首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a total of 299 grain samples of wheat were collected from four production regions: the maize, sugar beet, potato and feed sectors of Slovakia. The samples were analyzed for deoxynivalenol (DON) content by using an enzyme-linked immunosorbent assay Ridascreen® Fast DON. Analysis of variance revealed a significant difference between years in DON contents (p < 0.027). The occurrence of samples with DON was 82.2% in 2010, with maximum DON content of 7.88 mg kg−1, and 70.7% in 2011, with maximum DON content of 2.12 mg·kg−1. The total mean DON content was 0.62 mg·kg−1; in the feed region 0.22 mg·kg−1; 0.63 mg·kg−1 in the maize region; 0.78 mg·kg−1 in the sugar beet region; 0.45 mg·kg−1 the potato region. The limit of 1.25 mg·kg−1 imposed by the European Union (EU) for DON content was exceeded in 13.7% of the studied samples. The average monthly rainfall for May to June played a critical role in DON content of wheat grains for maize and sugar beet producing regions. The present results indicate that DON content was at a high level in grains from wheat grown during 2010.  相似文献   

2.

BACKGROUND AND PURPOSE

The beat-by-beat fluctuation (dynamics) of heart rate (HR) depends on centrally mediated control of the autonomic nervous system (ANS) reflecting the physiological state of an organism. 5-HT1A receptors are implicated in affective disorders,associated with ANS dysregulation which increases cardiac risk but their role in autonomic HR regulation under physiological conditions is insufficiently characterized.

EXPERIMENTAL APPROACH

The effects of subcutaneously administered 5-HT1A receptor ligands on HR dynamics were investigated in C57BL/6 mice during stress-free conditions and emotional challenge (recall of fear conditioned to an auditory stimulus and novelty exposure) using time domain and non-linear HR analyses.

KEY RESULTS

Pre-training treatment with of 8-OH-DPAT (0.5 mg·kg−1, s.c.) prevented conditioned tachycardia in the retention test indicating impaired fear memory. Pretest 5-HT1A receptor activation by 8-OH-DPAT (0.5 but not 0.1 and 0.02 mg·kg−1) caused bradycardia and increased HR variability. 8-OH-DPAT (0.5 mg·kg−1) lowered the unconditioned and conditioned tachycardia from ∼750 to ∼550 bpm, without changing the conditioned HR response to the sound. 8-OH-DPAT induced profound QT prolongation and bradyarrhythmic episodes. Non-linear analysis indicated a pathological state of HR dynamics after 8-OH-DPAT (0.5 mg·kg−1) with ANS hyperactivation impairing HR adaptability. The 5-HT1A receptor antagonist WAY-100635 (0.03 mg·kg−1) blocked these effects of 8-OH-DPAT.

CONCLUSIONS AND IMPLICATIONS

Pre-training 5-HT1A receptor activation by 8-OH-DPAT (0.5 mg·kg−1) impaired memory of conditioned auditory fear based on an attenuated HR increase, whereas pretest administration did not prevent the fear-conditioned HR increase but induced pathological HR dynamics through central ANS dysregulation with cardiac effects similar to acute SSRI overdose.  相似文献   

3.

Background and purpose:

The association between torcetrapib and its off-target effects on blood pressure suggested a possible class-specific effect. The effects of dalcetrapib (RO4607381/JTT-705) and torcetrapib on haemodynamics and the renin-angiotensin-aldosterone system (RAAS) were therefore assessed in a rat model.

Experimental approach:

Arterial pressure (AP) and heart rate were measured by telemetry in normotensive and spontaneously hypertensive rats (SHR) receiving torcetrapib 10, 40 or 80 mg·kg−1·day−1; dalcetrapib 100, 300 or 500 mg−1·kg·day−1; or vehicle (placebo) for 5 days. Expression of RAAS genes in adrenal gland, kidney, aorta and lung from normotensive rats following 5 days'' treatment with torcetrapib 40 mg·kg−1·day−1, dalcetrapib 500 mg·kg−1·day−1 or vehicle was measured by quantitative polymerase chain reaction.

Key results:

Torcetrapib transiently increased mean AP in normotensive rats (+3.7 ± 0.1 mmHg), whereas treatment in SHR resulted in a dose-dependent and sustained increase [+6.5 ± 0.6 mmHg with 40 mg·kg−1·day−1 at day 1 (P < 0.05 versus placebo)], which lasted over the treatment period. No changes in AP or heart rate were observed with dalcetrapib. Torcetrapib, but not dalcetrapib, increased RAAS-related mRNAs in adrenal glands and aortas.

Conclusions and implications:

In contrast to torcetrapib, dalcetrapib did not increase blood pressure or RAAS-related gene expression in rats, suggesting that the off-target effects of torcetrapib are not a common feature of all compounds acting on cholesteryl ester transfer protein.  相似文献   

4.
Brexpiprazole (Bre) is a new multi-target antipsychotic drug (APD) approved by the US FDA in 2015, and shows good therapeutic potential. But it lacks assessments on the metabolic side effects, which obstructs the treatment of schizophrenia. Glucagon-like peptide 1 (GLP1), an incretin associated with insulin action and metabolism, is involved in the metabolic syndrome (MS) caused by most APDs. In this study, we examined the adverse effects of Bre on glycolipid metabolism in rats and determined whether GLP1 was involved in Bre-caused MS. In the first part of experiments, rats were orally administered Bre (0.5 mg· kg−1· d−1) for 28 days with aripiprazole (1.0 mg· kg−1· d−1) or olanzapine (1.0 mg· kg−1· d−1) as the controls. Compared to vehicle, Bre administration significantly increased the weight gain, serum lipid (TG, TC, LDL, FFA), and blood glucose levels accompanied by the hormonal (insulin, glucagon, GLP1) imbalance, and the impaired glucose tolerance and insulin sensitivity. Moreover, we demonstrated that Bre administration significantly decreased the protein and mRNA levels of GLP1 in pancreas and small intestine by suppressing CaMKIIα, AMPK, and β-catenin; Bre administration also caused islet dysfunction with decreased GLP1R, PI3K, IRβ expression in pancreas, and the interference of IRS1, PI3K, p-AKT, and GLUT4 expression in the liver and skeletal muscle that represented the insulin resistance. In the second part of experiments, rats were orally administered Bre (0.5 mg· kg−1· d−1) for 42 days. We showed that co-administration with the GLP1 receptor (GLP1R) agonist liraglutide (0.125 mg· kg−1· d−1, ip) could ameliorate Bre-caused metabolic abnormalities. Our results demonstrate that GLP1/GLP1R signaling is involved in Bre-induced glycolipid metabolic disorders and co-treatment with liraglutide is an effective intervention against those abnormal metabolisms.  相似文献   

5.

Aim:

The examine the cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice (ApoE−/− mice) fed a “Western-style diet” and the effect of simvastatin intervention.

Methods:

Male ApoE−/− mice (n=36) were fed a “Western-style diet” from the age of 8 weeks. After 16 weeks, they were randomly given either simvastatin (25 mg·kg−1·d−1) or normal saline (control group) by gavage for 8, 16, or 24 weeks. The left ventricular (LV) wall thickness and diameter of the myocardial cells were determined with Hematoxylin-Eosin stain, and the level of fibrosis of the myocardial matrix was assessed with Masson stain. Real-time quantitative polymerase chain reaction and Western blotting analysis were used to determine the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9), Cathepsin S (Cat S), and the peroxisome proliferator-activated receptors (PPARs) in the myocardium of ApoE−/− mice.

Results:

ApoE−/− mice fed a “Western-style diet” showed an significant age-dependent increase in total cholesterol (TC), LV wall thickness, myocardial cell diameter and LV collagen content (P<0.05). The simvastatin treatment group showed significantly reduced LV wall thickness, myocardial cell diameters and LV collagen content at 40 weeks when compared with the control group (P<0.05). Furthermore, treatment with simvastatin also significantly inhibited the mRNA and protein expressions of MMP-9 and Cat S as well as increased the mRNA and protein expressions of PPAR alpha and PPAR gamma at 32 and 40 weeks compared with the control group (P<0.05).

Conclusion:

ApoE−/− mice fed a “Western-style diet” had cardiac hypertrophy and fibrosis, which worsened with age. Simvastatin treatment inhibits the development of cardiac hypertrophy and fibrosis, and this effect may be mediated through increased levels of PPAR alpha and PPAR gamma and reduced levels of TC, MMP-9, and Cat S.  相似文献   

6.
  1. We examined the effect of chronic (21 days) oral treatment with the thiazolidinedione, MCC-555 ((±)-5-[{6-(2-fluorbenzyl)-oxy-2-naphy}methyl]-2,4-thiazolidinedione) on metabolic status and insulin sensitivity in obese (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats which display an impaired glucose tolerance (IGT) or overt diabetic symptoms, respectively.
  2. MCC-555 treatment to obese Zucker rats (10 and 30 mg kg−1) and diabetic ZDF rats (10 mg kg−1) reduced non-esterified fatty acid concentrations in both rat strains and reduced plasma glucose and triglyceride concentrations in the obese Zucker rats. Liver glycogen concentrations were significantly increased by chronic MCC-555 treatment in both obese Zucker rats (30 mg kg−1 day−1) and diabetic ZDF rats (10 mg kg−1 day−1), as compared with vehicle-treated lean and obese rats and there was a significant increase in hepatic glycogen synthase activity in MCC-555-treated diabetic ZDF rats as compared to vehicle-treated controls.
  3. During a euglycaemic hyperinsulinaemic clamp, MCC-555-treated obese Zucker rats and diabetic ZDF rats required significantly higher glucose infusion rates to maintain stable glucose concentrations (2.01±0.19 mg min−1 and 6.42±1.03 mg min−1, respectively) than vehicle-treated obese controls (0.71±0.17 mg min−1 and 2.09±0.71 mg min−1; P<0.05), demonstrating improved insulin sensitivity in both Zucker and ZDF rats. MCC-555 treatment also enhanced insulin-induced suppression of hepatic glucose production in ZDF rats as measured using infusions of [6-3H]-glucose under clamp conditions.
  4. In conclusion, we have demonstrated that MCC-555 improves metabolic status and insulin sensitivity in obese Zucker and diabetic ZDF rats. MCC-555 may prove a useful compound for alleviating the metabolic disturbances and IGT associated with insulin resistance in man.
  相似文献   

7.
  1. The receptors involved in mediating the haemodynamic effects of three 5-HT1B/D receptor agonists were investigated in pentobarbitone anaesthetized rats (n=6–17 per group).
  2. Cumulative intravenous (i.v.) infusions of rizatriptan and sumatriptan (from 0.63 to 2500 μg kg−1; each dose over 5 min) induced dose-dependent and marked hypotension (−42±6 and −34±4 mmHg at the highest dose, respectively; both P<0.05 vs vehicle: +5±3 mmHg) and bradycardia (−85±16 and −44±12 beats min−1 at the highest dose, respectively; both P<0.05 vs vehicle: +16±6 beats min−1). Zolmitriptan evoked only moderate hypotension at the highest dose (−19±9 mmHg; P<0.05 vs vehicle).
  3. A high dose of the 5-HT1B/D receptor antagonist, GR 127935 (0.63 mg kg−1, i.v.), failed to antagonize the hypotension and bradycardia evoked by sumatriptan (−35±6 mmHg and −52±19 beats min−1, respectively; both not significant vs sumatriptan in untreated rats), but moderately reduced the hypotension and bradycardia evoked by rizatriptan (−20±5 mmHg and −30±17 beats min−1, respectively; both P<0.05 vs vehicle and vs rizatriptan in untreated rats).
  4. The selective 5-HT1A receptor antagonist, WAY 100635 (0.16 and 0.63 mg kg−1, i.v.), dose-dependently attenuated the haemodynamic responses evoked by rizatriptan and sumatriptan, which were almost abolished by the higher dose of WAY 100635 (−4±3 mmHg and −15±8 beats min−1; both not significant vs vehicle and P<0.05 vs rizatriptan in untreated rats). A slight but statistically significant reduction in mean arterial pressure (MAP) persisted at the highest dose of sumatriptan (−13±4 mmHg following the higher dose of WAY 100635; P<0.05 vs vehicle).
  5. In pithed rats with MAP normalized by angiotensin II, rizatriptan failed to induce hypotension or bradycardia (+5±4 mmHg and −6±16 beats min−1, respectively; both NS vs vehicle and P<0.05 vs rizatriptan in untreated rats). Similarly, sumatriptan failed to induce bradycardia in pithed rats (+5±6 beats min−1; not significant vs vehicle and P<0.05 vs sumatriptan in untreated rats), whereas a slight but statistically significant reduction in MAP, compared to controls, occurred at the highest dose (−9±9 mmHg; P<0.05 vs both vehicle and sumatriptan in untreated rats).
  6. In bilaterally vagotomized and atropine-treated (1 mg kg−1, i.v.) rats, the reductions in MAP and heart rate evoked by rizatriptan (−31±4 mmHg and −64 ±9 beats min−1, respectively; both P<0.05 vs vehicle and not significant vs rizatriptan in controls) and sumatriptan (−47±8 mmHg and −56±10 beats min−1, respectively; both P<0.05 vs vehicle and not significant vs sumatriptan in controls) were not statistically significantly different from those observed in controls.
  7. In conclusion, the 5-HT1B/D receptor agonists, rizatriptan and sumatriptan, elicit hypotension and bradycardia in the normotensive anaesthetized rat predominantly via activation of central 5-HT1A receptors, and a consequent reduction in sympathetic outflow.
  相似文献   

8.

BACKGROUND AND PURPOSE

3-Iodothyroacetic acid (TA1) is an end product of thyroid hormone metabolism. So far, it is not known if TA1 is present in mouse brain and if it has any pharmacological effects.

EXPERIMENTAL APPROACH

TA1 levels in mouse brain were measured by HPLC coupled to mass spectrometry. After i.c.v. administration of exogenous TA1 (0.4, 1.32 and 4 μg·kg−1) to mice, memory acquisition-retention (passive avoidance paradigm with a light-dark box), pain threshold to thermal stimulus (51.5°C; hot plate test) and plasma glucose (glucorefractometer) were evaluated. Similar assays were performed in mice pretreated with s.c. injections of the histamine H1 receptor antagonist pyrilamine (10 mg·kg−1) or the H2 receptor antagonist zolantidine (5 mg·kg−1). TA1 (1.32 and 4 μg·kg−1) was also given i.c.v. to mice lacking histidine decarboxylase (HDC−/−) and the corresponding WT strain.

KEY RESULTS

TA1 was found in the brain of CD1 but not of HDC mice. Exogenous TA1 induced amnesia (at 0.4 μg·kg−1), stimulation of learning (1.32 and 4 μg·kg−1), hyperalgesia (0.4, 1.32 and 4 μg·kg−1) and hyperglycaemia (1.32 and 4 μg·kg−1). All these effects were modulated by pyrilamine and zolantidine. In HDC−/− mice, TA1 (1.32 and 4 μg·kg−1) did not increase plasma glucose or induce hyperalgesia.

CONCLUSIONS AND IMPLICATIONS

Behavioural and metabolic effects of TA1 disclosed interactions between the thyroid and histaminergic systems.  相似文献   

9.
Microcystins (MCs) are toxins produced by several cyanobacterial species found worldwide. While MCs have a common structure, the variation of two amino acids in their structure affects their toxicity. As toxicodynamics are very similar between the MC variants, their differential toxicity could rather be explained by toxicokinetic parameters. Microcystin-RR (MC-RR) is the second most abundant congener and induces toxicity through oral exposure. As intestinal permeability is a key parameter of oral toxicokinetics, the apparent permeability of MC-RR across a differentiated intestinal Caco-2 cell monolayer was investigated. We observed a rapid and large decrease of MC-RR levels in the donor compartment. However, irrespective of the loaded concentration and exposure time, the permeabilities were very low from apical to basolateral compartments (from 4 to 15 × 10−8 cm·s−1) and from basolateral to apical compartments (from 2 to 37 × 10−8 cm·s−1). Our results suggested that MC-RR would be poorly absorbed orally. As similar low permeability was reported for the most abundant congener microcystin-LR, and this variant presented a greater acute oral toxicity than MC-RR, we concluded that the intestinal permeability was probably not involved in the differential toxicity between them, in contrast to the hepatic uptake and metabolism.  相似文献   

10.
  1. Since both histamine and 5-hydroxytryptamine (5-HT) can be released by murine mast cells, we investigated the possible role of these autacoids on airway hyperresponsiveness (AHR), eosinophil infiltration and serum-IgE levels in a murine model of allergic asthma.
  2. Ovalbumin-sensitized mice were exposed to either ovalbumin (2 mg ml−1) or saline aerosols on 8 consecutive days. Starting one day before the challenge, animals were injected i.p. twice a day with a 5-HT-type 1 (5-HT1) or type 2 (5-HT2) receptor antagonist (methiotepine, 1.25 or 2.0 mg kg−1 and ketanserin, 12 mg kg−1, respectively) or a histamine-type 1 (H1) or type 2 (H2) receptor antagonist (mepyramine, 12 or 20 mg kg−1 and cimetidine, 10 or 25 mg kg−1, respectively). Furthermore, animals were injected with a combination of cimetidine and ketanserin or with an α-adrenoceptor antagonist (phentolamine, 5 mg kg−1).
  3. In vehicle-treated ovalbumin-challenged animals airway responsiveness to intravenous injections of methacholine in vivo was significantly (9 fold increase, P<0.01) increased when compared to vehicle-treated saline-challenged animals. Furthermore, ovalbumin challenge of vehicle-treated animals induced a significant increase in both eosinophil numbers in bronchoalveolar lavage (BAL) fluid (0±0, vehicle/saline and 15.0±5.9×104 cells vehicle/ovalbumin, P<0.05) and ovalbumin-specific IgE levels in serum (157±69 and 617±171 units ml−1, respectively, P<0.05) compared to saline-challenged mice. Virtually no eosinophils could be detected in saline-challenged animals after all different treatments.
  4. Treatment with ketanserin or cimetidine resulted in a partial but significant decrease of the ovalbumin-induced AHR compared to ovalbumin-challenged controls (P<0.05) and reduced eosinophil infiltration after ovalbumin challenge by 60% and 58%, respectively. The combination of cimetidine and ketanserin almost completely abolished AHR whereas eosinophilia was decreased by 49%. No effects of these antagonists were observed on IL-16 levels in BAL fluid or on serum antigen-specific IgE levels. Treatment with either the H1-receptor, the 5-HT1-receptor or the α-adrenoceptor antagonist, did not decrease the observed ovalbumin-induced airway responsiveness or eosinophilia in vehicle-treated animals. Higher doses of either methiotepine (2.0 mg kg−1) or mepyramine (20 mg kg−1) did decrease ovalbumin-induced eosinophil infiltration (by 67%, P<0.05 and 73%, respectively), whereas no effects of these antagonists were observed on ovalbumin-specific IgE levels in serum.
  5. From these data it can be concluded that both histamine and 5-HT play a role in antigen-induced AHR and eosinophilia in the mouse.
  相似文献   

11.
12.
  1. Adrenomedullin (ADM) is a recently characterized circulating hormone which affects haemodynamic, renal and pituitary function in mammals. We have shown previously that in sheep, ADM produces vasodilatation together with increases in cardiac output and contractility. However, whether these effects are direct or mediated by autonomic reflexes is unclear. The present study examined the cardiovascular actions of an intravenous infusion of ADM in conscious, chronically instrumented sheep with either sympathetic, parasympathetic or autonomic ganglion blockade, to determine the role of the autonomic nervous system in mediating these cardiovascular changes.
  2. Human ADM (1–52) was infused for 60 min at 2 μg kg−1 h−1 following: (1) saline control, (2) combined α/β-adrenoceptor (sympathetic) blockade (proporanolol 0.4 mg kg−1 h−1+phentolamine 0.15 mg kg−1 h−1 for 20 h), (3) muscarinic (parasympathetic) blockade (methscopolamine 0.05 mg kg−1 h−1 for 20 h) or (4) ganglion blockade (hexamethonium 3 mg kg−1 h−1 for 4 h). Measurements were made of mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), total peripheral conductance (TPC), maximal aortic flow (Fmax) and maximal rate of change of aortic flow (dF/dt).
  3. ADM reduced MAP by 3±1 mmHg, and increased CO (1.2±0.2 l min−1), HR (14±2 beats min−1), TPC (21±3 ml min−1 mmHg−1), Fmax (2.3±0.8 l min−1) and dF/dt (86±21 l min−1 s−1) in normal sheep. In animals with α/β blockade, similar changes were observed with ADM. However, during muscarinic blockade, the increases in HR (32±4 beats min−1), CO (2.1±0.4 l min−1), TPC (31±4 ml min−1 mmHg−1), Fmax (4.0±0.6 l min−1), and dF/dt (150±12 l min−1 s−1) produced by ADM were enhanced. During ganglion blockade, ADM produced a greater reduction in MAP (−10±2 mmHg) compared to controls (−3±1 mmHg). However, there was no increase in HR. The changes in CO, TPC and contractility were similar to those observed in control animals.
  4. These results suggest that the vasodilator effects of ADM on the periphery and its ability to increase CO and cardiac contractility are not mediated by the autonomic nervous system, but are probably the result of direct actions of ADM on the heart and vasculature.
  相似文献   

13.

Background and Purpose

Two of the most relevant unmet needs in epilepsy are represented by the development of disease-modifying drugs able to affect epileptogenesis and/or the study of related neuropsychiatric comorbidities. No systematic study has investigated the effects of chronic treatment with antipsychotics or antidepressants on epileptogenesis. However, such drugs are known to influence seizure threshold.

Experimental Approach

We evaluated the effects of an early long-term treatment (ELTT; 17 weeks), started before seizure onset (P45), with fluoxetine (selective 5-HT-reuptake inhibitor), duloxetine (dual-acting 5-HT-noradrenaline reuptake inhibitor), haloperidol (typical antipsychotic drug), risperidone and quetiapine (atypical antipsychotic drugs) on the development of absence seizures and comorbid depressive-like behaviour in the WAG/Rij rat model. Furthermore, we studied the effects of these drugs on established absence seizures in adult (6-month-old) rats after a chronic 7 weeks treatment.

Key Results

ELTT with all antipsychotics did not affect the development of seizures, whereas, both ELTT haloperidol (1 mg·kg−1 day−1) and risperidone (0.5 mg·kg−1 day−1) increased immobility time in the forced swimming test and increased absence seizures only in adult rats (7 weeks treatment). In contrast, both fluoxetine (30 mg·kg−1 day−1) and duloxetine (10–30 mg·kg−1 day−1) exhibited clear antiepileptogenic effects. Duloxetine decreased and fluoxetine increased absence seizures in adult rats. Duloxetine did not affect immobility time; fluoxetine 30 mg·kg−1 day−1 reduced immobility time while at 10 mg·kg−1 day−1 an increase was observed.

Conclusions and Implications

In this animal model, antipsychotics had no antiepileptogenic effects and might worsen depressive-like comorbidity, while antidepressants have potential antiepileptogenic effects even though they have limited effects on comorbid depressive-like behaviour.  相似文献   

14.
  1. Gabapentin (neurontin) is a novel antiepileptic agent that binds to the α2δ subunit of voltage-dependent calcium channels. The only other compound known to possess affinity for this recognition site is the (S)-(+)-enantiomer of 3-isobutylgaba. However, the corresponding (R)-(−)-enantiomer is 10 fold weaker. The present study evaluates the activity of gabapentin and the two enantiomers of 3-isobutylgaba in formalin and carrageenan-induced inflammatory pain models.
  2. In the rat formalin test, S-(+)-3-isobutylgaba (1–100 mg kg−1) and gabapentin (10–300 mg kg−1) dose-dependently inhibited the late phase of the nociceptive response with respective minimum effective doses (MED) of 10 and 30 mg kg−1, s.c. This antihyperalgesic action of gabapentin was insensitive to naloxone (0.1–10.0 mg kg−1, s.c.). In contrast, the R-(−)-enantiomer of 3-isobutylgaba (1–100 mg kg−1) produced a modest inhibition of the late phase at the highest dose of 100 mg kg−1. However, none of the compounds showed any effect during the early phase of the response.
  3. The s.c. administration of either S-(+)-3-isobutylgaba (1–30 mg kg−1) or gabapentin (10–100 mg kg−1), after the development of peak carrageenan-induced thermal hyperalgesia, dose-dependently antagonized the maintenance of this response with MED of 3 and 30 mg kg−1, respectively. Similar administration of the two compounds also blocked maintenance of carrageenan-induced mechanical hyperalgesia with MED of 3 and 10 mg kg−1, respectively. In contrast, R-(−)-3-isobutylgaba failed to show any effect in the two hyperalgesia models.
  4. The intrathecal administration of gabapentin dose-dependently (1–100 μg/animal) blocked carrageenan-induced mechanical hyperalgesia. In contrast, administration of similar doses of gabapentin into the inflamed paw was ineffective at blocking this response.
  5. Unlike morphine, the repeated administration of gabapentin (100 mg kg−1 at start and culminating to 400 mg kg−1) over 6 days did not lead to the induction of tolerance to its antihyperalgesic action in the formalin test. Furthermore, the morphine tolerance did not cross generalize to gabapentin. The s.c. administration of gabapentin (10–300 mg kg−1), R-(−) (3–100 mg kg−1) or S-(+)-3-isobutylgaba (3–100 mg kg−1) failed to inhibit gastrointestinal motility, as measured by the charcoal meal test in the rat. Moreover, the three compounds (1–100 mg kg−1, s.c.) did not generalize to the morphine discriminative stimulus. Gabapentin (30–300 mg kg−1) and S-(+)-isobutylgaba (1–100 mg kg−1) showed sedative/ataxic properties only at the highest dose tested in the rota-rod apparatus.
  6. Gabapentin (30–300 mg kg−1, s.c.) failed to show an antinociceptive action in transient pain models. It is concluded that gabapentin represents a novel class of antihyperalgesic agents.
  相似文献   

15.

Aim:

To study whether epigallocatechin gallate (EGCG), a green tea-derived polyphenol, exerted anti-influenza A virus activity in vitro and in vivo.

Methods:

Madin-Darby canine kidney (MDCK) cells were tested. The antiviral activity of EGCG in the cells was determined using hemagglutination assay and qPCR. Time of addition assay was performed to determine the kinetics of inhibition of influenza A by EGCG. The level of reactive oxygen species (ROS) were determined with confocal microscopy and flow cytometry. BALB/c mice were treated with EGCG (10, 20 or 40 mg·kg−1·d−1, po) for 5 d. On the 3rd d of the treatment, the mice were infected with influenza A virus. Histopathological changes, lung index and virus titers in the lungs were determined.

Results:

Treatment of influenza A-infected MDCK cells with EGCG (1.25–100 nmol/L) inhibited influenza A replication in a concentration-dependent manner (the ED50 value was 8.71±1.11 nmol/L). Treatment with EGCG (20 nmol/L) significantly suppressed the increased ROS level in MDCK cells following influenza A infection. In BALB/c mice infected with influenza virus, oral administration of EGCG (40 mg·kg−1·d−1) dramatically improved the survival rate, decreased the mean virus yields and mitigated viral pneumonia in the lungs, which was equivalent to oral administration of oseltamivir (40 mg·kg−1·d−1), a positive control drug.

Conclusion:

The results provide a molecular basis for development of EGCG as a novel and safe chemopreventive agent for influenza A infection.  相似文献   

16.

Background and Purpose

The global heterozygous glucokinase (GK) knockout (gkwt/del) male mouse, fed on a high-fat (60% by energy) diet, has provided a robust and reproducible model of hyperglycaemia. This model could be highly relevant to some facets of human type 2 diabetes (T2D). We aimed to investigate the ability of standard therapeutic agents to lower blood glucose at translational doses, and to explore the glucose-lowering potential of novel glucokinase activators (GKAs) in this model.

Experimental Approach

We measured the ability of insulin, metformin, glipizide, exendin-4 and sitagliptin, after acute or repeat dose administration, to lower free-feeding glucose levels in gkwt/del mice. Further, we measured the ability of novel GKAs, GKA23, GKA71 and AZD6370 to control glucose either alone or in combination with some standard agents.

Key Results

A single dose of insulin (1 unit·kg−1), metformin (150, 300 mg·kg−1), glipizide (0.1, 0.3 mg·kg−1), exendin-4 (2, 20 μg·kg−1) and GKAs reduced free-feeding glucose levels. Sitagliptin (10 mg·kg−1), metformin (300 mg·kg−1) and AZD6370 (30, 400 mg·kg−1) reduced glucose excursions on repeat dosing. At a supra-therapeutic dose (400 mg·kg−1), AZD6370 also lowered basal levels of glucose without inducing hypoglycaemia.

Conclusion and Implications

Standard glucose-lowering therapeutic agents demonstrated significant acute glucose lowering in male gkwt/del mice at doses corresponding to therapeutic free drug levels in man, suggesting the potential of these mice as a translatable model of human T2D. Novel GKAs also lowered glucose in this mouse model.  相似文献   

17.

Background and purpose:

The soluble leptin receptor (SLR) is the major, circulating, leptin-binding protein and, in vitro, the SLR inhibits leptin-binding to cell surface receptors. Here we assessed the effects of the SLR on physiological responses to leptin, in vivo.

Experimental approach:

SLR and leptin were given as a single injection (intracerebroventricularly, i.c.v.) or by central (i.c.v.) and peripheral (s.c.) infusion to normal adult F344XBN rats. Phosphorylation of hypothalamic STAT3 (Western blot), food intake and body weight, and the thermogenic response in brown adipose tissue (BAT) were measured.

Key results:

Acute central co-administration of SLR (13.5 µg) and leptin (90 ng) blocked the threefold increase in hypothalamic STAT3 phosphorylation induced by leptin alone, 1 h after the injections. Peripheral leptin infusion (0.1 mg·day−1 for 7 days; s.c.) induced a significant reduction in food intake and body weight, which were partially blocked with a simultaneous central infusion of SLR (4.3 µg·day−1; i.c.v.). In a second experiment, SLR central infusion alone (5.5 µg·day−1) increased food intake and body weight, suggesting that the SLR was able to neutralize endogenous leptin in the brain. This dose of SLR, infused together with a lower dose of peripheral leptin (0.05 mg·day−1), abolished the thermogenic response in BAT, but the anorexic responses and weight reduction were only partially attenuated.

Conclusions:

These results provide direct evidence that the SLR neutralizes leptin, endogenous or exogenous, in vivo. By neutralizing leptin, the SLR may play a regulatory role in energy homeostasis.  相似文献   

18.

Background and Purpose

Because agonists at metabotropic glutamate receptors exert beneficial effects in schizophrenia, we have assessed the actions of Lu AF21934 and Lu AF32615, two chemically distinct, selective and brain-penetrant positive allosteric modulators (PAMs) of the mGlu4 receptor, in several tests reflecting positive, negative and cognitive symptoms of schizophrenia in rodents.

Experimental Approach

Hyperactivity induced by MK-801 or amphetamine and head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice were used as models for positive symptoms. Disruption of social interaction and spatial delayed alternation tests induced by MK-801 in rats were used as models for negative and cognitive symptoms of schizophrenia, respectively.

Key Results

Lu AF21934 (0.1–5 mg·kg−1) and Lu AF32615 (2–10 mg·kg−1) dose-dependently inhibited hyperactivity induced by MK-801 or amphetamine. They also antagonized head twitches and increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in brain slices, induced by DOI. In mice lacking the mGlu4 receptor (mGlu4−/−) mice, Lu AF21934 did not antagonize DOI-induced head twitches. MK-801-induced disruption in the social interaction test was decreased by Lu AF21934 at 0.5 mg·kg−1 and by Lu AF32615 at 10 mg·kg−1. In the delayed spatial alternation test, Lu AF21934 was active at 1 and 2 mg·kg−1, while Lu AF32615 was active at 10 mg·kg−1.

Conclusions and Implications

We propose that activation by PAMs of the mGlu4 receptor is a promising approach to the discovery of novel antipsychotic drugs.  相似文献   

19.
20.

Background and purpose:

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT1A receptors. As 5-HT1A receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT1A receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF).

Experimental approach:

Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg·kg−1), imipramine (30 mg·kg−1) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg·kg−1, i.p.), a 5-HT1A receptor antagonist, before CBD (30 mg·kg−1) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg·kg−1) and submitted to the forced swimming test.

Key results:

CBD (30 mg·kg−1) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg·kg−1) treatment did not change hippocampal BDNF levels.

Conclusion and implications:

CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号