首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.  相似文献   

2.
An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2–2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4–5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.  相似文献   

3.
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.  相似文献   

4.
During the 2020–2021 winter season, an outbreak of clade 2.3.4.4b H5N8 high pathogenicity avian influenza (HPAI) virus occurred in South Korea. Here, we evaluated the pathogenicity and transmissibility of A/mandarin duck/Korea/H242/2020 (H5N8) (H242/20(H5N8)) first isolated from this outbreak in specific pathogen-free (SPF) chickens and commercial ducks in comparison with those of A/duck/Korea/HD1/2017(H5N6) (HD1/17(H5N6)) from a previous HPAI outbreak in 2017–2018. In chickens, the 50% chicken lethal dose and mean death time of H242/20(H5N8) group were 104.5 EID50 and 4.3 days, respectively, which indicate less virulent than those of HD1/17(H5N6) (103.6 EID50 and 2.2 days). Whereas, chickens inoculated with H242/20(H5N8) survived longer and had a higher titer of viral shedding than those inoculated with HD1/17(H5N6), which may increase the risk of viral contamination on farms. All ducks infected with either HPAI virus survived without clinical symptoms. In addition, they exhibited a longer virus shedding period and a higher transmission rate, indicating that ducks may play an important role as a silent carrier of both HPAI viruses. These results suggest that the pathogenic characteristics of HPAI viruses in chickens and ducks need to be considered to effectively control HPAI outbreaks in the field.  相似文献   

5.
6.
H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.  相似文献   

7.
Avian influenza virus A (H7N9), after circulating in avian hosts for decades, was identified as a human pathogen in 2013. Herein, amino acid substitutions possibly essential for human adaptation were identified by comparing the 4706 aligned overlapping nonamer position sequences (1–9, 2–10, etc.) of the reported 2014 and 2017 avian and human H7N9 datasets. The initial set of virus sequences (as of year 2014) exhibited a total of 109 avian-to-human (A2H) signature amino acid substitutions. Each represented the most prevalent substitution at a given avian virus nonamer position that was selectively adapted as the corresponding index (most prevalent sequence) of the human viruses. The majority of these avian substitutions were long-standing in the evolution of H7N9, and only 17 were first detected in 2013 as possibly essential for the initial human adaptation. Strikingly, continued evolution of the avian H7N9 virus has resulted in avian and human protein sequences that are almost identical. This rapid and continued adaptation of the avian H7N9 virus to the human host, with near identity of the avian and human viruses, is associated with increased human infection and a predicted greater risk of human-to-human transmission.  相似文献   

8.
Numerous outbreaks of high-pathogenicity avian influenza (HPAI) were reported during 2020–2021. In Africa, H5Nx has been detected in Benin, Burkina Faso, Nigeria, Senegal, Lesotho, Namibia and South Africa in both wild birds and poultry. Botswana reported its first outbreak of HPAI to the World Organisation for Animal Health (WOAH) in 2021. An H5N1 virus was detected in a fish eagle, doves, and chickens. Full genome sequence analysis revealed that the virus belonged to clade 2.3.4.4b and showed high identity within haemagglutinin (HA) and neuraminidase proteins (NA) for viruses identified across a geographically broad range of locations. The detection of H5N1 in Botswana has important implications for disease management, wild bird conservation, tourism, public health, economic empowerment of vulnerable communities and food security in the region.  相似文献   

9.
The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. The H7 viruses circulate in ducks, poultry and equines and have repeatedly caused outbreaks of disease in humans. The laboratory strain A/chicken/Rostock/R0p/1934 (H7N1) (R0p), which was previously derived from the highly pathogenic strain A/FPV/Rostock/1934 (H7N1), was studied in this work to ascertain its biological property, genome stability and virulent changing mechanism. Several virus variants were obtained by serial passages in the chicken lungs. After 10 passages of this virus through the chicken lungs we obtained a much more pathogenic variant than the starting R0p. The study of intermediate passages showed a sharp increase in pathogenicity between the fifth and sixth passage. By cloning these variants, a pair of strains (R5p and R6p) was obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely reversion Gly140Arg in HA1. This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity in chicken and mice, R6p differs from R5p in the shape of foci in cell culture and an increased affinity for a negatively charged receptor analogue, while maintaining a pattern of receptor-binding specificity and the pH of conformational change of HA.  相似文献   

10.
On 5 November 2020, a confirmed outbreak due to an H5N8 highly pathogenic avian influenza virus (HPAIV) occurred at an egg-hen farm in Kagawa prefecture (western Japan). This virus, A/chicken/Kagawa/11C/2020 (Kagawa11C2020), was the first HPAI poultry isolate in Japan in 2020 and had multiple basic amino acids—a motif conferring high pathogenicity to chickens—at the hemagglutinin cleavage site. Mortality of chickens was 100% through intravenous inoculation tests performed according to World Organization for Animal Health criteria. Phylogenetic analysis showed that the hemagglutinin of Kagawa11C2020 belongs to clade 2.3.4.4B of the H5 Goose/Guangdong lineage and clusters with H5N8 HPAIVs isolated from wild bird feces collected in Hokkaido (Japan) and Korea in October 2020. These H5N8 HPAIVs are closely related to H5N8 HPAIVs isolated in European countries during the winter of 2019–2020. Intranasal inoculation of chickens with 106 fifty-percent egg infectious doses of Kagawa11C2020 revealed that the 50% chicken lethal dose was 104.63 and the mean time to death was 134.4 h. All infected chickens demonstrated viral shedding beginning on 2 dpi—before clinical signs were observed. These results suggest that affected chickens could transmit Kagawa11C2020 to surrounding chickens in the absence of clinical signs for several days before they died.  相似文献   

11.
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days’ post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.  相似文献   

12.
Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.  相似文献   

13.
In 2020–2021, the second massive dissemination of a highly pathogenic avian influenza of the H5Nx subtype occurred in Europe. During this period, the virus caused numerous outbreaks in poultry, including in the Czech Republic. In the present study, we provide an insight into the genetic variability of the Czech/2021 (CZE/2021) H5N8 viruses to determine the relationships between strains from wild and domestic poultry and to infer transmission routes between the affected flocks of commercial poultry. For this purpose, whole genome sequencing and phylogenetic analysis of 70 H5N8 genomes representing 79.7% of the cases were performed. All CZE/2021 H5N8 viruses belonged to the 2.3.4.4b H5 lineage and circulated without reassortment, retaining the A/chicken/Iraq/1/2020 H5N8-like genotype constellation. Phylogenetic analysis suggested the frequent local transmission of H5N8 from wild birds to backyard poultry and extensive spread among commercial poultry farms. In addition, the analysis suggested one cross-border transmission event. Indirect transmission via contaminated materials was considered the most likely source of infection. Improved biosecurity and increased collaboration between field veterinarians and the laboratory are essential to limit the local spread of the virus and to reveal and interrupt critical routes of infection.  相似文献   

14.
A novel avian-origin influenza A (H7N9) virus recently occurred in China and caused 137 human infection cases with a 32.8% mortality rate. Although various detection procedures have been developed, the pathogenesis of this emerging virus in humans remains largely unknown. In this study, we characterized serum microRNA (miRNA) profile in response to H7N9 virus infection using TaqMan Low Density Arrays. Upon infection, a total of 395 miRNAs were expressed in the serum pool of patients, far beyond the 221 in healthy controls. Among the 187 commonly expressed miRNAs, 146 were up-regulated and only 7 down-regulated in patients. Further analysis by quantitative RT-PCR revealed that the serum levels of miR-17, miR-20a, miR-106a and miR-376c were significantly elevated in patients compared with healthy individuals (p < 0.05). Receiver operating characteristic (ROC) curves were constructed to show that each miRNA could discriminate H7N9 patients from controls with area under the curve (AUC) values ranging from 0.622 to 0.898, whereas a combination of miR-17, miR-20a, miR-106a and miR-376c obtained a higher discriminating ability with an AUC value of 0.96. Our findings unravel the significant alterations in serum miRNA expression following virus infection and manifest great potential of circulating miRNAs for the diagnosis of viral diseases.  相似文献   

15.
Many high pathogenicity avian influenza (HPAI) cases in wild birds due to H5N1 HPAI virus (HPAIV) infection were reported in northern Japan in the winter of 2021–2022. To investigate the epidemiology of HPAIVs brought to Japan from surrounding areas, a genetic analysis of H5 HPAIVs isolated in northern Japan was performed, and the pathogenicity of the HPAIV in chickens was assessed by experimental infection. Based on the genetic analysis of the hemagglutinin gene, pathogenic viruses detected in northern Japan as well as one in Sakhalin, the eastern part of Russia, were classified into the same subgroup as viruses prevalent in Europe in the same season but distinct from those circulating in Asia in winter 2020–2021. High identities of all eight segment sequences of A/crow/Hokkaido/0103B065/2022 (H5N1) (Crow/Hok), the representative isolates in northern Japan in 2022, to European isolates in the same season could also certify the unlikeliness of causing gene reassortment between H5 HPAIVs and viruses locally circulating in Asia. According to intranasal challenge results in six-week-old chickens, 50% of the chicken-lethal dose of Crow/Hok was calculated as 104.5 times of the 50% egg-infectious dose. These results demonstrated that the currently prevalent H5 HPAIVs could spread widely from certain origins throughout the Eurasian continent, including Europe and the Far East, and implied a possibility that contagious viruses are gathered in lakes in the northern territory via bird migration. Active monitoring of wild birds at the global level is essential to estimate the geographical source and spread dynamics of HPAIVs.  相似文献   

16.
Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.  相似文献   

17.
Control measures in the case of high pathogenicity avian influenza (HPAI) outbreaks in poultry include culling, surveillance, and biosecurity; wild birds in captivity may also be culled, although some rare bird species should be rescued for conservation. In this study, two anti-influenza drugs, baloxavir marboxil (BXM) and peramivir (PR), used in humans, were examined in treating HPAI in birds, using chickens as a model. Chickens were infected with H5N6 HPAI virus and were treated immediately or 24 h from challenge with 20 mg/kg BXM or PR twice a day for five days. As per our findings, BXM significantly reduced virus replication in organs and provided full protection to chickens compared with that induced by PR. In the 24-h-delayed treatment, neither drug completely inhibited virus replication nor ensured the survival of infected chickens. A single administration of 2.5 mg/kg of BXM was determined as the minimum dose required to fully protect chickens from HPAI virus; the concentration of baloxavir acid, the active form of BXM, in chicken blood at this dose was sufficient for a 48 h antiviral effect post-administration. Thus, these data can be a starting point for the use of BXM and PR in treating captive wild birds infected with HPAI virus.  相似文献   

18.
Low pathogenic H9N2 avian influenza viruses have spread in wild birds and poultry worldwide. Recently, the number of human cases of H9N2 virus infection has increased in China and other countries, heightening pandemic concerns. In Japan, H9N2 viruses are not yet enzootic; however, avian influenza viruses, including H5N1, H7N9, H5N6, and H9N2, have been repeatedly detected in raw poultry meat carried by international flight passengers from Asian countries to Japan. Although H9N2 virus-contaminated poultry products intercepted by the animal quarantine service at the Japan border have been characterized in chickens and ducks, the biological properties of those H9N2 viruses in mammals remain unclear. Here, we characterized the biological features of two H9N2 virus isolates [A/chicken/Japan/AQ-HE28-50/2016 (Ck/HE28-50) and A/chicken/Japan/AQ-HE28-57/2016 (Ck/HE28-57)] in a mouse model. We found that these H9N2 viruses replicate well in the respiratory tract of infected mice without adaptation, and that Ck/HE28-57 caused body weight loss in the infected mice. Our results indicate that H9N2 avian influenza viruses isolated from raw chicken meat products illegally brought to Japan can potentially infect and cause disease in mammals.  相似文献   

19.
In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.  相似文献   

20.
Since it was first discovered, the low pathogenic avian influenza (LPAI) H9N2 subtype has established linages infecting the poultry population globally and has become one of the most prevalent influenza subtypes in domestic poultry. Several different variants and genotypes of LPAI H9N2 viruses have been reported in Egypt, but little is known about their pathogenicity and how they have evolved. In this study, four different Egyptian LPAI H9N2 viruses were genetically and antigenically characterized and compared to representative H9N2 viruses from G1 lineage. Furthermore, the pathogenicity of three genetically distinct Egyptian LPAI H9N2 viruses was assessed by experimental infection in chickens. Whole-genome sequencing revealed that the H9N2 virus of the Egy-2 G1-B lineage (pigeon-like) has become the dominant circulating H9N2 genotype in Egypt since 2016. Considerable variation in virus shedding at day 7 post-infections was detected in infected chickens, but no significant difference in pathogenicity was found between the infected groups. The rapid spread and emergence of new genotypes of the influenza viruses pinpoint the importance of continuous surveillance for the detection of novel reassortant viruses, as well as monitoring the viral evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号