首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel cobalt ferrite/hexagonal strontium hexaferrite (2CoFe2O4/SrFe12−2xSmxLaxO19; x = 0.2, 0.5, 1.0, 1.5) nanocomposites were fabricated using the tartaric acid precursor pathway, and the effects of La3+–Sm3+ double substitution on the formation, structure, and magnetic properties of CoFe2O4/SrFe12−2xSmxLaxO19 nanocomposite at different annealing temperatures were assayed through X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. A pure 2CoFe2O4/SrFe12O19 nanocomposite was obtained from the tartrate precursor complex annealed at 1100 °C for 2 h. The substitution of Fe3+ ion by Sm3+La3+ions promoted the formation of pure 2CoFe2O4/SrFe12O19 nanocomposite at 1100 °C. The positions and intensities of the strongest peaks of hexagonal ferrite changed after Sm3+–La3+ substitution at ≤1100 °C. In addition, samples with an Sm3+–La3+ ratio of ≥1.0 annealed at 1200 °C for 2 h showed diffraction peaks for lanthanum cobalt oxide (La3Co3O8; dominant phase) and samarium ferrite (SmFeO3). The crystallite size range at all constituent phases was in the nanocrystalline range, from 39.4 nm to 122.4 nm. The average crystallite size of SrFe12O19 phase increased with the number of Sm3+–La3+ substitutions, whereas that of CoFe2O4 phase decreased with an x of up to 0.5. La–Sm co-doped ion substitution increased the saturation magnetization (Ms) value and the subrogated ratio to 0.2, and the Ms value decreased with the increasing number of double substitutions. A high saturation magnetization value (Ms = 69.6 emu/g) was obtained using a La3+–Sm3+ co-doped ratio of 0.2 at 1200 for 2 h, and a high coercive force value (Hc = 1192.0 Oe) was acquired using the same ratio at 1000 °C.  相似文献   

2.
The paper presents results of investigation of Fe65.3–100Zr34.7–0N7.5–0 films prepared by dc magnetron deposition on glass substrates and subsequent 1-hour annealing at temperatures of 300–600 °C. The influence of the chemical and phase compositions and structure of the films, which were studied by TEM, SEM, XRD, and GDOES, on their mechanical properties determined by nanoindentation and static magnetic properties measured by VSM method is analyzed. The studied films exhibit the hardness within a range of 14–21 GPa, low elastic modulus (the value can reach 156 Gpa), and an elastic recovery of 55–83%. It was shown that the films are strong ferromagnets with the high saturation induction Bs (up to 2.1 T) and low coercive field Hc (as low as 40 A/m). The correlations between the magnetic and mechanical properties, on one hand, and the chemical composition of the films, their phase, and structural states as well, on the other hand, are discussed.  相似文献   

3.
In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the ΔGamoprh with a minimum value at 0.6% of Cu was predicted. The ΔGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same ΔGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300–330 °C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2–3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several α-Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains’ coarsening of the α-Fe phase that strongly enhances the ferromagnetic exchange between the α-Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material.  相似文献   

4.
The effect of Sr-deficiency on microstructure, phase composition and electrical conductivity of SrxZr0.95Yb0.05O3-δ (x = 0.94–1.00) was investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and impedance spectroscopy. The samples were synthesized by a chemical solution method and sintered at 1600 °C. According to X-ray diffraction data, the samples with x = 0.96–1.00 were single-phase oxides possessing an orthorhombic perovskite-type structure; while zirconia-based minor phases arouse at x = 0.94, which was confirmed by the electron microscopy. Sr stoichiometry was shown to influence the electrical conductivity. The highest total and bulk conductivities, 6–10−4 Scm−1 and 3–10−3 Scm−1, respectively, at 600 °C in humid air (pH2O = 3.2 kPa), were observed for the x = 0.98 composition. In the temperature range of 300–600 °C, the conductivity of the samples with x = 0.96–1.00 increased with the increase in humidity, which indicates a significant contribution of protonic defects to the charge transport. Electrical conductivity of SrxZr0.95Yb0.05O3-δ was discussed in terms of the defect formation model and the secondary phases precipitation.  相似文献   

5.
Thermal strain, permeability, and magnetization measurements of the ferromagnetic shape memory alloys Ni50+xMn27−xGa23 (x = 2.0, 2.5, 2.7) were performed. For x = 2.7, in which the martensite transition and the ferromagnetic transition occur at the same temperature, the martensite transition starting temperature TMs shift in magnetic fields around a zero magnetic field was estimated to be dTMs/dB = 1.1 ± 0.2 K/T, thus indicating that magnetic fields influences martensite transition. We discussed the itinerant electron magnetism of x = 2.0 and 2.5. As for x = 2.5, the M4 vs. B/M plot crosses the origin of the coordinate axis at the Curie temperature, and the plot indicates a good linear relation behavior around the Curie temperature. The result is in agreement with the theory by Takahashi, concerning itinerant electron ferromagnets.  相似文献   

6.
Fe-Si-Cr soft magnetic powder cores (SMCs), with high electrical resistivity, magnetic permeability, saturation magnetic induction, and good corrosion resistance, are widely applied to inductors, filters, choke coils, etc. However, with the development of electronic technology with high frequency and high power density, the relative decline in the magnetic properties limits the high-frequency application of SMCs. In this paper, the phosphating process and polyimide (PI) insulation coating is applied to Fe-Si-Cr SMCs to reduce the core loss, including hysteresis loss and eddy current loss. The microstructure and composition of Fe-Si-Cr powders were analyzed by SEM, XRD, and Fourier-transform infrared spectra, respectively. The structural characteristics of the Fe-Si-Cr @ phosphate layer @ PI layer core–shell double coating were studied, and the best process parameters were determined through experiments. For SMCs with 0.4 wt% content of PI, the relative permeability is greater than 68%, and the core loss is the lowest, 7086 mW/cm3; annealed at 500 °C, the relative permeability is greater than 57%, and the core loss is the lowest, 6222 mW/cm3. A 0.4 wt% content of PI, annealed at 500 °C, exhibits the ideal magnetic properties: μe = 47 H/m, P = 6222 mW/cm3.  相似文献   

7.
LaBaCo2−xMoxO5+δ (LBCMx, x = 0–0.08) cathodes synthesized by a sol-gel method were evaluated for intermediate-temperature solid oxide fuel cells. The limit of the solid solubility of Mo in LBCMx was lower than 0.08. As the content of Mo increased gradually from 0 to 0.06, the thermal expansion coefficient decreased from 20.87 × 10−6 K−1 to 18.47 × 10−6 K−1. The introduction of Mo could increase the conductivity of LBCMx, which varied from 464 S cm−1 to 621 S cm−1 at 800 °C. The polarization resistance of the optimal cathode LBCM0.04 in air at 800 °C was 0.036 Ω cm2, reduced by a factor of 1.67 when compared with the undoped Mo cathode. The corresponding maximum power density of a single cell based on a YSZ electrolyte improved from 165 mW cm−2 to 248 mW cm−2 at 800 °C.  相似文献   

8.
In this experiment, a series of MnCoGe1−xLax (x = 0, 0.01, 0.03) alloy samples were prepared using a vacuum arc melting method. The crystal structure and magnetic properties of alloys were investigated using X-ray diffraction (XRD), Rietveld method, physical property measurement system (PPMS), and vibrating sample magnetometer (VSM) analyses. The results show that all samples were of high-temperature Ni2In-type phases, belonging to space group P63/mmc (194) after 1373 K annealing. The results of Rietveld refinement revealed that the lattice constant and the volume of MnCoGe1−xLax increased along with the values of La constants. The magnetic measurement results show that the Curie temperatures (TC) of the MnCoGe1−xLax series alloys were 294, 281, and 278 K, respectively. The maximum magnetic entropy changes at 1.5T were 1.64, 1.53, and 1.56 J·kg−1·K−1, respectively. The respective refrigeration capacities (RC) were 60.68, 59.28, and 57.72J·kg−1, with a slight decrease along the series. The experimental results show that the doping of La results in decreased TC, basically unchanged magnetic entropy, and slightly decreased RC.  相似文献   

9.
A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.  相似文献   

10.
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.  相似文献   

11.
X-ray diffraction (XRD) analysis showed that metal oxide peaks appear at 2θ = 47.7°, 54.5°, and 56.3°, corresponding to Yb2O3 (440), Co2O3 (422), and Co2O3 (511). It was found that oxide formation plays an important role in magnetic, electrical, and surface energy. For magnetic and electrical measurements, the highest alternating current magnetic susceptibility (χac) and the lowest resistivity (×10−2 Ω·cm) were 0.213 and 0.42, respectively, and at 50 nm, it annealed at 300 °C due to weak oxide formation. For mechanical measurement, the highest value of hardness was 15.93 GPa at 200 °C in a 50 nm thick film. When the thickness increased from 10 to 50 nm, the hardness and Young’s modulus of the Co60Fe20Yb20 film also showed a saturation trend. After annealing at 300 °C, Co60Fe20Yb20 films of 40 nm thickness showed the highest surface energy. Higher surface energy indicated stronger adhesion, allowing for the formation of multilayer thin films. The optimal condition was found to be 50 nm with annealing at 300 °C due to high χac, strong adhesion, high nano-mechanical properties, and low resistivity.  相似文献   

12.
A typical body-centered cubic (BCC) CoFe(110) peak was discovered at approximately 2θ = 44.7°. At 2θ = 46°, 46.3°, 47.7°, 55.4°, 54.6°, and 56.4°, the Yb2O3 and Co2O3 oxide peaks were visible in all samples. However, with a heat treatment temperature of 300 °C, there was no typical peak of CoFe(110). Electrical characteristics demonstrated that resistivity and sheet resistance reduced dramatically as film thickness and annealing temperatures increased. At various heat treatments, the maximum hardness was 10 nm. The average hardness decreased as the thickness increased, and the hardness trend decreased slightly as the annealing temperature was higher. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered after being annealed at 200 °C with 50 nm, and the optimal resonance frequency (fres) was discovered to be within the low-frequency range, indicating that the Co40Fe40Yb20 film can be used in low-frequency applications. The maximum saturation magnetization (Ms) was annealed at 200 °C for 50 nm. Thermal disturbance caused the Ms to decrease as the temperature reached to 300 °C. The results show that when the oxidation influence of as-deposited and thinner films is stronger than annealing treatments and thicker thickness, the magnetic and electrical properties can be enhanced by the weakening peak of the oxide, which can also reduce interference.  相似文献   

13.
The arc-melting method was adopted to prepare the compound La0.5Pr0.5(Fe1−xCox)11.4Si1.6 (x = 0, 0.02, 0.04, 0.06, 0.08), and the magnetocaloric effect of the compound was investigated. As indicated by the powder X-ray diffraction (XRD) results, after receiving 7-day high temperature annealing at 1373 K, all the compounds formed a single-phase cubic NaZn13 crystal structure. As indicated by the magnetic measurement, the most significant magnetic entropy change |∆SM(T)| of the sample decreased from 28.92 J/kg·K to 4.22 J/kg·K with the increase of the Co content under the 0–1.5 T magnetic field, while the Curie temperature TC increased from 185 K to the room temperature 296 K, which indicated that this series of alloys are the room temperature magnetic refrigerant material with practical value. By using the ferromagnetic Curie temperature theory and analyzing the effect of Co doping on the exchange integral of these alloys, the mechanism that the Curie temperature of La0.5Pr0.5(Fe1−xCox)11.4Si1.6 and La0.8Ce0.2(Fe1−xCox)11.4Si1.6 increased with the increase in the Co content was reasonably explained. Accordingly, this paper can provide a theoretical reference for subsequent studies.  相似文献   

14.
A continuous series of solid solutions (Bi1.5Mg0.75−xFexTa1.5O7±Δ (x = 0–0.75)) with the pyrochlore structure were synthesized with the solid-phase method. It was shown that iron, like magnesium, is concentrated in the structure in the octahedral position of tantalum. Doping with iron atoms led to an increase in the upper limit of the thermal stability interval of magnesium-containing pyrochlore from 1050 °C (x = 0) up to a temperature of 1140 °C (x = 1). The unit cell constant a and thermal expansion coefficient (TEC) increase uniformly slightly from 10.5018 Å up to 10.5761 Å and from 3.6 up to 9.3 × 10−6 °C−1 in the temperature range 30–1100 °C. The effect of iron(III) ions on the thermal stability and thermal expansion of solid solutions was revealed. It has been established that the thermal stability of iron-containing solid solutions correlates with the unit cell parameter, and the lower the parameter, the more stable the compound. The TEC value, on the contrary, is inversely proportional to the cell constant.  相似文献   

15.
The structural, optical, and electrical properties of ZnO are intimately intertwined. In the present work, the structural and transport properties of 100 nm thick polycrystalline ZnO films obtained by atomic layer deposition (ALD) at a growth temperature (Tg) of 100–300 °C were investigated. The electrical properties of the films showed a dependence on the substrate (a-Al2O3 or Si (100)) and a high sensitivity to Tg, related to the deviation of the film stoichiometry as demonstrated by the RT-Hall effect. The average crystallite size increased from 20–30 nm for as grown samples to 80–100 nm after rapid thermal annealing, which affects carrier scattering. The ZnO layers deposited on silicon showed lower strain and dislocation density than on sapphire at the same Tg. The calculated half crystallite size (D/2) was higher than the Debye length (LD) for all as grown and annealed ZnO films, except for annealed ZnO/Si films grown within the ALD window (100–200 °C), indicating different homogeneity of charge carrier distribution for annealed ZnO/Si and ZnO/a-Al2O3 layers. For as grown films the hydrogen impurity concentration detected via secondary ion mass spectrometry (SIMS) was 1021 cm−3 and was decreased by two orders of magnitude after annealing, accompanied by a decrease in Urbach energy in the ZnO/a-Al2O3 layers.  相似文献   

16.
Properties of FeTe0.65Se0.35 single crystals, with the onset of critical temperature (Tconset) at 15.5 K, were modified via hydrogenation performed for 10–90 h, at temperatures ranging from 20 to 250 °C. It was found that the tetragonal matrix became unstable and crystal symmetry lowered for the samples hydrogenated already at 200 °C. However, matrix symmetry was not changed and the crystal was not destroyed after hydrogenation at 250 °C. Bulk Tcbulk, determined at the middle of the superconducting transition, which is equal to 12–13 K for the as grown FeTe0.65Se0.35, rose by more than 1 K after hydrogenation. The critical current density studied in magnetic field up to 70 kOe increased 4–30 times as a consequence of hydrogenation at 200 °C for 10 h. Electron paramagnetic resonance measurements also showed higher values of Tcbulk for hydrogenated crystals. Thermal diffusion of hydrogen into the crystals causes significant structural changes, leads to degeneration of crystal quality, and significantly alters superconducting properties. After hydrogenation, a strong correlation was noticed between the structural changes and changes in the parameters characterizing the superconducting state.  相似文献   

17.
In this work, the stability of Sr2(FeMo)O6−δ-type perovskites was tailored by the substitution of Mo with Ti. Redox stable Sr2Fe1.4TixMo0.6−xO6−δ (x = 0.1, 0.2 and 0.3) perovskites were successfully obtained and evaluated as potential electrode materials for SOFCs. The crystal structure as a function of temperature, microstructure, redox stability, and thermal expansion properties in reducing and oxidizing atmospheres, oxygen content change, and transport properties in air and reducing conditions, as well as chemical stability and compatibility towards typical electrolytes have been systematically studied. All Sr2Fe1.4TixMo0.6−xO6−δ compounds exhibit a regular crystal structure with Pm-3m space group, showing excellent stability in oxidizing and reducing conditions. The increase of Ti-doping content in materials increases the thermal expansion coefficient (TEC), oxygen content change, and electrical conductivity in air, while it decreases the conductivity in reducing condition. All three materials are stable and compatible with studied electrolytes. Interestingly, redox stable Sr2Fe1.4Ti0.1Mo0.5O6−δ, possessing 1 μm grain size, low TEC (15.3 × 10−6 K−1), large oxygen content change of 0.72 mol·mol−1 between 30 and 900 °C, satisfactory conductivity of 4.1–7.3 S·cm−1 in 5% H2 at 600–800 °C, and good transport coefficients D and k, could be considered as a potential anode material for SOFCs, and are thus of great interest for further studies.  相似文献   

18.
The paper analyzes the surface structure and phase state of Ti49.4Ni50.6 (at%) hydrogenated at 295 K in normal saline (0.9% NaCl aqueous solution with pH = 5.7) at 20 A/m2 for 0.5–6 h. The analysis shows that the average hydrogen concentration in the alloy increases with the hydrogenation time tH as follows: slowly to 50 ppm at tH = 0.5–1.5 h, steeply to 150 ppm at tH = 1.2–2 h, and linearly to 300 ppm at tH = 2–6 h. According to Bragg–Brentano X-ray diffraction data (θ–2 θ, 2 θ ≤ 50°, CoKα radiation), the alloy in its scanned surface layer of thickness ~5.6 µm reveals a TiNiHx phase with x = 0.64 and x = 0.54 after hydrogenation for 4 and 6 h, respectively. The structure of this phase is identifiable as an orthorhombic hydride similar to β1–TiFeH0.94 (space group Pmcm), rather than as a tetragonal TiNiHx hydride with x = 0.30–1.0 (space group I4/mmm). Time curves are presented to trace the lattice parameters and volume change during the formation of such an orthorhombic phase from the initial cubic B2 phase in Ti49.4Ni50.6 (at%).  相似文献   

19.
In this paper, a Co60Fe20Y20 film was sputtered onto Si (100) substrates with thicknesses ranging from 10 to 50 nm under four conditions to investigate the structure, magnetic properties, and surface energy. Under four conditions, the crystal structure of the CoFeY films was found to be amorphous by an X-ray diffraction analyzer (XRD), suggesting that yttrium (Y) added into CoFe films and can be refined in grain size and insufficient annealing temperatures do not induce enough thermal driving force to support grain growth. The saturation magnetization (MS) and low-frequency alternate-current magnetic susceptibility (χac) increased with the increase of the thicknesses and annealing temperatures, indicating the thickness effect and Y can be refined grain size and improved ferromagnetic spin exchange coupling. The highest Ms and χac values of the Co60Fe20Y20 films were 883 emu/cm3 and 0.26 when the annealed temperature was 300 °C and the thickness was 50 nm. The optimal resonance frequency (fres) was 50 Hz with the maximum χac value, indicating it could be used at a low frequency range. Moreover, the surface energy increased with the increase of the thickness and annealing temperature. The maximum surface energy of the annealed 300 °C film was 30.02 mJ/mm2 at 50 nm. Based on the magnetic and surface energy results, the optimal thickness was 50 nm annealed at 300 °C, which has the highest Ms, χac, and a strong adhesion, which can be as a free or pinned layer that could be combined with the magnetic tunneling layer and applied in magnetic fields.  相似文献   

20.
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号