首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: An elevation of the intracellular calcium level, which is mediated by N-methyl-D-aspartate receptors and L-type Ca2+ channels both, activates the mitogen-activated protein (MAP) kinase signaling pathway involved in synaptic modification. It has recently been suggested that MAP kinase plays a role in coupling the synaptic excitation to gene expression in the nucleus of postsynaptic neurons. Because the effects of local anesthetics on cellular signal transduction in neuronal cells are not well-known, the authors investigated whether they affect the MAP kinase signaling pathway using PC12 cells. METHODS: The cells were stimulated with either 50 mM KCl or 1 microM ionomycin, and activated MAP kinase was thus immunoprecipitated. The immunocomplexes were then subjected to an Elk1 phosphorylation assay. Both the phosphorylation of MAP kinase and the induction of c-Fos were detected by immunoblotting. RESULTS: Pretreatment of the cells with 1 mM (ethylenedioxy)-diethyl-enedinitrilotetraacetic acid or 5 micron nifedipine blocked the MAP kinase activation induced by 50 mM KCl, whereas pretreatment with 2 microM omega-conotoxin GIVA did not. The expression of c-Fos induced by potassium chloride was also suppressed by dibucaine, tetracaine (concentrations that inhibited 50% of the activity of positive control [IC50s] were 16.2+/-0.2 and 73.2+/-0.7 microM, respectively), and PD 98059, a mitogen-activated/extracellular receptor-regulated kinase inhibitor. Higher concentrations of dibucaine and tetracaine were needed to suppress the activation of MAP kinase induced by ionomycin (the IC50 values of dibucaine and tetracaine were 62.5+/-2.2 and 330.5+/-32.8 microM, respectively) compared with potassium chloride (the IC50 values of dibucaine and tetracaine were 17.7+/-1.0 and 70.2+/-1.2 microM, respectively). Although probable targets of these local anesthetics might be L-type Ca2+ channels or components between Ca2+ and Ras in MAP kinase pathway, the possibility that they directly affect MAP kinase still remains. CONCLUSIONS: Dibucaine and tetracaine at clinical concentrations were found to inhibit the activation of MAP kinase and the expression of c-Fos mediated by L-type Ca2+ channels in PC12 cells. The suppression of MAP kinase pathway may thus be a potential target site for the actions of dibucaine and tetracaine, including the modification of the synaptic functions.  相似文献   

2.
Background: Vascular smooth muscle tone is regulated by changes in intracellular free Ca2+ concentration ([Ca2+]i) and myofilament Ca2+ sensitivity. These cellular mechanisms could serve as targets for anesthetic agents that alter vasomotor tone. This study tested the hypothesis that propofol increases myofilament Ca2+ sensitivity in pulmonary artery smooth muscle (PASM) via the protein kinase C (PKC) signaling pathway.

Methods: Canine PASM strips were denuded of endothelium, loaded with fura-2/AM, and suspended in modified Krebs- Ringer's buffer at 37[degrees]C for simultaneous measurement of isometric tension and [Ca2+]i.

Results: The KCl (30 mm) induced monotonic increases in [Ca2+]i and tension. Verapamil, an L-type Ca2+ channel blocker, attenuated KCl-induced increases in [Ca2+]i and tension to an equal extent. In contrast, propofol attenuated KCl-induced increases in [Ca2+]i to a greater extent than concomitant changes in tension and caused an upward shift in the peak tension-[Ca2+]i relation. Increasing extracellular Ca2+ in the presence of 30 mm KCl resulted in similar increases in [Ca2+]i in control and propofol-pretreated strips, whereas concomitant increases in tension were greater during propofol administration. The Ca2+ ionophore, ionomycin (0.1 [mu]m), increased [Ca2+]i to approximately 50% of the value induced by 60 mm KCl. Under these conditions, propofol (10, 100 [mu]m) caused increases in tension equivalent to 11 +/- 2 and 28 +/- 3% of the increases in tension in response to 60 mm KCl, whereas [Ca2+]i was slightly decreased. Similar effects were observed in response to the PKC activator, phorbol 12-myristate 13-acetate (PMA, 1 [mu]m). Specific inhibition of PKC with bisindolylmaleimide I before ionomycin administration decreased the propofol- and PMA-induced increases in tension and abolished the propofol- and PMA-induced decreases in [Ca2+]i. Selective inhibition of Ca2+-dependent PKC isoforms with Go 6976 also attenuated propofol-induced increases in tension.  相似文献   


3.
Background: Recently, a new structural family of potassium channels characterized by two pore domains in tandem within their primary amino acid sequence was identified. These tandem pore domain potassium channels are not gated by voltage and appear to be involved in the control of baseline membrane conductances. The goal of this study was to identify mechanisms of local anesthetic action on these channels.

Methods: Oocytes of Xenopus laevis were injected with cRNA from five cloned tandem pore domain baseline potassium channels (TASK, TREK-1, TOK1, ORK1, and TWIK-1), and the effects of several local anesthetics on the heterologously expressed channels were assayed using two-electrode voltage-clamp and current-clamp techniques.

Results: Bupivacaine (1 mM) inhibited all studied tandem pore potassium channels, with TASK inhibited most potently. The potency of inhibition was directly correlated with the octanol: buffer distribution coefficient of the local anesthetic, with the exception of tetracaine, to which TASK is relatively insensitive. The approximate 50% inhibitory concentrations of TASK were 709 [micro sign]M mepivacaine, 222 [micro sign]M lidocaine, 51 [micro sign]M R(+)-ropivacaine, 53 [micro sign]M S(-)-ropivacaine, 668 [micro sign]M tetracaine, 41 [micro sign]M bupivacaine, and 39 [micro sign]M etidocaine. Local anesthetics (1 mM) significantly depolarized the resting membrane potential of TASK cRNA-injected oocytes compared with saline-injected control oocytes (tetracaine 22 +/- 6 mV vs. 7 +/- 1 mV, respectively, and bupivacaine 31 +/- 7 mV vs. 6 +/- 4 mV).  相似文献   


4.
We investigated the mechanism of benzocaine (permanently uncharged) and QX314 (permanently charged) inhibition of lysophosphatidic acid (LPA) signaling. To determine their site of action, we studied effects of these drugs, alone and in combination, on LPA-induced Ca2+-dependent Cl currents (I(Cl(Ca))) in Xenopus oocytes. After 10 min exposure to benzocaine, QX314 (10(-6)-10(-2) M), or both, we measured effects on I(Cl(Ca)) induced by LPA (with and without protein kinase [PKC] activation/inhibition) and on I(Cl(Ca)) induced by the intracellular injection of IP3 and GTPgammaS. LPA application to oocytes resulted in I(Cl(Ca)) (50% effective concentration approximately 10(-8) M). Both anesthetics inhibited LPA signaling concentration-dependently (50% inhibitory concentration [IC50] benzocaine 0.9 mM, QX314 0.66 mM). The combination acted synergistically (IC50 benzocaine 0.097 mM/QX314 0.048 mM). Intracellular signaling pathways were not affected. This study shows that benzocaine and QX314 inhibit LPA signaling and act synergistically, which is most easily explained by the existence of two different binding sites. Lack of inhibition of IP3 or GTPgammaS-induced I(Cl(Ca)) identifies the receptor as a target. Activation of PKC can be excluded as a potential mechanism. IMPLICATIONS: Lysophosphatidic acid may play a role in wound healing, and its signaling is inhibited by local anesthetics. We identified the membrane receptor as the local anesthetic site of action and showed that charged (QX314) and uncharged (benzocaine) local anesthetics inhibit lysophosphatidic acid signaling synergistically, which can be explained by the presence of different binding sites.  相似文献   

5.
Background: General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized.

Methods: The effects of representative intravenous and volatile anesthetics were studied on the release of sulfated cholecystokinin 8 (CCK8s), a representative excitatory neuropeptide, from isolated rat cerebrocortical nerve terminals (synaptosomes). Basal, elevated KCl depolarization-evoked and veratridine-evoked release of CCK8s from synaptosomes purified from rat cerebral cortex was evaluated at 35[degrees]C in the absence or presence of extracellular Ca2+. CCK8s released into the incubation medium was determined by enzyme-linked immunoassay after filtration.

Results: Elevation of extracellular KCl concentration (to 15-30 mm) or veratridine (10-20 [mu]m) stimulated Ca2+-dependent CCK8s release. Basal, elevated KCl- or veratridine-evoked CCK8s release was not affected significantly by propofol (12.5-50 [mu]m), pentobarbital (50 and 100 [mu]m), thiopental (20 [mu]m), etomidate (20 [mu]m), ketamine (20 [mu]m), isoflurane (0.6-0.8 mm), or halothane (0.6-0.8 mm).  相似文献   


6.
Kasaba T  Onizuka S  Takasaki M 《Anesthesia and analgesia》2003,97(1):85-90, table of contents
The neurotoxicity of local anesthetics can be demonstrated in vitro by the collapse of growth cones and neurites in cultured neurons. We compared the neurotoxicity of procaine, mepivacaine, ropivacaine, bupivacaine, lidocaine, tetracaine, and dibucaine by using cultured neurons from the freshwater snail Lymnaea stagnalis. A solution of local anesthetics was added to the culture dish to make final concentrations ranging from 1 x 10(-6) to 2 x 10(-2) M. Morphological changes in the growth cones and neurites were observed and graded 1 (moderate) or 2 (severe). The median concentrations yielding a score of 1 were 5 x 10(-4) M for procaine, 5 x 10(-4) M for mepivacaine, 2 x 10(-4) M for ropivacaine, 2 x 10(-4) M for bupivacaine, 1 x 10(-4) M for lidocaine, 5 x 10(-5) M for tetracaine, and 2 x 10(-5) M for dibucaine. Statistically significant differences (P < 0.05) were observed between mepivacaine and ropivacaine, bupivacaine and lidocaine, lidocaine and tetracaine, and tetracaine and dibucaine. The order of neurotoxicity was procaine = mepivacaine < ropivacaine = bupivacaine < lidocaine < tetracaine < dibucaine. Although lidocaine is more toxic than bupivacaine and ropivacaine, mepivacaine, which has a similar pharmacological effect to lidocaine, has the least-adverse effects on cone growth among clinically used local anesthetics. IMPLICATIONS: Systematic comparison was assessed morphologically in growth cones and neurites exposed to seven local anesthetics. The order of neurotoxicity was procaine = mepivacaine < ropivacaine = bupivacaine < lidocaine < tetracaine < dibucaine. Although lidocaine is more toxic than bupivacaine and ropivacaine, mepivacaine, which has a similar pharmacological effect to lidocaine, is the safest among clinically used local anesthetics.  相似文献   

7.
Background: Halothane and other volatile anesthetics relax airway smooth muscle in part by decreasing the amount of force produced for a particular intracellular calcium concentration (the Ca2+ sensitivity) during muscarinic receptor stimulation. In this study, ketamine, propofol, and midazolam were evaluated to determine whether the inhibitory effect of volatile anesthetics on this signal transduction pathway is a general property of other types of anesthetic drugs.

Methods: A [beta]-escin permeabilized canine tracheal smooth muscle preparation was used. Ketamine, propofol, and midazolam, in concentrations producing near-maximal relaxation in intact airway smooth muscle (200 [mu]M, 270 [mu]M, and 100 [mu]M, respectively), were applied to permeabilized muscles stimulated with calcium in either the absence or the presence of muscarinic receptor stimulation provided by acetylcholine. The effect of halothane also was evaluated.

Results: Confirming previous studies, halothane (0.75 mM) decreased calcium sensitivity during muscarinic receptor stimulation. None of the intravenous anesthetics studied affected Ca2+ sensitivity, either in the absence or the presence of muscarinic receptor stimulation.  相似文献   


8.
BACKGROUND: Controversy persists concerning the mechanisms and role of general anesthetic inhibition of glutamate release from nerve endings. To determine the generality of this effect and to control for methodologic differences between previous studies, the authors analyzed the presynaptic effects of isoflurane and propofol on glutamate release from nerve terminals isolated from several species and brain regions. METHODS: Synaptosomes were prepared from rat, mouse, or guinea pig cerebral cortex and also from rat striatum and hippocampus. Release of endogenous glutamate evoked by depolarization with 20 microm veratridine (which opens voltage-dependent Na+ channels by preventing inactivation) or by 30 mm KCl (which activates voltage-gated Ca2+ channels by membrane depolarization) was monitored using an on-line enzyme-linked fluorometric assay. RESULTS: Glutamate release evoked by depolarization with increased extracellular KCl was not significantly inhibited by isoflurane up to 0.7 mM ( approximately 2 minimum alveolar concentration; drug concentration for half-maximal inhibition [IC50] > 1.5 mM) [corrected] or propofol up to 40 microm in synaptosomes prepared from rat, mouse, or guinea pig cerebral cortex, rat hippocampus, or rat striatum. Lower concentrations of isoflurane or propofol significantly inhibited veratridine-evoked glutamate release in all three species (isoflurane IC50 = 0.41-0.50 mm; propofol IC50 = 11-18 microm) and rat brain regions. Glutamate release was evoked by veratridine or increased KCl (from 5 to 35 mM) to assess the involvement of presynaptic ion channels as targets for drug actions [corrected]. CONCLUSIONS: Isoflurane and propofol inhibited Na+ channel-mediated glutamate release evoked by veratridine with greater potency than release evoked by increased KCl in synaptosomes prepared from three mammalian species and three rat brain regions. These findings are consistent with a greater sensitivity to anesthetics of presynaptic Na+ channels than of Ca2+ channels coupled to glutamate release. This widespread presynaptic action of general anesthetics is not mediated by potentiation of gamma-aminobutyric acid type A receptors, though additional mechanisms may be involved.  相似文献   

9.
Background: Central terminals of primary nociceptors release neurotransmitters glutamate and substance P, which bind to ionotropic or metabotropic receptors on spinal neurons to induce cellular responses. Extracellular signal-regulated kinases are activated by these receptors and are important modulators of pain at the dorsal horn. The authors investigated these pathways as potential targets for antinociceptive actions of local anesthetics.

Methods: The effects of bupivacaine on the activation of extracellular receptor-activated kinase (phosphorylation to pERK) in rat spinal cord slices, induced by presynaptic release (capsaicin), by presynaptic or postsynaptic ionotropic or metabotropic receptor activation, or by activation of intracellular protein kinase C or protein kinase A and also by a receptor-independent Ca2+ ionophore, were quantitated by immunohistochemistry, counting pERK-positive neurons in the superficial dorsal horn.

Results: Capsaicin (3 [mu]m, 10 min)-stimulated pERK was reduced by bupivacaine (IC50 approximately 2 mm, approximately 0.05%), which similarly suppressed pERK induced by the ionotropic glutamate receptors for N-methyl-d-aspartate and (S)-[alpha]-amino-3-hydroxy-5-methyle-4-isoxazole propionic acid but not that induced by the metabotropic receptors for glutamate, bradykinin, or substance P. Extracellular receptor-activated kinase activation by the Ca+2 ionophore ionomycin was also sensitive to bupivacaine, but direct activation by protein kinase A or protein kinase C was not.  相似文献   


10.
Thromboxane A(2) (TXA(2)) has been proposed as a mediator of perioperative myocardial ischemia, vasoconstriction, and thrombosis. As these adverse events are minimized with epidural anesthesia, rather than general anesthesia, we hypothesized that local anesthetics would inhibit TXA(2)-receptor signaling. We used fluorometric determination of intracellular [Ca(2+)] in human K562 cells and 2-electrode voltage clamp measurements in Xenopus laevis oocytes expressing TXA(2) receptors. After 10-min incubation, lidocaine (IC(50): 1.02 +/- 0.2 x 10(-3) M), ropivacaine (IC(50): ropivacaine 6.3 +/- 0.9 x 10(-5) M), or bupivacaine (IC(50): 1.42 +/- 0.08 x 10(-7) M) inhibited TXA(2)-induced [Ca(2+)](i) in K562 cells. These data were confirmed in Xenopus oocytes recombinantly expressing TXA(2) receptors, with IC(50)s of bupivacaine 1.2 +/- 0.2 x 10(-5) M, R(+) ropivacaine 4.9 +/- 1.7 x 10(-4) M, S(-) ropivacaine 5.3 +/- 0.9 x 10(-5) M, and lidocaine 6.4 +/- 2.8 x 10(-4) M. Intracellular pathways activated by IP(3) and GTPgammaS were not significantly affected by the local anesthetics tested. QX314, a positively charged lidocaine analog, inhibited only if injected intracellularly (IC(50): 5.3 +/- 1.7 x 10(-4) M), indicating one local anesthetic target is most likely inside the cell. Benzocaine (largely uncharged) inhibited with an IC(50) of 8.7 +/- 1.8 x 10(-4) M. This suggests that some of the beneficial effects of regional anesthesia techniques might be due to direct interaction of local anesthetics with the functioning of membrane proteins.  相似文献   

11.
Background: Inhalational anesthetics have been shown to inhibit the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. Previous studies indicated that inhibition of the NO-cGMP pathway decreased the level of consciousness and augmented anesthesia, analgesia, or sedation. The current study investigated the possible involvement of cGMP-dependent protein kinases (PKGs) as major effectors for the NO-cGMP pathway in the anesthetic state.

Methods: After initial baseline determination of the minimum alveolar concentration (MAC), a selective cGMP-dependent protein kinase I[alpha] inhibitor, Rp-8-p-CPT-cGMPS, or an NO donor, (NOC-12), were injected intrathecally. Ten minutes later, MAC measurement was repeated. The rats also were evaluated for the presence of locomotor dysfunction by intrathecal administration of Rp-8-p-CPT-cGMPS and NOC-12 in conscious rats.

Results: Rp-8-p-CPT-cGMPS at 25, 50, 100, and 200 [mu]g/10 [mu]l produced a significant decrease from isoflurane control MAC of -4 +/- 3.1%, 16 +/- 4.5%, 30 +/- 5.0%, and 21 +/- 2.2%, respectively, which was not accompanied by significant changes in either blood pressure or heart rate. In contrast, NOC-12 at 100 [mu]g/10 [mu]l caused an increase from isoflurane control MAC of 23 +/- 5.8%, which was accompanied by significant decrease in blood pressure but not in heart rate. Rp-8-p-CPT-cGMPS (100 [mu]g/10 [mu]l) produced a significant reversal of isoflurane MAC increase induced by NOC-12 (100 [mu]g/10 [mu]l), which was accompanied by significant reversal of the reduction of blood pressure induced by NOC-12. Locomotor activity was not changed.  相似文献   


12.
BACKGROUND: Local anesthetics have direct neurotoxicity on neurons. However, precise morphologic changes induced by the direct application of local anesthetics to neurons have not yet been fully understood. Also, despite the fact that local anesthetics are sometimes applied to the sites where peripheral nerves may be regenerating after injury, the effects of local anesthetics on growing or regenerating neurons have never been studied. METHODS: Three different neuronal tissues (dorsal root ganglion, retinal ganglion cell layer, and sympathetic ganglion chain) were isolated from an age-matched chick embryo and cultured for 20 h. Effects of tetracaine were examined microscopically and by a quantitative morphologic assay, growth cone collapse assay. RESULTS: Tetracaine induced growth cone collapse and neurite destruction. Three neuronal tissues showed significantly different dose-response, both at 60 min and at 24 h after the application of tetracaine (P < 0.01). The ED50 values (mean +/- SD) at 60 min were 1.53+/-1.05 mM in dorsal root ganglion, 0.15+/-0.05 mM in retinal, and 0.06+/-0.02 mM in sympathetic ganglion chain cultures. The ED50 values at 24 h were 0.43+/-0.15 mM in dorsal root ganglion, 0.07+/-0.03 mM in retinal, and 0.02+/-0.01 mM in sympathetic ganglion chain cultures. Concentration of nerve growth factor in the culture media did not influence the ED50 values. The growth cone collapsing effect was partially reversible in dorsal root ganglion and retinal neurons. However, in the sympathetic ganglion culture, no reversibility was observed after exposure to 1 mM tetracaine for 10 or for 60 min. Bupivacaine had similar neurotoxicity to the three types of growing neurons. (The ED50 values at 60 min were 2.32+/-0.50 mM in dorsal root ganglion, 0.96+/-0.16 mM in retinal, and 0.18+/-0.05 mM in sympathetic ganglion chain cultures. The ED50 values at 24 h were 0.34+/-0.09 mM in dorsal root ganglion, 0.21+/-0.06 mM in retinal, and 0.45+/-0.10 mM in sympathetic ganglion chain cultures.) CONCLUSIONS: Short-term exposure to tetracaine produced irreversible changes in growing neurons. Growth cones were quickly affected, and neurites degenerated subsequently. Sensitivity varied with neuronal type and was not influenced by the concentration of nerve growth factor. Because a similar phenomenon was observed after exposure to bupivacaine, the toxicity to growing neurons may not be unique to tetracaine.  相似文献   

13.
Background: The local anesthetic bupivacaine exists in two stereoisomeric forms, R(+)- and S(-)-bupivacaine. Because of its lower cardiac and central nervous system toxicity, attempts were made recently to introduce S(-)-bupivacaine into clinical anesthesia. We investigated stereoselective actions of R(+)- and S(-)-bupivacaine toward two local anesthetic-sensitive ion channels in peripheral nerve, the Na+ and the flicker K+ channel.

Methods: In patch-clamp experiments on enzymatically demyelinated peripheral amphibian nerve fibers, Na+ and flicker K+ channels were investigated in outside-out patches. Half-maximum inhibiting concentrations (IC50) were determined. For the flicker K+ channel, simultaneous block by R(+)-bupivacaine and S(-)-bupivacaine was analyzed for competition and association (k1) and dissociation rate constants (k-1) were determined.

Results: Both channels were reversibly blocked by R(+)- and S(-)-bupivacaine. The IC50 values (+/-SEM) for tonic Na+ channel block were 29 +/- 3 [mu]M and 44 +/- 3 [mu]M, respectively. IC50 values for flicker K+ channel block were 0.15 +/- 0.02 [mu]M and 11 +/- 1 [mu]M, respectively, resulting in a high stereopotency ratio (+/-) of 73. Simultaneously applied enantiomers competed for a single binding site. Rate constants k1 and k-1 were 0.83 +/- 0.13 x 106 M-1 [middle dot] s-1 and 0.13 +/- 0.03 s-1, respectively, for R(+)-bupivacaine and 1.90 +/- 0.20 x 106 M-1 [middle dot] s-1 and 8.3 +/- 1.0 s-1, respectively, for S(-)-bupivacaine.  相似文献   


14.
BACKGROUND: Vascular smooth muscle tone is regulated by changes in intracellular free Ca2+ concentration ([Ca2+]i) and myofilament Ca2+ sensitivity. These cellular mechanisms could serve as targets for anesthetic agents that alter vasomotor tone. This study tested the hypothesis that propofol increases myofilament Ca2+ sensitivity in pulmonary artery smooth muscle (PASM) via the protein kinase C (PKC) signaling pathway. METHODS: Canine PASM strips were denuded of endothelium, loaded with fura-2/AM, and suspended in modified Krebs-Ringer's buffer at 37 degrees C for simultaneous measurement of isometric tension and [Ca2+]i. RESULTS: The KCl (30 mm) induced monotonic increases in [Ca2+]i and tension. Verapamil, an L-type Ca2+ channel blocker, attenuated KCl-induced increases in [Ca2+]i and tension to an equal extent. In contrast, propofol attenuated KCl-induced increases in [Ca2+]i to a greater extent than concomitant changes in tension and caused an upward shift in the peak tension-[Ca2+]i relation. Increasing extracellular Ca2+ in the presence of 30 mM KCl resulted in similar increases in [Ca2+]i in control and propofol-pretreated strips, whereas concomitant increases in tension were greater during propofol administration. The Ca2+ ionophore, ionomycin (0.1 microm), increased [Ca2+]i to approximately 50% of the value induced by 60 mm KCl. Under these conditions, propofol (10, 100 microm) caused increases in tension equivalent to 11 +/- 2 and 28 +/- 3% of the increases in tension in response to 60 mM KCl, whereas [Ca2+]i was slightly decreased. Similar effects were observed in response to the PKC activator, phorbol 12-myristate 13-acetate (PMA, 1 microm). Specific inhibition of PKC with bisindolylmaleimide I before ionomycin administration decreased the propofol- and PMA-induced increases in tension and abolished the propofol- and PMA-induced decreases in [Ca2+]i. Selective inhibition of Ca2+ -dependent PKC isoforms with G? 6976 also attenuated propofol-induced increases in tension. CONCLUSION: These results suggest that propofol increases myofilament Ca2+ sensitivity in PASM, and this effect involves the PKC signaling pathway.  相似文献   

15.
Background: Volatile anesthetics can protect the myocardium against ischemic injury by opening the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels. However, direct evidence for anesthetic-channel interaction is still limited, and little is known about the role KATP channel modulators play in this effect. Because pH is one of the regulators of KATP channels, the authors tested the hypothesis that intracellular pH (pHi) modulates the direct interaction of isoflurane with the cardiac KATP channel.

Methods: The effects of isoflurane on sarcolemmal KATP channels were investigated at pHi 7.4 and pHi 6.8 in excised inside-out membrane patches from ventricular myocytes of guinea pig hearts.

Results: At pHi 7.4, intracellular ATP (1-1,000 [mu]m) inhibited KATP channels and decreased channel open probability (Po) in a concentration-dependent manner with an IC50 of 8 +/- 1.5 [mu]m, and isoflurane (0.5 mm) either had no effect or decreased channel activity. Lowering pHi from 7.4 to 6.8 enhanced channel opening by increasing Po and reduced channel sensitivity to ATP, with IC50 shifting from 8 +/- 1.2 to 45 +/- 5.6 [mu]m. When applied to the channels activated at pHi 6.8, isoflurane (0.5 mm) increased Po and further reduced ATP sensitivity, shifting IC50 to 110 +/- 10.0 [mu]m.  相似文献   


16.
PURPOSE: The cellular target site(s) for anesthetic action remain controversial. In this study we have examined any interaction of i.v. anesthetics (thiopental, pentobarbital, ketamine, etomidate, propofol, alphaxalone), local anesthetics (lidocaine, prilocaine, procaine and tetracaine), and the non anesthetic barbiturate, barbituric acid with the omega-conotoxin MVII(A) binding site on N-type voltage sensitive Ca2+ channels in rat cerebrocortical membranes. METHODS: [125I] omega-conotoxin MVII(A) binding assays were performed in 0.5 ml volumes of Tris.HCl buffer containing BSA 0.1% for 30 min at 20 degrees C using fresh cerebrocortical membranes (5 microg of protein). Non-specific binding was defined in the presence of excess (10(-8) M) omega-conotoxin MVII(A). The interaction of i.v. (alphaxolone, etomidate, propofol, pentobarbitone, ketamine and thiopentone), local (lidocaine, prilocaine, procaine and tetracaine) anesthetics and barbituric acid was determined by displacement of [125I] omega-conotoxin MVII(A) (approximately 1 pM). RESULTS: The binding of [125I] omega-conotoxin was concentration-dependent and saturable with Bmax and Kd of 223 +/- 15 fmol/mg protein and 2.13 +/- 0.14 pM, respectively. Unlabelled omega-conotoxin MVII(A) displaced [125I] omega-conotoxin MVII(A) yielding a pKd of 11.04 +/- 0.04 (9.2 pM). All i.v. and local anesthetics at clinically relevant concentrations did not show any interaction with the omega-conotoxin MVII(A) binding site. CONCLUSION: The present study suggests that omega-conotoxin MVII(A) binding site on N-type voltage sensitive Ca2+ channels may not be a target for i.v. and local anesthetic agents.  相似文献   

17.
Background: Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods.

Methods: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording.

Results: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [~ 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [~ 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50= 0.5 mM [~ 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70 +/- 9% block at 0.6 mM [~ 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21 +/- 9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16 +/- 2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation.  相似文献   


18.
Local Anesthetic Inhibition of m1 Muscarinic Acetylcholine Signaling   总被引:1,自引:0,他引:1  
Background: Local anesthetics inhibit lipid mediator signaling (lysophosphatidate, thromboxane) by acting on intracellular domains of the receptor or on the G protein. On receptors for polar agonists, the ligand-binding pocket could form an additional site of interaction, possibly resulting in superadditive inhibition. The authors therefore investigated the effects of local anesthetics on m1 muscarinic receptor functioning.

Methods: The authors expressed receptors in isolation using Xenopus oocytes. Using a two-electrode voltage clamp, the authors measured the effects of lidocaine, QX314 (permanently charged), and benzocaine (permanently uncharged) on Ca2+-activated Cl- currents elicited by methylcholine. The authors also characterized the interaction of lidocaine with [3H] quinuclydinyl benzylate ([3H]QNB) binding to m1 receptors.

Results: Lidocaine inhibited muscarinic signaling with a half-maximal inhibitory concentration (IC50 18 nm) 140-fold less than that of extracellularly administered QX314 (IC50 2.4 [mu]m). Intracellularly injected QX314 (IC50 0.96 mm) and extracellularly applied benzocaine (IC50 1.2 mm) inhibited at high concentrations only. Inhibition of muscarinic signaling by extracellularly applied QX314 and lidocaine was the result of noncompetitive antagonism. Intracellularly injected QX314 and benzocaine inhibited muscarinic and lysophosphatidate signaling at similar concentrations, suggesting an action on the common G-protein pathway. Combined administration of intracellularly injected (IC50 19 [mu]m) and extracellularly applied QX314 (IC50 49 nm) exerted superadditive inhibition. Lidocaine did not displace specific [3H]QNB binding to m1 receptors.  相似文献   


19.
BACKGROUND: Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods. METHODS: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording. RESULTS: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. CONCLUSIONS: The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.  相似文献   

20.
Background: The cardiotoxic mechanism of local anesthetics may include interruption of cardiac sympathetic reflexes. The authors undertook this investigation to determine if clinically relevant concentrations of bupivacaine and levobupivacaine interfere with exocytotic norepinephrine release from cardiac sympathetic nerve endings.

Methods: Rat atria were prepared for measurements of twitch contractile force and 3[H]-norepinephrine release. After nerve endings were loaded with 3[H]-norepinephrine, the tissue was electrically stimulated in 5-min episodes during 10 10-min sampling periods. After each period, a sample of bath fluid was analyzed for radioactivity and 3[H]-norepinephrine release was expressed as a fraction of tissue counts. Atria were exposed to buffer alone during sampling periods 1 and 2 (S1 and S2). Control atria received saline (100 [mu]l each, n = 6 atria) in S3-S10. Experimental groups (n = 6 per group) received either bupivacaine or levobupivacaine at concentrations (in [mu]M) of 5 (S3-S4), 10 (S5-S6), 30 (S7-S8), and 100 (S9-S10).

Results: Bupivacaine and levobupivacaine decreased stimulation-evoked fractional 3[H]-norepinephrine release with inhibitory concentration 50% values of 5.1 +/- 0.5 and 6.1 +/- 1.3 [mu]m. The inhibitory effect of both local anesthetics (~70%) approached that of tetrodotoxin. Local anesthetics abolished the twitch contractions of atria with inhibitory concentration 50% values of 12.6 +/- 5.0 [mu]m (bupivacaine) and 15.7 +/- 3.9 [mu]m (levobupivacaine). In separate experiments, tetrodotoxin inhibited twitch contractile force by only 30%.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号