首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiographic imaging of large patients is compromised by x-ray scatter. Optimization of digital x-ray imaging systems used for projection radiography requires the use of the best possible antiscatter grid. The performance of antiscatter grids used in conjunction with digital x-ray imaging systems can be characterized through measurement of the signal-to-noise ratio (SNR) improvement factor (K(SNR)). The SNR improvement factor of several linear, focused antiscatter grids was determined from measurements of the fundamental primary and scatter transmission fraction measurements of the grids as well as the inherent scatter-to-primary ratio (SPR) of the x-ray beam and scatter phantom. The inherent SPR and scatter transmission fraction was measured using a graduated lead beam stop method. The K(SNR) of eight grids with line rates (N) in the range 40 to 80 cm(-1) and ratios (r) in the range 8:1 to 15:1 was measured. All of the grids had fiber interspace material and carbon-fiber covers. The scatter phantom used was Solid Water(R) with thickness 10 to 50 cm, and a 30 x 30 cm(2) field of view was used. All measurements were acquired using a 104 kVp x-ray beam. The SPR of the non-grid imaging condition ranged from 2.55 for the 10 cm phantom to 25.9 for the 50 cm phantom. The scatter transmission fractions ranged from a low of 0.083 for the N50 r15 grid to a high of 0.22 for the N40 r8 grid and the primary transmission fractions ranged from a low of 0.69 for the N80 r15 grid to 0.76 for the N40 r8 grid. The SNR improvement factors ranged from 1.2 for the 10 cm phantom and N40 r8 grid to 2.09 for the 50 cm phantom and the best performing N50 r15, N44 r15 and N40 r14 grids.  相似文献   

2.
The aim of this work was to study the dependence of image quality in digital chest and pelvis radiography on tube voltage, and to explore correlations between clinical and physical measures of image quality. The effect on image quality of tube voltage in these two examinations was assessed using two methods. The first method relies on radiologists' observations of images of an anthropomorphic phantom, and the second method was based on computer modeling of the imaging system using an anthropomorphic voxel phantom. The tube voltage was varied within a broad range (50-150 kV), including those values typically used with screen-film radiography. The tube charge was altered so that the same effective dose was achieved for each projection. Two x-ray units were employed using a computed radiography (CR) image detector with standard tube filtration and antiscatter device. Clinical image quality was assessed by a group of radiologists using a visual grading analysis (VGA) technique based on the revised CEC image criteria. Physical image quality was derived from a Monte Carlo computer model in terms of the signal-to-noise ratio, SNR, of anatomical structures corresponding to the image criteria. Both the VGAS (visual grading analysis score) and SNR decrease with increasing tube voltage in both chest PA and pelvis AP examinations, indicating superior performance if lower tube voltages are employed. Hence, a positive correlation between clinical and physical measures of image quality was found. The pros and cons of using lower tube voltages with CR digital radiography than typically used in analog screen-film radiography are discussed, as well as the relevance of using VGAS and quantum-noise SNR as measures of image quality in pelvis and chest radiography.  相似文献   

3.
A Monte Carlo computational model of a fluoroscopic imaging chain was used for deriving optimal technique factors for paediatric fluoroscopy. The optimal technique was defined as the one that minimizes the absorbed dose (or dose rate) in the patient with a constraint of constant image quality. Image quality was assessed for the task of detecting a detail in the image of a patient-simulating phantom, and was expressed in terms of the ideal observer's signal-to-noise ratio (SNR) for static images and in terms of the accumulating rate of the square of SNR for dynamic imaging. The entrance air kerma (or air kerma rate) and the mean absorbed dose (or dose rate) in the phantom quantified radiation detriment. The calculations were made for homogeneous phantoms simulating newborn, 3-, 10- and 15-year-old patients, barium and iodine contrast material details, several x-ray spectra, and for imaging with or without an antiscatter grid. The image receptor was modelled as a CsI x-ray image intensifier (XRII). For the task of detecting low- or moderate-contrast iodine details, the optimal spectrum can be obtained by using an x-ray tube potential near 50 kV and filtering the x-ray beam heavily. The optimal tube potential is near 60 kV for low- or moderate-contrast barium details, and 80-100 kV for high-contrast details. The low-potential spectra above require a high tube load, but this should be acceptable in paediatric fluoroscopy. A reasonable choice of filtration is the use of an additional 0.25 mm Cu, or a suitable K-edge filter. No increase in the optimal tube potential was found as phantom thickness increased. With the constraint of constant low-contrast detail detectability, the mean absorbed doses obtained with the above spectra are approximately 50% lower than those obtained with the reference conditions of 70 kV and 2.7 mm Al filter. For the smallest patient and x-ray field size, not using a grid was slightly more dose-efficient than using a grid, but when the patient size and field size were increased a fibre interspaced grid resulted in lower doses than imaging without a grid. For a 15-year-old patient the mean absorbed doses were up to 40% lower with this grid than without the grid.  相似文献   

4.
The scanning-beam digital x-ray (SBDX) system uses an inverse geometry, narrow x-ray beam, and a 2-mm thick CdTe detector to improve the dose efficiency of the coronary angiographic procedure. Entrance exposure and large-area iodine signal-to-noise ratio (SNR) were measured with the SBDX prototype and compared to that of a clinical cardiac interventional system with image intensifier (II) and charge coupled device (CCD) camera (Philips H5000, MRC-200 x-ray tube, 72 kWp max). Phantoms were 18.6-35.0 cm acrylic with an iohexol-equivalent disk placed at midthickness (35 mg/cm2 iodine radiographic density). Imaging was performed at 15 frame/s, with the disk at mechanical isocenter and an 11-cm object-plane field width. The II/CCD system was operated in cine mode with automatic exposure control. With the SBDX prototype at maximum x-ray output (120 kVp, 24.3 kWp), the SBDX SNR was 107%-69% of the II/CCD SNR, depending on phantom thickness, and the SBDX entrance exposure rate was 10.7-9.3 R/min (9.4-8.2 cGy/min air kerma). For phantoms where an equal-kVp imaging comparison was possible (> or = 23.3 cm), the SBDX SNR ranged from 47% to 69% of the II/CCD SNR while delivering 6% to 9% of the II/CCD entrance exposure rate. From these measurements it was determined that the relative SBDX entrance exposure at equal SNR would be 31%-16%. Results were consistent with a model for relative entrance exposure at equal SNR, which predicted a 3-7 times reduction in entrance exposure due to SBDX's comparatively low scatter fraction (5.5%-8.1% measured, including off-focus radiation), high detector detective quantum efficiency (66%-73%, measured from 70 to 120 kVp), and large entrance field area (1.7x - 2.3x, for the same object-plane field width). With improvements to the system geometry, detector, and x-ray source, SBDX technology is projected to achieve conventional cine-quality SNR over a full range of patient thicknesses, with 5-10 times lower skin dose.  相似文献   

5.
The detective quantum efficiency (DQE) and the effective DQE (eDQE) are relevant metrics of image quality for digital radiography detectors and systems, respectively. The current study further extends the eDQE methodology to technique optimization using a new metric of the effective dose efficiency (eDE), reflecting both the image quality as well as the effective dose (ED) attributes of the imaging system. Using phantoms representing pediatric, adult and large adult body habitus, image quality measurements were made at 80, 100, 120 and 140 kVp using the standard eDQE protocol and exposures. ED was computed using Monte Carlo methods. The eDE was then computed as a ratio of image quality to ED for each of the phantom/spectral conditions. The eDQE and eDE results showed the same trends across tube potential with 80 kVp yielding the highest values and 120 kVp yielding the lowest. The eDE results for the pediatric phantom were markedly lower than the results for the adult phantom at spatial frequencies lower than 1.2-1.7 mm(-1), primarily due to a correspondingly higher value of ED per entrance exposure. The relative performance for the adult and large adult phantoms was generally comparable but affected by kVps. The eDE results for the large adult configuration were lower than the eDE results for the adult phantom, across all spatial frequencies (120 and 140 kVp) and at spatial frequencies greater than 1.0 mm(-1) (80 and 100 kVp). Demonstrated for chest radiography, the eDE shows promise as an application-specific metric of imaging performance, reflective of body habitus and radiographic technique, with utility for radiography protocol assessment and optimization.  相似文献   

6.
As multidetector computed tomography (CT) serves as an increasingly frequent diagnostic modality, radiation risks to patients became a greater concern, especially for children due to their inherently higher radiosensitivity to stochastic radiation damage. Current dose evaluation protocols include the computed tomography dose index (CTDI) or point detector measurements using anthropomorphic phantoms that do not sufficiently provide accurate information of the organ-averaged absorbed dose and corresponding effective dose to pediatric patients. In this study, organ and effective doses to pediatric patients under helical multislice computed tomography (MSCT) examinations were evaluated using an extensive series of anthropomorphic computational phantoms and Monte Carlo radiation transport simulations. Ten pediatric phantoms, five stylized (equation-based) ORNL phantoms (newborn, 1-year, 5-year, 10-year, and 15-year) and five tomographic (voxel-based) UF phantoms (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) were implemented into MCNPX for simulation, where a source subroutine was written to explicitly simulate the helical motion of the CT x-ray source and the fan beam angle and collimator width. Ionization chamber measurements were performed and used to normalize the Monte Carlo simulation results. On average, for the same tube current setting, a tube potential of 100 kVp resulted in effective doses that were 105% higher than seen at 80 kVp, and 210% higher at 120 kVp regardless of phantom type. Overall, the ORNL phantom series was shown to yield values of effective dose that were reasonably consistent with those of the gender-specific UF phantom series for CT examinations of the head, pelvis, and torso. However, the ORNL phantoms consistently overestimated values of the effective dose as seen in the UF phantom for MSCT scans of the chest, and underestimated values of the effective dose for abdominal CT scans. These discrepancies increased with increasing kVp. Finally, absorbed doses to select radiation sensitive organs such as the gonads, red bone marrow, colon, and thyroid were evaluated and compared between phantom types. Specific anatomical problems identified in the stylized phantoms included excessive pelvic shielding of the ovaries in the female phantoms, enhanced red bone marrow dose to the arms and rib cage for chest exams, an unrealistic and constant torso thickness resulting in excessive x-ray attenuation in the regions of the abdominal organs, and incorrect positioning of the thyroid within the stylized phantom neck resulting in insufficient shielding by clavicles and scapulae for lateral beam angles. To ensure more accurate estimates of organ absorbed dose in multislice CT, it is recommended that voxel-based phantoms, potentially tailored to individual body morphometry, be utilized in any future prospective epidemiological studies of medically exposed children.  相似文献   

7.
Phototimer setup for CR imaging   总被引:4,自引:0,他引:4  
A study was performed to investigate the feasibility of using the standard deviation (sigma) of the pixel values in a computed radiography (CR) image and a measure of the median incident exposure on the imaging plate (IP) as parameters for setting up phototimers in a CR system. Slabs of Lucite 4-, 6-, and 8-in.-thick were imaged with a CR system at 70, 90, and 125 kVp at various mA s values both with grid and without grid. Incident IP exposures were measured with an ionization chamber. Images were analyzed on a workstation. The sigma's in the "flat field" images were found to be approximately related to the mean incident exposure E by the relationship: sigma is proportional to E(-1/2), indicating the quantum-noise-limited operation of the system. Derived relationships between the reading sensitivity of the (IP) reader (S number) and sigma can be used to obtain images with a specific noise level. At our institution, where a 400 speed screen-film system is used for general radiography and 200 speed for chest radiography, radiologists generally find CR image quality acceptable when sigma < or = 11 (S< or =400) for general radiography (50-90 kVp), and sigma < or =8 (S< or =200) for chest radiography (125 kVp). However, factors other than the amount of x-ray quanta that form the useful image, such as the image processing mode and the amount of collimation, may affect both the sensitivity value and the image quality.  相似文献   

8.
In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52 degrees and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI(100) measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ dose. Per cent differences in organ dose between the stylized and tomographic phantoms at 120 kVp and 12 mm collimator setting ranged from -25% (skin) to +164% (muscle) for head exams, -92% (thyroid) to +98% (ovaries) for chest exams, -144% (uterus) to +112% (ovaries) for abdominal exams, -98% (SI wall) to +20% (thymus) for pelvic exams and -60% (extrathoracic airways) to +13% (ovaries) for CAP exams. Better agreement was seen between the two phantom types for organs entirely within the scan field. In these cases, corresponding per cent differences in organ absorbed dose did not vary more than 17%. For all scans, the effective dose was found to range approximately 1-13 mSv across the scan parameters and scan regions. The largest effective dose occurred for CAP scans at 120 kVp.  相似文献   

9.
A computer program has been developed to model chest radiography. It incorporates a voxel phantom of an adult and includes antiscatter grid, radiographic screen, and film. Image quality is quantified by calculating the contrast (deltaOD) and the ideal observer signal-to-noise ratio (SNR(I)) for a number of relevant anatomical details at various positions in the anatomy. Detector noise and system unsharpness are modeled and their influence on image quality is considered. A measure of useful dynamic range is computed and defined as the fraction of the image that is reproduced at an optical density such that the film gradient exceeds a preset value. The effective dose is used as a measure of the radiation risk for the patient. A novel approach to patient dose and image quality optimization has been developed and implemented. It is based on a reference system acknowledged to yield acceptable image quality in a clinical trial. Two optimizations schemes have been studied, the first including the contrast of vessels as measure of image quality and the second scheme using also the signal-to-noise ratio of calcifications. Both schemes make use of our measure of useful dynamic range as a key quantity. A large variety of imaging conditions was simulated by varying the tube voltage, antiscatter device, screen-film system, and maximum optical density in the computed image. It was found that the optical density is crucial in screen-film chest radiography. Significant dose savings (30%-50%) can be accomplished without sacrificing image quality by using low-atomic-number grids with a low grid ratio or an air gap and more sensitive screen-film system. Dose-efficient configurations proposed by the model agree well with the example of good radiographic technique suggested by the European Commission.  相似文献   

10.
A Monte Carlo based computer model of the x-ray imaging system was used to investigate how various image quality parameters of interest in chest PA radiography and the effective dose E vary with tube voltage (90-150 kV), additional copper filtration (0-0.5 mm), anti-scatter method (grid ratios 8-16 and air gap lengths 20-40 cm) and patient thickness (20-28 cm) in a computed radiography (CR) system. Calculated quantities were normalized to a fixed value of air kerma (5.0 microGy) at the automatic exposure control chambers. Soft-tissue nodules were positioned at different locations in the anatomy and calcifications in the apical region. The signal-to-noise ratio, SNR, of the nodules and the nodule contrast relative to the contrast of bone (C/C(B)) as well as relative to the dynamic range in the image (C(rel)) were used as image quality measures. In all anatomical regions, except in the densest regions in the thickest patients, the air gap technique provides higher SNR and contrast ratios than the grid technique and at a lower effective dose E. Choice of tube voltage depends on whether quantum noise (SNR) or the contrast ratios are most relevant for the diagnostic task. SNR increases with decreasing tube voltage while C/C(B) increases with increasing tube voltage.  相似文献   

11.
Xu T  Ducote JL  Wong JT  Molloi S 《Medical physics》2006,33(6):1612-1622
The feasibility of a real-time dual-energy imaging technique with dynamic filtration using a flat panel detector for quantifying coronary arterial calcium was evaluated. In this technique, the x-ray beam was switched at 15 Hz between 60 kVp and 120 kVp with the 120 kVp beam having an additional 0.8 mm silver filter. The performance of the dynamic filtration technique was compared with a static filtration technique (4 mm Al+0.2 mm Cu for both beams). The ability to quantify calcium mass was evaluated using calcified arterial vessel phantoms with 20-230 mg of hydroxylapatite. The vessel phantoms were imaged over a Lucite phantom and then an anthropomorphic chest phantom. The total thickness of Lucite phantom ranges from 13.5-26.5 cm to simulate patient thickness of 16-32 cm. The calcium mass was measured using a densitometric technique. The effective dose to patient was estimated from the measured entrance exposure. The effects of patient thickness on contrast-to-noise ratio (CNR), effective dose, and the precision of calcium mass quantification (i.e., the frame to frame variability) were studied. The effects of misregistration artifacts were also measured by shifting the vessel phantoms manually between low- and high-energy images. The results show that, with the same detector signal level, the dynamic filtration technique produced 70% higher calcium contrast-to-noise ratio with only 4% increase in patient dose as compared to the static filtration technique. At the same time, x-ray tube loading increased by 30% with dynamic filtration. The minimum detectability of calcium with anatomical background was measured to be 34 mg of hydroxyapatite. The precision in calcium mass measurement, determined from 16 repeated dual-energy images, ranges from 13 mg to 41 mg when the patient thickness increased from 16 to 32 cm. The CNR was found to decrease with the patient thickness linearly at a rate of (-7%/cm). The anatomic background produced measurement root-mean-square (RMS) errors of 13 mg and 18 mg when the vessel phantoms were imaged over a uniform (over the rib) and nonuniform (across the edge of rib) bone background, respectively. Misregistration artifacts due to motions of up to 1.0 mm between the low- and high-energy images introduce RMS error of less than 4.3 mg, which is much smaller than the frame to frame variability and the measurement error due to anatomic background. The effective dose ranged from 1.1 to 6.6 microSv for each dual-energy image, depending on patient thickness. The study shows that real-time dual-energy imaging can potentially be used as a low dose technique for quantifying coronary arterial calcium.  相似文献   

12.
The relative dose efficiencies (RDE) of various antiscatter grids and air gaps were determined for conditions simulating those found in pediatric radiography, using phantoms representing a newborn child, a 5-yr-old and a 10-yr-old child. Our data indicate than an air gap is best for the newborn, due to the low levels of scatter. The 8:1 fiber grid or 15.2-cm air gap without a grid can improve dose efficiency (DE) for the 5-yr-old child by 20%-25% relative to the 3.3-cm air gap and no-grid technique, while for the 10-yr-old child, DE can be improved by 40% with an 8:1 fiber grid.  相似文献   

13.
Previously, we have used an anthropomorphic chest phantom to study scatter reduction in digital chest radiography. Image metrics, such as scatter fractions, contrast, noise, and resolution, are not easily measured due to the anatomical structure in the phantom. A geometric chest phantom, recently developed for quality control purposes, offers the possibility of being used to calculate image quality measurements. Here, we compare the scatter properties of the two phantoms to determine if the geometric phantom can be used in our studies of scatter compensation techniques. A calibrated photostimulable phosphor system was used to acquire images of the two phantoms. An array of beam stops was placed in front of each phantom to calculate scatter fractions. Each phantom had approximately 2 in. of polystyrene material added to the posterior to increase scatter fractions to those normally seen in patients. Exposure parameters were 300 mA for 0.009 sec with a source to image distance of 100 cm. Energies were varied from 60 to 130 kVp. Scatter fractions were determined for different areas of anatomy for each energy and each phantom. For all energies examined, the two phantoms compare well for scatter fractions in each of six regions. For example, at 95 kVp, the geometric phantom had average scatter fractions of 0.72 and 0.88 in the lung and mediastinum regions, respectively. These values were 0.74 and 0.90 for the anatomic phantom. For comparison, measurements of scatter fractions in patients at these values have been reported as 0.65 and 0.90 for the lung and mediastinum regions. The geometric phantom is an excellent tool which can be used in place of the anthropomorphic phantom for studies involving scatter compensation. In addition to having a gray level histogram typical of a human chest, this phantom has uniform regions where image quality measurements can be calculated.  相似文献   

14.
Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using a FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data acquisition rate of 7.5 frames/s. 10.5 and 14.5 cm diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180-200 microm to 355-425 microm, were used to simulate MCs. MCs of the same size were arranged to form a 5 x 5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5 x, 1x, and 2x mean glandular dose limit for 10.5 cm phantom and with 1x, 2x, and 4x for 14.5 cm phantom. A Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of the CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs was computed and plotted as a function of the MGD, the kVp, and the average MC size. The results showed that the MC visibility increased with the MGD significantly but decreased with the breast size. The results also showed that the x-ray tube voltage affects the detection of MCs under different circumstances. With a 50% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 348(+/-2), 288(+/-7), 257(+/-2) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 355 (+/-1), 307 (+/-7), 275 (+/-5) microm at 6, 12, and 24 mGy, respectively. With a 75% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 367 (+/-1), 316 (+/-7), 265 (+/-3) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 377 (+/-3), 334 (+/-5), 300 (+/-2) microm at 6, 12, and 24 mGy, respectively.  相似文献   

15.
Computer Analysis of Mammography Phantom Images (CAMPI) is a method for making quantitative measurements of image quality. This article reports on a recent application of this method to a prototype full-field digital mammography (FFDM) machine. Images of a modified ACR phantom were acquired on the General Electric Diagnostic Molybdenum Rhodium (GE-DMR) FFDM machine at a number of x-ray techniques, both with and without the scatter reduction grid. The techniques were chosen so that one had sets of grid and non-grid images with matched doses (200 mrads) and matched gray-scale values (1500). A third set was acquired at constant 26 kVp and varying mAs for both grid conditions. Analyses of the images yielded signal-to-noise-ratio (SNR), contrast and noise corresponding to each target object, and a non-uniformity measure. The results showed that under conditions of equal gray-scale value the grid images were markedly superior, albeit at higher doses than the non-grid images. Under constant dose conditions, the non-grid images were slightly superior in SNR (7%) but markedly less uniform (60%). Overall, the grid images had substantially greater contrast and superior image uniformity. These conclusions applied to the whole kVp range studied for the Mo-Mo target filter combination and 4 cm of breast equivalent material of average composition. These results suggest that use of the non-grid technique in digital mammography with the GE-DMR-FFDM unit, is presently not warranted. With improved uniformity correction procedure, this conclusion would change and one should be able to realize a 14% reduction in patient dose at the same SNR by using a non-grid technique.  相似文献   

16.
The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values published by the UK's ImPACT group for a scan using an equivalent scanner, kVp, collimation, pitch and mAs. The CT source model was shown to calculate both a relative and absolute radiation dose distribution throughout the entire volume in a patient-specific matrix geometry. Results of initial testing are promising and application to patient models was shown to be feasible.  相似文献   

17.
The computed tomography (CT) radiation dose to pediatric patients has received considerable attention recently. Moreover, it is important to be able to determine CT radiation doses for various patient sizes ranging from infants to large adults. The current AAPM protocol only measures CT radiation dose using a 16 cm acrylic phantom to represent an adult head and a 32 cm acrylic phantom to represent an adult body. The goal of this paper is to study the dependence of the computed tomography dose index (CTDI) upon the size of the phantom, the kVp selected and the scan mode employed. Our measurements were done on phantom sizes ranging from 6 cm to 32 cm. The x-ray tube potential ranged from 80 to 140 kVp. The scan modes utilized for the measurements included: consecutive axial scans, single-slice helical scans with variable pitch and multislice helical scans with variable pitch. The results were consolidated into simplified equations which related the phantom diameter and kVp to the measured CTDI. Some generalizations were made about the relationship between the scan modes of the various CT units to the measured radiation doses. The CTDI appears to be an exponential function of phantom diameter. For the same kVp and mAs, the radiation doses for smaller phantoms are much greater than for larger sizes. The derived relationship can be used to estimate the radiation doses for a variety of scan conditions and modes from measurements with the two standard reference phantoms. A method was also given for converting axial CT dose measurements to appropriate MSAD values for helical CT scans.  相似文献   

18.
Flat-panel (FP) based digital radiography systems have recently been introduced as a new and improved digital radiography technology; it is important to evaluate and compare this new technology with currently widely used conventional screen/film (SF) and computed radiography (CR) techniques. In this study, the low-contrast performance of an amorphous silicon/cesium iodide (aSi/Csl)-based flat-panel digital chest radiography system is compared to those of a screen/film and a computed radiography system by measuring their contrast-detail curves. Also studied were the effects of image enhancement in printing the digital images and dependence on kVp and incident exposure. It was found that the FP system demonstrated significantly better low-contrast performance than the SF or CR systems. It was estimated that a dose savings of 70%-90% could be achieved to match the low-contrast performance of the FP images to that of the SF images. This dose saving was also found to increase with the object size. No significant difference was observed in low-contrast performances between the SF and CR systems. The use of clinical enhancement protocols for printing digital images was found to be essential and result in better low-contrast performance. No significant effects were observed for different kVps. From the results of this contrast-detail phantom study, the aSi/CsI-based flat-panel digital chest system should perform better under clinical situations for detection of low-contrast objects such as lung nodules. However, proper processing prior to printing would be essential to realizing this better performance.  相似文献   

19.
目的对比研究移动计算机X射线摄影(CR)与移动数字化X射线摄影(DR)在床旁胸部摄影中的临床应用价值。方法随机抽取移动CR与移动DR床旁胸部摄影胸片各200张,对2种摄影方式所摄胸片的图像质量及胸内各结构的显示进行对比研究。移动CR和移动DR各200张床旁胸部摄影胸片,以其CT检查为"金标准"进行对照,将两组床旁胸片显示的病灶清晰程度分为清晰、可见、模糊、隐约可见、未见5类。统计2组的例数,绘制接受者操作特征(ROC)曲线。结果图像质量:移动CR床旁胸部摄影所得胸片的甲级片率69.0%,乙级片率24.5%,丙级片率5.0%,废片率1.5%。移动DR床旁胸部摄影所得胸片的甲级片率83%,乙级片率16%,丙级片率1%,废片率0。对胸内各结构的显示:移动CR与移动DR床旁胸部摄影所得胸片对胸内各结构的显示率移动CR低于移动DR。对病灶的显示能力:200张移动CR胸片中,126例行CT检查,67例CT所显示的病灶中,移动CR能显示64例,3例未见病灶。200张移动DR胸片中,108例行CT检查,53例CT所显示的病灶中,移动DR能显示52例,1例未见病灶。移动CR与移动DR床旁胸部摄影ROC曲线下的面积分别为0.833和0.918。结论移动CR与移动DR床旁胸部摄影,移动DR摄影的影像质量、对胸内结构的显示及对病灶的显示能力均优于移动CR,在床旁胸部摄影中移动DR具有更高的应用价值。  相似文献   

20.
Solid phantoms are widely used in radiation therapy for both relative and reference dosimetry. Two water equivalent phantoms, RMI-457 Solid Water and Plastic Water, were evaluated for use in kilovoltage x-ray dosimetry in the energy range from 75 to 300 kVp. Relative and reference dosimetry measurements were performed in the solid phantoms and compared with water. The results indicate that RMI-457 Solid Water could be used for output factor determination for all energies tested and the measurement of percentage depth doses for the 300 kVp x-ray beam, with data agreeing to within 1%, compared to the same measurements in water. For the same criteria, Plastic Water could only be used for output factor determination of the 300 kVp x-ray beam. The superior agreement of the calculated mass-energy absorption coefficients for Solid Water and water, as compared to Plastic Water and water was consistent with the experimental results. Reference dosimetry is not recommended with the solid phantoms for the energies studied due to the lack of published correction factors. It is recommended that any solid phantom be tested by comparison with water in the same manner before being used for the dosimetry of kilovoltage x-ray beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号