首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-2 is essential for CD4+CD25+ regulatory T cell function   总被引:23,自引:0,他引:23  
Constitutive expression of CD25, the IL-2 receptor alpha-chain, defines a distinct population of CD4+ T cells (Treg) with suppressive activity in vitro and in vivo. IL-2 has been implicated in the generation and maintenance of Treg, however, a functional contribution of the IL-2 receptor during suppression is thus far unknown. We show that IL-2 is required for Treg function in vitro, since suppression is completely abrogated by selective blocking of the IL-2 receptor on Treg during co-culture with responder T cells. We demonstrate that Treg, which do not produce IL-2, compete for IL-2 secreted by responder T cells. In accordance with the idea of competition being part of the suppressive mechanism, in vitro neutralization of IL-2 mimics all effects of Treg. Conversely, recombinant IL-2 abrogates inhibition of IL-2 production in responder T cells, the hallmark of Treg suppression. Finally, activation in the presence of IL-2 primes Treg to produce IL-10 upon secondary stimulation, indicating that IL-2 uptake is also required to induce additional suppressive factors that might be more relevant for suppression in vivo. We propose the parakrine uptake of soluble mediators as a flexible mechanism to adapt Treg activity to the strength of the responder T cell reaction.  相似文献   

2.
Development and function of CD25+CD4+ regulatory T cells   总被引:20,自引:0,他引:20  
The essential role played by CD25(+)CD4(+) regulatory T cells (T(R) cells) in the control of physiological as well as pathological immunity is now well established, but many aspects of their biology still remain unclear. One of the unresolved issues regards their development: where does this occur, what signals are required, and how do T(R) cells fit into the larger taxonomy of the T-cell family? Recent data has begun to shed light on the development and function of these important cells.  相似文献   

3.
Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function   总被引:16,自引:0,他引:16  
Both CTLA-4 and TGF-beta have been implicated in suppression by CD4+CD25+ regulatory T cells (Treg). In this study, the relationship between CTLA-4 and TGF-beta in Treg function was examined. Blocking CTLA-4 on wild-type Treg abrogated their suppressive activity in vitro, whereas neutralizing TGF-beta had no effect, supporting a TGF-beta-independent role for CTLA-4 in Treg-mediated suppression in vitro. In CTLA-4-deficient mice, Treg development and homeostasis was normal. Moreover, Treg from CTLA-4-deficient mice exhibited uncompromised suppressive activity in vitro. These CTLA-4-deficient Treg expressed increased levels of the suppressive cytokines IL-10 and TGF-beta, and in vitro suppression mediated by CTLA-4(-/-) Treg was markedly reduced by neutralizing TGF-beta, suggesting that CTLA-4-deficient Treg develop a compensatory suppressive mechanism through CTLA-4-independent production of TGF-beta. Together, these data suggest that CTLA-4 regulates Treg function by two distinct mechanisms, one during functional development of Treg and the other during the effector phase, when the CTLA-4 signaling pathway is required for suppression. These results help explain contradictions in the literature and support the existence of functionally distinct Treg.  相似文献   

4.
Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells   总被引:19,自引:0,他引:19  
Anergic/suppressive CD4+CD25+ T cells have been proposed to play an important role in the maintenance of peripheral tolerance. Here we demonstrate that in humans these cells suppress proliferation to self antigens, but also to dietary and foreign antigens. The suppressive CD4+CD25+ T cells display a broad usage of the T cell receptor Vbeta repertoire,suggesting that they recognize a wide variety of antigens. They reside in the primed/memory CD4+CD45RO+CD45RB(low) subset and have short telomeres, indicating that these cells have the phenotype of highly differentiated CD4+ T cells that have experienced repeated episodes of antigen-specific stimulation in vivo. This suggests that anergic/suppressive CD4+CD25+ T cells may be generated in the periphery as a consequence of repeated antigenic encounter. This is supported by the observation that highly differentiated CD4+T cells can be induced to become anergic/suppressive when stimulated by antigen presented by non-professional antigen-presenting cells. We suggest that besides being generated in the thymus, CD4+CD25+ regulatory T cells may also be generated in the periphery. This would provide a mechanism for the generation of regulatory cells that induce tolerance to a wide array of antigens that may not be encountered in the thymus.  相似文献   

5.
Human CD4+CD25+ regulatory T cells   总被引:17,自引:0,他引:17  
In this report, we review studies of human CD4+CD25+ regulatory T cells (T-reg). Although lagging a few years behind the discovery of these cells in the mouse, the equivalent population of CD4+CD25+ regulatory T cells has also been isolated from human peripheral blood, thymus, lymph nodes and cord blood. In general, the characteristics of this T cell subset are strikingly similar between mouse and man. In the recent explosion of research reports on human CD4+CD25+ cells, although the majority of the characteristics ascribed to these cells appear to be consistent, contrasting results have been found primarily in regards to potential involvement of TGFbeta and production of IL-10. One explanation for this variability may reside in the fact that markedly different techniques are used to isolate human CD4+CD25+ T-reg cells and thus may result in the comparison of T-reg populations that differ in cellular composition and/or activation state. Another potential explanation for differences in human T-reg function may rest on the extreme variability of the culture conditions and TCR stimuli that have been used to test the functional properties of these cells in vitro. The strength of the TCR signal provided to the culture greatly affects the functional outcome of the co-culture and can result in the difference between suppression and full activation. Surprisingly, it appears that stronger stimulation has a greater and more rapid effect on the T-resp cell than on the T-reg cell as it causes T-resp cells to quickly become resistant to suppression. Thus, the details of in vitro culture conditions may at least partially account for disparate findings in regard to the functional characterization of human CD4+CD25+ cells. Here we review the evidence regarding the identification of human CD4+CD25+ regulatory T cells and their possible mechanism(s) of function.  相似文献   

6.
《Autoimmunity》2013,46(8):667-677
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory disease of the peripheral nervous system that is probably autoimmune in origin. Different components of the adaptive and innate immunity may be responsible for the aberrant response towards nerve antigens. To investigate this, we examined lymphocyte subsets and regulatory T cell (Treg) function in the blood of CIDP patients, healthy controls (HC) and subjects with non-immune mediated neuropathies (other neuropathies, ON). We used flow cytometry to determine the frequency of monocytes, B cells, natural killer (NK) and NK-T cells, total and activated CD4+ and CD8+ T cells, effector memory and central memory CD4+ and CD8+ T cells, and CD4+CD25highFoxp3+ Tregs. Treg function was studied after polyclonal stimulation and antigen specific stimulation with myelin protein peptides in CIDP and HC. There was an increased frequency of monocytes (p = 0.02) and decreased frequency of NK cells (p = 0.02) in CIDP compared with HC but not ON. There were no significant differences in other populations. Treg function was impaired in CIDP compared to HC (p = 0.02), whilst T cell proliferation to myelin protein peptides before and after depletion of Tregs was not different between patients and controls. This study shows increased circulating monocytes and reduced NK cells in CIDP. Although Treg frequency was not altered, we confirm that Tregs display a defect of suppressive function. Myelin protein peptides were not the target of the altered peripheral regulation of the immune response. The mechanisms of peripheral immune tolerance in CIDP and their relevance to the pathogenesis deserve further exploration.  相似文献   

7.
目的 研究HIV感染者/AIDS患者外周血CD4^+ CD25^+ 调节性T细胞(CD4^+ CD25^+ regulatory Tcell,Treg)频率、功能及其临床意义。方法 选择31例HIV感染者/AIDS患者和30例健康对照者,采用流式细胞仪检测各组外周血Treg的表型和频率。采取MACS磁珠分选CD4^+CD25^+T细胞,利用[^3H]胸腺嘧啶掺入法检测CD4^+ CD25^+T细胞在特异性HIV抗原刺激下对CD4^+ CD25-T细胞的增殖影响。结果HIV/AIDS患者组与正常对照组相比较,外周血CD4^+ CD25^+ T细胞频率在统计学上差异无统计学意义。与正常对照组比较,HIV感染者外周血CD4^+ CD25^+ T细胞频率升高,差异有统计学意义(P〈0.01);与正常对照组比较,AIDS患者者外周血CD4^+ CD25^+ T细胞频率降低,差异有统计学意义(P〈0.0001)。HIV RNA病毒载量与患者外周血CD4^+ CD25^+ T细胞数量呈正相关性(P〈0.01)。CD4^+ CD25^+ T细胞具有抑制HIV特异性的CD4^+ CD25^- T细胞的增殖作用。结论HIV感染者/AIDS患者的细胞免疫功能紊乱,CD4^+ CD25^+ T细胞能抑制HIV感染者/AIDS患者的HIV特异性细胞免疫反应,促进HIV病毒复制,与形成持续HIV感染有关。  相似文献   

8.
目的:研究大鼠CD4 CD25 T调节细胞(Tr)的分离培养,并对其功能进行初步分析。方法:无菌条件下切取大鼠脾脏分离脾淋巴细胞。用免疫磁珠细胞分离系统(MACS)分选CD4 CD25 T细胞,并以流式细胞术检测其纯度后,对其进行扩增。采用混合淋巴细胞反应研究CD4 CD25 Tr细胞对CD4 CD25-T细胞的免疫抑制作用。用ELISA法检测培养上清中IL-2、IFN-γ及IL-10水平的差异。结果:MACS分离的CD4 CD25 T细胞的纯度达86%~93%。该细胞与CD4 CD25-T细胞相比能特异性地表达Foxp3基因。体外培养中能明显抑制效应T细胞增殖及其分泌IFN-γ、IL-2,但其自身能分泌Th2型细胞因子IL-10。结论:采用MACS系统阴性加阳性分选,可高效快速的获得理想纯度和免疫抑制功能的大鼠CD4 CD25 T调节细胞,该细胞对CD4 CD25-T细胞具有明显的免疫抑制作用,并能特异性的表达Foxp3基因。  相似文献   

9.
The immune system has evolved numerous mechanisms of peripheral T cell immunoregulation, including a network of regulatory T (Treg) cells, to modulate and down-regulate immune responses at various times and locations and in various inflammatory circumstances. Amongst these, naturally occurring CD4(+)CD25(+) Treg cells (nTreg) represent a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintaining tolerance in several models of autoimmunity. CD4(+)CD25(+) Treg cells differentiate in the normal thymus as a functionally distinct subpopulation of T cells bearing a broad T cell receptor repertoire, endowing these cells with the capacity to recognize a wide range of self and nonself antigen specificities. The generation of CD4(+)CD25(+) Treg cells in the immune system is genetically controlled, influenced by antigen recognition, and various signals, in particular, cytokines such as interleukin-2 and transforming growth factor-beta1, control their activation, expansion, and suppressive effector activity. Functional abrogation of these cells in vivo or genetic defects that affect their development or function unequivocally promote the development of autoimmune and other inflammatory diseases in animals and humans. Recent progress has shed light on our understanding of the cellular and molecular basis of CD4(+)CD25(+) Treg cell-mediated immune regulation. This article discusses the relative contribution of CD4(+)CD25(+) nTreg cells in the induction of immunologic self-tolerance and provides a comprehensive overview of recent finding regarding the functional properties and effector mechanism of these cells, as revealed from various in vitro and in vivo models.  相似文献   

10.
CD4+CD25+Foxp3+ regulatory T (Treg) cells can undergo both thymic selection and peripheral expansion in response to self peptides that are agonists for their T cell receptors (TCR). However, the specificity by which these TCR must recognize peptide:MHC complexes to activate Treg cell function is not known. We show that CD4+CD25+Foxp3+ Treg cells can mediate suppression in response to peptides that are only weakly cross‐reactive with the self peptide that induced their formation in vivo. Moreover, suppression could be efficiently activated by peptide analogs that were inefficient at inducing CD69 up‐regulation, and that also induced little or no proliferation of naïve CD4+CD25Foxp3 T cells expressing the same TCR. These findings provide evidence that self peptide‐specific CD4+CD25+Foxp3+ Treg cells can exert regulatory function in response to self‐ and/or pathogen‐derived peptides with which they are only weakly cross‐reactive.  相似文献   

11.
Control of NK cell functions by CD4+CD25+ regulatory T cells   总被引:2,自引:0,他引:2  
Regulatory T cells (Treg) are key players in the maintenance of peripheral tolerance. As a result of suppressive effects on CD4+ and CD8+ effector T cells, Treg control the adaptive immune system and prevent autoimmunity. In addition, they inhibit B lymphocytes, dendritic cells, and monocytes/macrophages. It is interesting that several recent papers show that CD4+CD25+ Treg are also able to inhibit NK cells. Thus, Treg exert their control on immune responses from the onset (triggering of innate immune cells) to the effector phase of adaptive immunity (B and T cell-mediated responses). That Treg inhibit NK cells suggests that their uncontrolled activation might break self-tolerance and induce "innate" autoimmune pathology. Conversely, Treg-mediated suppression of NK cell functions might have negative effects, as these cells are important in defense against infections and cancer. It is conceivable that Treg might dampen efficient activation of NK cells in these diseases.  相似文献   

12.
CD4+ CD25+ 调节性T细胞(Tr)是一个具有独立功能的T细胞亚群,是机体维持自身免疫耐受的重要组成部分,在免疫病理、移植物耐受、阻止自身免疫反应和维持机体免疫平衡方面都有一定作用,其T细胞亚群在多种免疫性疾病中发挥重要的调节作用,但国内外有关该群细胞在肾脏疾病中作用的报道较少.  相似文献   

13.
目的研究卵巢癌细胞培养上清液是否能诱导外周血CD4^+CD25^- T细胞转变为CD4^+CD25^+调节性T细胞。方法将外周血CD4^+CD25^- T细胞分离后,对照组用CD3和CD28单抗活化,实验组在对照基础上加用卵巢癌细胞株SKOV3培养上清,72h后分离各组的CD25^+和CD25^-T细胞,溴化脱氧尿嘧啶掺入标记法测定增殖能力及对静息的自体同源CD4^+CD25^- T细胞的增殖抑制能力,流式细胞仪测定细胞糖皮质激素诱发型TNF受体(glucocorticoid-induced TNFR,GITR)与CTLA-4分子的表达,RT-PCR检测细胞卿mRNA的表达。结果与对照组相反,实验组的CD4^+CD25^+T细胞具有免疫抑制功能,自身增殖能力下降,GITR和CTLA-4分子的表达和CD4^+CD25^+调节性T细胞相似,并被诱导表达转录因子Foxp3 mRNA。结论卵巢癌细胞分泌的可溶性物质能诱导外周血CD4^+CD25^-T细胞转化为CD4^+CD25^+调节性T细胞。  相似文献   

14.
人CD4+CD25+调节性T细胞系的建立与功能分析   总被引:9,自引:1,他引:9  
目的:建立可在体外长期培养的人CD4^ CD25^ 调节性T细胞系并研究其免疫生物学特性。方法:用流式分选的方法从健康人外周血淋巴细胞中得到CD4^ CD25^ T细胞,并对其进行体外长期培养、扩增;淋巴细胞转化实验分析其免疫抑制功能,流式细胞法分析其表型。结果:经对人CD4^ CD25^ T细胞的长期培养扩增,获得具有免疫抑制功能的调节性T细胞系。该T细胞系对经TCR的刺激不敏感,且能抑制同一来源或同种异型CD4^ CD25^ T细胞的活化,大剂量IL-2可以逆转其抑制功能。长期培养的CD4^ CD25^ T细胞,膜表面CD25和CTLA-4分子持续高表达,而CD4^ CD25^ T细胞CD25和CTLA-4分子的表达呈周期性变化。结论:将CD4^ CD25^ T细胞体外扩增培养成系,其功能和表型与同一来源的CD4^ CD25^ T细胞显著不同。  相似文献   

15.
天然CD4+ CD25+ Treg细胞在针对自身抗原和外来抗原的免疫应答中起关键控制作用,其缺乏或功能性的缺陷将导致多重病理性的失调.本文就近年在其产生、作用机制以及与免疫耐受的诱导关系等方面的研究进展进行了综述.  相似文献   

16.
The biological behavior of immune cells is determined by their intrinsic properties and interactions with other cell populations within their microenvironment. Several studies have confirmed the existence of tight spatial interactions between mast cells (MCs) and Tregs in different settings. For instance, we have recently identified the functional cross-talk between MCs and Tregs, through the OX40L-OX40 axis, as a new mechanism of reciprocal influence. However, there is scant information regarding the single-cell dynamics of this process. In this study, time-lapse video microscopy revealed direct interactions between Tregs and MCs in both murine and human cell co-cultures, resulting in the inhibition of the MC degranulation response. MCs incubated with WT, but not OX40-deficient, Tregs mediated numerous and long-lasting interactions and displayed different morphological features lacking the classical signs of exocytosis. MC degranulation and Ca2+ mobilization upon activation were inhibited by Tregs on a single-cell basis, without affecting overall cytokine secretion. Transmission electron microscopy showed ultrastructural evidence of vesicle-mediated secretion reconcilable with the morphological pattern of piecemeal degranulation. Our results suggest that MC morphological and functional changes following MC-Treg interactions can be ascribed to cell-cell contact and represent a transversal, non-species-specific mechanism of immune response regulation. Further research, looking at the molecular composition of this interaction will broaden our understanding of its contribution to immunity.  相似文献   

17.
CTLA-4 x Ig was originally designed as an immunosuppressive agent capable of interfering with the co-stimulation of T cells. In the present study, we demonstrate that CTLA-4 x Ig, in combination with TCR ligation, has the additional capacity to convert naive CD4+CD25- T cells into Foxp3+ regulatory T (T(reg)) cells, as well as to expand their numbers. The CD4+CD25+Foxp3+ T(reg) generated by CTLA-4 x Ig treatment in vitro potently suppress effector T cells. Extending this in vivo, we show that systemic administration of CTLA-4 x Ig increases the percentage of CD4+CD25(hi)Foxp3+ cells within mixed lymphocyte reaction-induced murine lymph nodes. Significantly, the in vitro conversion of naive CD4+CD25- T cells into T(reg) cells is antigen-presenting cell (APC) dependent. This finding, together with the further observation that this conversion can also be driven in vitro by an antibody that engages B7-2 ligand, suggests that CTLA-4 x Ig-driven T(reg) induction may be predicated upon active CTLA-4 x Ig to B7-2 signaling within APC, which elicits from them T(reg)-inducing potential. These findings extend CTLA-4 x Ig's functional repertoire, and at the same time, reinforce the concept that T cell anergy and active suppression are not entirely distinct processes and may be linked by some common molecular triggers.  相似文献   

18.
Regulatory T cells (Tregs) are defined as CD4+CD25+ cells in chickens. This study examined the effects of an anti-chicken CD25 monoclonal antibody injection (0.5 mg/bird) on in vivo depletion of Tregs and the properties of CD4+CD25 cells in Treg-depleted birds. The CD4+CD25+ cell percentage in the blood was lower at 8 d post injection than at 0 d. Anti-CD25-mediated CD4+CD25+ cell depletion in blood was maximum at 12 d post injection. The anti-CD25 antibody injection depleted CD4+CD25+ cells in the spleen and cecal tonsils, but not in the thymus, at 12 d post antibody injection. CD4+CD25 cells from the spleen and cecal tonsils of birds injected with the anti-chicken CD25 antibody had higher proliferation and higher IL-2 and IFNγ mRNA amounts than the controls at 12 d post injection. At 20 d post injection, CD4+CD25+ cell percentages in the blood, spleen and thymus were comparable to that of the 0 d post injection. It could be concluded that anti-chicken CD25 injection temporarily depleted Treg population and increased and IL-2 and IFNγ mRNA amounts in CD4+CD25 cells at 12 d post injection.  相似文献   

19.
陈伟  张学光 《免疫学杂志》2005,21(Z1):82-84
CD4 CD25 TH细胞通过抗原特异性方式或细胞接触的方式抑制自身反应性T细胞的活化,能有效地维持自身免疫耐受,是调节自身反应性T细胞和防止自身免疫病发生的重要调节细胞。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号