首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. This study aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion. For this purpose, the prepulse inhibition (PPI) paradigm was used to evaluate the effect of two antipsychotics drugs (risperidone and haloperidol) and a psychostimulant (methylphenidate) on the preattentional deficit presented by CB1KO mice. Furthermore, the effects of the CB1r antagonist AM251 on PPI were evaluated in WT mice. Real-time PCR and immunohistochemical studies were carried out to analyze dopamine transporter (DAT) and α-2C adrenergic receptor (ADRA2C) gene expressions and the distribution of parvalbumin (PV) and cholecystokinin-8 (CCK) immunoreactive (ir) cortical neurons, respectively. Neither risperidone nor haloperidol significantly modified the PPI of WT and CB1KO mice, whereas methylphenidate improved the preattentional deficit of CB1KO mice. In addition, treatment with AM251 (3 mg/kg; i.p.) significantly decreased the PPI of WT animals. The administration of methylphenidate increased DAT and ADRA2C gene expressions in CB1KO mice without producing any effect in WT animals. Immunohistochemical studies revealed that there were no significant changes in CCK immunolabeling between WT and CB1KO mice, whereas the radial distribution of PV-ir neurons was abnormal in CB1KO mice. These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated preattentional deficits.  相似文献   

2.
This study was aimed to evaluate the involvement of CB2 cannabinoid receptors (CB2r) in the rewarding, reinforcing and motivational effects of nicotine. Conditioned place preference (CPP) and intravenous self-administration experiments were carried out in knockout mice lacking CB2r (CB2KO) and wild-type (WT) littermates treated with the CB2r antagonist AM630 (1 and 3 mg/kg). Gene expression analyses of tyrosine hydroxylase (TH) and α3- and α4-nicotinic acetylcholine receptor subunits (nAChRs) in the ventral tegmental area (VTA) and immunohistochemical studies to elucidate whether CB2r colocalized with α3- and α4-nAChRs in the nucleus accumbens and VTA were performed. Mecamylamine-precipitated withdrawal syndrome after chronic nicotine exposure was evaluated in CB2KO mice and WT mice treated with AM630 (1 and 3 mg/kg). CB2KO mice did not show nicotine-induced place conditioning and self-administered significantly less nicotine. In addition, AM630 was able to block (3 mg/kg) nicotine-induced CPP and reduce (1 and 3 mg/kg) nicotine self-administration. Under baseline conditions, TH, α3-nAChR, and α4-nAChR mRNA levels in the VTA of CB2KO mice were significantly lower compared with WT mice. Confocal microscopy images revealed that CB2r colocalized with α3- and α4-nAChRs. Somatic signs of nicotine withdrawal (rearings, groomings, scratches, teeth chattering, and body tremors) increased significantly in WT but were absent in CB2KO mice. Interestingly, the administration of AM630 blocked the nicotine withdrawal syndrome and failed to alter basal behavior in saline-treated WT mice. These results suggest that CB2r play a relevant role in the rewarding, reinforcing, and motivational effects of nicotine. Pharmacological manipulation of this receptor deserves further consideration as a potential new valuable target for the treatment of nicotine dependence.  相似文献   

3.

Rationale  

Studies in the Fmr1 knockout (KO) mouse, a model of fragile X syndrome (FXS), suggest that excessive signaling through group I metabotropic glutamate receptors (mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role in the pathogenesis of FXS. Currently, no studies have assessed the effect of mGluR1 modulation on Fmr1 KO behavior, and there has not been an extensive behavioral analysis of mGluR5 manipulation in Fmr1 KO mice.  相似文献   

4.

Rationale  

Reduced voluntary alcohol consumption was recently found in neurokinin-1 receptor (NK1R)-deficient (KO) mice. It remains unknown whether this reflects developmental effects or direct regulation of alcohol consumption by NK1R:s, and whether the reduced consumption reflects motivational effects.  相似文献   

5.

Rationale

Neuronal histamine has a prominent role in sleep–wake control and body homeostasis, but a number of studies suggest that histamine has also a role in higher brain functions including drug reward.

Objective

The present experiments characterized the involvement of histamine and its H3 receptor in ethanol-related behaviors in mice.

Materials and methods

Male histidine decarboxylase knockout (HDC KO) and control mice were used to study the role of histamine in ethanol-induced stimulation of locomotor activity, impairment of motor coordination, and conditioned place preference (CPP). Male C57BL/6Sca mice were used to study the effects of H3 receptor antagonist in the effects of ethanol on locomotor activity.

Results

The HDC KO mice displayed a weaker stimulatory response to acute ethanol than the wild-type (WT) mice. No differences between genotypes were found after ethanol administration on accelerating rotarod. The HDC KO mice showed stronger ethanol-induced CPP than the WT mice. Binding of the GABAA receptor ligand [3H]Ro15-4513 was not markedly changed in HDC KO mouse brain and thus could not explain altered responses in KO mice. Ethanol increased the activity of C57BL/6Sca mice, and H3 receptor antagonist ciproxifan inhibited this stimulation. In CPP paradigm ciproxifan, an H3 receptor inverse agonist potentiated ethanol reward.

Conclusions

Histaminergic neurotransmission seems to be necessary for the stimulatory effect of ethanol to occur, whereas lack of histamine leads to changes that enhance the conditioned reward by ethanol. Our findings also suggest a role for histamine H3 receptor in modulation of the ethanol stimulation and reward.  相似文献   

6.

Background and purpose:

Natural and synthetic cannabinoids (CBs) induce deleterious or beneficial actions on neuronal survival. The Fas-associated protein with death domain (FADD) promotes apoptosis, and its phosphorylated form (p-FADD) mediates non-apoptotic actions. The regulation of Fas/FADD, mitochondrial apoptotic proteins and other pathways by CB receptors was investigated in the mouse brain.

Experimental approach:

Wild-type, CB1 and CB2 receptor knock-out (KO) mice were used to assess differences in receptor genotypes. CD1 mice were used to evaluate the effects of CB drugs on canonical apoptotic pathways and associated signalling systems. Target proteins were quantified by Western blot analysis.

Key results:

In brain regions of CB1 receptor KO mice, Fas/FADD was reduced, but p-Ser191 FADD and the p-FADD/FADD ratio were increased. In CB2 receptor KO mice, Fas/FADD was increased, but the p-FADD/FADD ratio was not modified. In mutant mice, cleavage of poly(ADP-ribose)-polymerase (PARP) did not indicate alterations in brain cell death. In CD1 mice, acute WIN55212-2 (CB1 receptor agonist), but not JWH133 (CB2 receptor agonist), inversely modulated brain FADD and p-FADD. Chronic WIN55212-2 induced FADD down-regulation and p-FADD up-regulation. Acute and chronic WIN55212-2 did not alter mitochondrial proteins or PARP cleavage. Acute, but not chronic, WIN55212-2 stimulated activation of anti-apoptotic (ERK, Akt) and pro-apoptotic (JNK, p38 kinase) pathways.

Conclusions and implications:

CB1 receptors appear to exert a modest tonic activation of Fas/FADD complexes in brain. However, chronic CB1 receptor stimulation decreased pro-apoptotic FADD and increased non-apoptotic p-FADD. The multifunctional protein FADD could participate in the mechanisms of neuroprotection induced by CBs.This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x  相似文献   

7.

Rationale  

Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is a retrograde neuronal messenger that participates in synaptic plasticity, including late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies have shown that nNOS knockout (KO) mice have a severe deficit in contextual fear conditioning compared to wild type (WT) counterparts (Kelley et al. 2009).  相似文献   

8.

Rationale  

Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors, widely expressed in the CNS. Electrophysiological and molecular studies have provided evidence for overactive M1 receptor signaling in the fragile X knockout (Fmr1 KO) mouse model, suggesting the involvement of the M1 receptors in fragile X syndrome. Overactive signaling through the M1 receptor has been hypothesized to contribute to the phenotypes seen in fragile X mice.  相似文献   

9.

Aim:

To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice.

Methods:

Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1–3, respectively, and 18% in week 4–7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles.

Results:

Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles.

Conclusion:

Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.  相似文献   

10.
11.

BACKGROUND AND PURPOSE

The contribution of endothelin-1 (ET-1) in a B2KO mouse model of a high salt-induced arterial hypertension was investigated.

EXPERIMENTAL APPROACH

Wild-type (WT) or B2KO mice receiving a normal diet (ND) or a high-salt diet (HSD) were monitored by radiotelemetry up to a maximum of 18 weeks. At the 12th week of diet, subgroups under ND or HSD received by gavage the ETA antagonist A127722 during 5 days. In addition, blood samples were collected and, following euthanasia, the lungs, heart and kidneys were extracted, homogenized and assayed for ET-1 by RIA. In a separate series of experiments, the ETA antagonist, BQ123 was tested against the pressor responses to a NOS inhibitor L-NG-nitroarginine methyl ester (L-NAME) in anaesthetized WT and B2KO mice.

KEY RESULTS

In B2KO, but not WT mice, 12 weeks of HSD triggered a maximal increase of the mean arterial pressure (MAP) of 19.1 ± 2.8 mmHg, which was corrected by A127722 to MAP levels found in B2KO mice under ND. Significant increases in immunoreactive ET-1 were detected only in the lungs of B2KO mice under HSD. On the other hand, metabolic studies showed that sodium urinary excretion was markedly reduced in B2KO compared with WT mice under ND. Finally, BQ123 (2 mg·kg−1) reduced by 50% the pressor response to L-NAME (2 mg·kg−1) in B2KO, but not WT mice under anaesthesia.

CONCLUSIONS AND IMPLICATIONS

Our results support the concept that functional B2 receptors oppose high salt-induced increments in MAP, which are corrected by an ETA receptor antagonist in this mouse model of experimental hypertension.  相似文献   

12.

Rationale  

Chronic ethanol (EtOH) treatment decreases the motor-impairing effects of cannabinoids and downregulates the cannabinoid type 1 (CB1) receptor. However, these studies have been limited to measures of ataxia and analysis of CB1 expression from whole-brain or hippocampal preparations.  相似文献   

13.

Background and purpose:

To compare loss in binding to muscarinic receptor (mAChR) subtypes with their known functions, the total density of muscarinic receptors was measured in peripheral tissues from wild type (WT) and mAChR knockout (KO) mice.

Experimental approach:

Binding parameters of [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) were determined in 10 peripheral tissues of WT and M1–M5 receptor KO mice. Competition between [3H]NMS and darifenacin (selective M3 receptor antagonist) was also measured

Key results:

There was an extensive loss of [3H]NMS-binding sites (maximal number of binding sites, Bmax) in heart and smooth muscle from M2KO mice, compared with WT mice. Smooth muscle from M3KO mice also showed a moderate loss of Bmax. Bmax fell in pancreas and bladder of M4KO mice and in prostate in M1KO and M3KO mice. There was a large loss of Bmax in exocrine and endocrine glands of M3KO mice with a moderate decrease in M2KO mice. Darifenacin inhibited specific [3H]NMS binding in submandibular gland and bladder of WT, M2KO and M3KO mice. Ki (inhibition constant) values for darifenacin in the submandibular gland were the same in WT and M2KO mice but increased in M3KO mice. However, Ki values in bladder were decreased in M2KO mice and increased in M3KO mice.

Conclusions and implications:

Single mAChR KO mice exhibit a loss of mAChR in peripheral tissues that generally paralleled the reported loss of function. Quantitative analysis of data, however, also suggested that, in some instances, normal expression of a receptor subtype depended on expression of other subtypes.  相似文献   

14.

Background:

Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood.

Methods:

In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder.

Results:

We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7.

Conclusions:

Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.  相似文献   

15.

Background:

One of the major causes of clinical trial termination is the liver toxicity induced by chemotherapeutic agents. Treatment with anticancer drugs like CB 1954 (5-(Aziridin-1-yl)-2,4-dinitrobenzamide) is associated with significant hepatotoxicity. Thymoquinone (TQ), extracted from Nigella sativa, is reported to possess anticancer and hepatoprotective effects. The aims of the present study were to use TQ to reduce hepatotoxicity associated with CB 1954 and to augment its anticancer activity against the resistant mouse mammary gland cell line (66 cl-4-GFP).

Method:

Balb/C mice were transplanted with the 66cl-4-GFP cell line and in vivo antitumor activity was assessed for CB 1954 (141 mg/kg), TQ (10 mg/kg), and a combination of CB 1954 and TQ. Changes in tumor size and body weight were measured for each treatment. Histological examination of tumors and liver tissue samples was performed using the standard hematoxylin/eosin staining protocol, and serum levels of the liver enzymes AST and ALT were used as biomarkers of hepatotoxicity.

Results:

Severe liver damage and elevated plasma levels of AST and ALT were observed in the group treated with CB 1954. Treatment of tumor-bearing mice with a combination of CB 1954 and TQ caused a significant regression in tumor size and induced extensive necrosis in these tumors. The combination also protected the liver from drug-induced damage and reduced the plasma levels of AST and ALT to their normal ranges.

Conclusion:

These results suggest that the use of TQ with CB 1954 can reduce CB 1954-induced hepatotoxicity and enhance its anticancer activity, indicating the potential use of this combination in clinical studies.  相似文献   

16.

BACKGROUND

Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist PD149163, known to increase PPI in rats.

METHODS

Baseline PPI and acoustic startle response were measured in WT and NT1 KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days.

RESULTS

Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice.

CONCLUSIONS

The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists.  相似文献   

17.

BACKGROUND AND PURPOSE

Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y1 and inhibition of Y2 receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown.

EXPERIMENTAL APPROACH

Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice.

KEY RESULTS

NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y1 receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y2 receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y1 and Y2 receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y1 and Y2 receptors. In Y1 receptor single KO mice, fear extinction was delayed and was unchanged in Y2 receptor KO mice. Deletion of NPY and particularly Y2 receptors resulted in a generalization of conditioned fear.

CONCLUSIONS AND IMPLICATIONS

Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y1 receptors, the pronounced phenotype of Y1Y2 receptor double KO mice suggests a synergistic role of Y2 receptors in fear acquisition and in fear extinction.  相似文献   

18.
19.

Background:

Fragile X syndrome (FXS) is the most common known inherited form of intellectual disability and the single genomic cause of autism spectrum disorders. It is caused by the absence of a fragile X mental retardation gene (Fmr1) product, FMRP, an RNA-binding translation suppressor. Elevated rates of protein synthesis in the brain and an imbalance between synaptic signaling via glutamate and γ-aminobutyric acid (GABA) are both considered important in the pathogenesis of FXS. In a mouse model of FXS (Fmr1 knockout [KO]), treatment with R-baclofen reversed some behavioral and biochemical phenotypes. A remaining crucial question is whether R-baclofen is also able to reverse increased brain protein synthesis rates.

Methods:

To answer this question, we measured regional rates of cerebral protein synthesis in vivo with the L-[1-14C]leucine method in vehicle- and R-baclofen–treated wildtype and Fmr1 KO mice. We further probed signaling pathways involved in the regulation of protein synthesis.

Results:

Acute R-baclofen administration corrected elevated protein synthesis and reduced deficits on a test of social behavior in adult Fmr1 KO mice. It also suppressed activity of the mammalian target of rapamycin pathway, particularly in synaptosome-enriched fractions, but it had no effect on extracellular-regulated kinase 1/2 activity. Ninety min after R-baclofen treatment, we observed an increase in metabotropic glutamate receptor 5 expression in the frontal cortex, a finding that may shed light on the tolerance observed in human studies with this drug.

Conclusions:

Our results suggest that treatment via activation of the GABA (GABA receptor subtype B) system warrants further study in patients with FXS.  相似文献   

20.
Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting, high pressure liquid chromatography coupled with electrochemical detection or mass spectrometry, and Western blot. Results reveal that CB1 and CB2 cannabinoid receptor signaling is not necessary for the maintenance of a normally functioning NSDA neuronal system. Mice lacking CB1 and CB2 receptors were found to be equally susceptible to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). These studies support the use of CB1/CB2 KO mice for investigating the cannabinoid receptor-mediated regulation of the NSDA neuronal system in models of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号