability was noticed in neuronal injury and behavioral outcome using this model in the last several years. Here it is reported that gerbils obtained from Charles River, the largest supplier in North America, show a high incidence (22.7% with bilateral and 38.6% with unilateral anastomoses) of posterior communicating arteries compared to another supplier of gerbils (High Oak Farms, 2.6% with bilateral and 13.2% with unilateral anastomoses, P<0.0001). This increased incidence of complete or partial circle of Willis led to less severe CA1 cell loss in Charles River gerbils (P<0.0001) compared to High Oak gerbils, with an unacceptably high level of inter-animal variability. Similarly, behavioral indices of CA1 ischemic injury (increased locomotion, habituation deficits) were also significantly attenuated in the Charles River animals. High Oak gerbils also displayed increased histological and behavioral variability relative to the pattern obtained several years ago. Thus, the gerbil model of forebrain ischemia, at least using Charles River animals, no longer produces consistent injury and behavioral alterations. Investigators are urged to consider adopting other models in future neuroprotection studies or ensure that their gerbil population lacks communicating arteries.  相似文献   

20.
We planned a study to determine whether or not the mechanism of nitric oxide (NO) neurotoxicity involves the elevation of extracellular glutamate or changes of brain temperature in the pathogenesis of delayed neuronal death of gerbil hippocampal CA1 neurons following 5-min transient forebrain ischemia. Intraventricular injection of 5 μl of 5.0 mg/ml Nω-nitro-l-arginine (LNNA) significantly preserved neuronal density in the central part of the CAI region examined 7 days after 5-min ischemia [188.5 ± 8.5/mm: 90.0% of the 209.5 ± 11.1 /mm density in the sham-operated controls vs. 16.7 ± 6.4/mm in those injected with artificial cerebrospinal fluid (CSF) only]. There was no difference between these two groups in hippocampal temperature before, during or after 5-min ischemia. The glutamate concentration ([Glu.]) during 5-min ischemia measured by a microdialysis technique was similar in the two groups (peak [Glu.] = 2.76 ± 0.62 pmol/μl dialysate in the artificial CSF group and = 2.93 ± 0.64 pmol/μ1 dialysate in the LNNA group). It was found that the neuronal toxicity of NO does not involve hyperthermia or the increase of extracellular glutamate concentration in the hippocampal CA1 region during 5-min ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号