首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p53 is a tumor suppressor protein with numerous biological functions including transformation, regulation of cell growth, differentiation and apoptosis. The TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in various transformed cell lines. We investigated the effects of combining wild-type p53 gene transduction by adenoviral infection (Ad-p53) with addition of TRAIL on cell death, expression levels of TRAIL receptors (TRAIL-R1, TRAIL-R2), FLICE inhibitory protein (FLIP) and X-linked inhibitor of apoptosis protein (XIAP) on human hepatocellular carcinoma (HCC) cell lines. HCC cell death was increased by combination of Ad-p53 infection and addition of TRAIL compared to either alone. Western blotting demonstrated decreased TRAIL-R1 and TRAIL-R2 levels after infection with Ad-p53. FLIP levels decreased in Huh7 cells and Hep3B cells, and XIAP levels decreased in all three HCC cell lines after infection with Ad-p53. Thus, death of HCC cells due to combined p53 gene transduction and exogenous TRAIL may be due to down regulation of FLIP or XIAP.  相似文献   

3.
Human endometrial epithelial cells undergo apoptosis immediately before the menstrual period. Apoptotic signalling was analysed using human endometrial tissue and a human endometrial carcinoma cell line (HHUA). Activity levels of caspase-3, -8, and -9 were elevated in human endometrium during the late secretory phase and in HHUA cells incubated with an anti-Fas monoclonal antibody (mAb). Fas-mediated apoptosis of HHUA cells was blocked by prior exposure to inhibitors of caspase-9, -8 and -3. In HHUA cells treated with anti-Fas mAb, a release of cytochrome c was detected in the cytosolic fraction, in addition a full-length Bid was degraded. Full-length FLIP(L) (p55) was degraded during apoptosis, and p29 (regarded as the product of p55 cleavage) appeared instead of FLIP(L). In normal human endometrial tissue, Bid degradation was also observed in a cyclic manner with a peak during the early secretory phase of the menstrual cycle. Furthermore, the release of cytochrome c was seen in the early secretory phase. However, expression of FLIP(S) was only observed during the menstrual cycle in normal endometrial tissue. We concluded that the main apoptotic signalling in both normal human endometrial tissue and HHUA cells exposed to anti-Fas mAb is the mitochondrial pathway via Bid degradation. Although the function of FLIP is still unknown on normal endometrial tissue, it may be regulated by FLIP(L) expression on HHUA cells derived from human endometrial carcinoma.  相似文献   

4.
Human hepatocellular carcinomas (HCCs) show resistance to apoptosis mediated by several death receptors. Because cellular FLICE/caspase-8-inhibitory protein (cFLIP) is a recently identified intracellular inhibitor of caspase-8 activation that potently inhibits death signaling mediated by all known death receptors, including Fas, TNF-receptor (TNF-R), and TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs), we investigated the expression and function of cFLIP in human HCCs. We found that cFLIP is constitutively expressed in all human HCC cell lines and is expressed more in human HCC tissues than in nontumor liver tissues. Metabolic inhibitors, actinomycin D (ActD) or cycloheximide (CHX), dramatically rendered HCC cells sensitive to Fas-mediated apoptosis. Neither caspase-8 nor caspase-3 was activated by agonistic anti-Fas antibody alone, but both caspases were activated by Fas stimulation in the presence of ActD or CHX, indicating the importance of caspase-8 inhibitors that are sensitive to metabolic inhibitors. Actually, cFLIP expression was decreased in ActD or CHX treatment. cFLIP down-regulation induced by cFLIP antisense oligodeoxynucleotides sensitized HLE cells to Fas, TNF-R, and TRAIL-R-mediated apoptosis. Furthermore, cFLIP over-expression activated nuclear factor (NF)-kappaB and cFLIP down-regulation attenuated NF-kappaB activation induced by TNF-alpha or TRAIL. Pretreatment with pan-caspase-inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD-fmk), restored NF-kappaB activity attenuated by cFLIP down-regulation. cFLIP expression was increased by TNF-alpha, TRAIL, or vascular endothelial growth factor but decreased by wortmannin, indicating that cFLIP expression is regulated by both the NF-kappaB and phosphatidylinostiol-3 kinase (PI-3)/Akt pathways. These results suggest that cFLIP plays an important role in cell survival not simply by inhibiting death-receptor-mediated apoptosis but also by regulating NF-kappaB activation in human HCCs.  相似文献   

5.
目的:探讨中药活性成分欧前胡素对肿瘤坏死因子相关凋亡诱导配体(TRAIL)的协同抗乳腺癌效应及分子机制。方法:将人乳腺癌细胞T-47D和MCF-7按对照组、欧前胡素组、TRAIL组、欧前胡素+TRAIL组及欧前胡素+TRAIL+死亡受体5(DR5)siRNA组进行分组,MTT法检测T-47D和MCF-7细胞活力,流式细胞术检测T-47D细胞凋亡和线粒体膜电位,Western blot实验和流式细胞术检测T-47D细胞表面DR5的表达水平及caspase-8、caspase-3的活化水平。结果:MTT实验结果显示,欧前胡素联合用药能显著提高各浓度TRAIL对T-47D和MCF-7细胞的杀伤活性;流式细胞术和Western blot结果显示欧前胡素处理能显著提高T-47D细胞DR5的表达水平和活性氧簇产生水平(P0.05)。另外,流式细胞术和Western blot结果还显示,欧前胡素联合用药能显著增强TRAIL促进T-47D细胞线粒体膜电位损伤、caspase-8和caspase-3活化及凋亡的作用。结论:欧前胡素通过上调乳腺癌细胞DR5的表达水平发挥对TRAIL的协同抗乳腺癌效应。  相似文献   

6.
The second mitochondria-derived activator of caspase, Smac, is an apoptosis-related protein. Smac releases inhibition of the IAP family from caspase-3 to induce apoptosis. Smac is expressed in some malignant tumor cells and is released from mitochondria into the cytosol after death receptor stimulation to promote apoptosis of tumor cells. In this study, we found down-regulated Smac protein expression in hepatocellular carcinoma (HCC) tissues, compared to that in non-tumor hepatic tissues. Simultaneously, caspase-3 expression also decreased in HCC tissues. HCC cell lines did not undergo apoptosis after TRAIL stimulation, although Smac was expressed in these HCC cells. Ectopic Smac alone did not induce cell death, but could sensitize HCC cells to TRAIL stimulation. With over-expression of Smac in HCC cells, TRAIL induced by 10% HCC cell death. The role of Smac in apoptosis signaling pathway in HCC cells warrants further study.  相似文献   

7.
Background:  Mast cells activation through FcɛRI cross-linking has a pivotal role in the initiation of allergic reactions. The influence of this activation on programmed cell death of human mast cells has not yet been clarified. This study evaluates the influence of IgE-dependent activation alone and in synergy with TRAIL on the expression of molecules involved in the apoptotic signal transduction.
Methods:  Human cord blood derived mast cells (CBMC) were cultured with myeloma IgE followed by activation with anti-human IgE. The expression of proteins involved in apoptotic signal transduction was assessed by immunoblot analysis. To test the effect of activation on a pro-apoptotic stimulus, activated, IgE-treated and resting CBMC were incubated with TRAIL, or in a medium with suboptimal concentrations of stem cell factor (SCF).
Results:  In accordance with a previous study of ours, it was found that IgE-dependent activation increased TRAIL-induced caspase-8 and caspase-3 cleavage. However, it did not have a significant influence on CBMC death induced by SCF withdrawal. IgE-dependent activation increased the expression of FLIP and myeloid cell leukemia 1 (MCL-1) anti-apoptotic molecules as well as the pro-apoptotic one, BIM. In addition, a decrease in BID expression was observed. TRAIL could reverse the increase in FLIP but did not influence the upregulation of MCL-1 and of BIM.
Conclusions:  These findings suggest that IgE-dependent activation of human mast cells induces an increase in both pro-survival and pro-apoptotic molecules. We therefore hypothesized that IgE-dependent activation may regulate human mast cell apoptosis by fine-tuning anti-apoptotic and pro-apoptotic factors.  相似文献   

8.
目的:探讨吴茱萸碱对人肝癌Huh7细胞生长和凋亡的影响,阐明吴茱萸碱促进肿瘤坏死因子凋亡诱导配体(TRAIL)抗肿瘤活性的分子机制。方法:MTT法检测吴茱萸碱对Huh7细胞活力的影响;流式细胞术观察吴茱萸碱对细胞周期的阻滞;TUNEL染色法检测细胞凋亡的变化;Western blot实验测定细胞内细胞周期和凋亡相关蛋白的表达水平。结果:Huh7细胞经吴茱萸碱处理后,细胞活力明显下降(P0.05);同时,细胞发生G_2/M期阻滞,p27、cyclin B1、细胞分裂周期蛋白2(Cdc2)和p-Cdc2的蛋白水平上调(P0.05);吴茱萸碱能够诱导Huh7细胞发生凋亡,促进多聚ADP核糖聚合酶(PARP)和caspase-3的切割。当吴茱萸与TRAIL联用后,Huh7细胞活力明显下降,PARP和caspase-3的切割增加;另外,吴茱萸上调Huh7细胞中死亡受体5(DR5)的蛋白水平。结论:吴茱萸碱通过抑制细胞活力和阻滞细胞周期于G_2/M期而抑制细胞生长,并诱导Huh7细胞发生凋亡;上调DR5的表达水平可能与吴茱萸碱增强Huh7细胞对TRAIL的敏感性相关。  相似文献   

9.
Flavopiridol was one of the first cyclin-dependent kinase inhibitors demonstrated to have an antitumor effect in several cancer types. Here, we investigated the effects of flavopiridol on TNF-related apoptosis-inducing ligand (TRAIL) in the human hepatocellular carcinoma (HCC) cell lines HLE and HepG2, and evaluated the role of flavopiridol in apoptosis. To better understand the mechanism of increased TRAIL sensitivity in HCC cells, we determined the effect of flavopiridol on cell surface expression of TRAIL and TRAIL receptors using flow cytometry analysis. The levels of survivin, FLIP, Bcl-xL and X-chromosome-linked IAP (XIAP) in treated and untreated cells was also determined. Flavopiridol decreased cell viability in a dose-dependent manner in the two HCC cell lines tested. The pan-caspase inhibitor z-VAD-FMK did not inhibit the effect. However, subtoxic levels of flavopiridol dramatically enhanced TRAIL-induced apoptosis in both cells. Flavopiridol up-regulated TRAIL, TRAIL-R1 and TRAIL-R2 in both cell lines. In addition, flavopiridol down-regulated expression of survivin in both cell lines, and expression of FLIP and Bcl-xL were down-regulated in HLE cells. In summary, flavopiridol augmented TRAIL sensitivity by up-regulation of TRAIL receptors and down-regulation of survivin, FLIP and Bcl-xL. Thus, combining flavopiridol with a TRAIL agonist may prove to be an effective new strategy for treatment of HCC.  相似文献   

10.
11.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2 ligand selectively kills neoplastic cells, including thyroid carcinoma cells (Mitsiades et al: Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2000, 60:4122-41299). We investigated the mechanisms regulating Apo2L/TRAIL-induced apoptosis in thyroid carcinoma cells, as well as the impact of insulin-like growth factor (IGF)-1, interferon-gamma, and TNF-alpha. We found that the emergence of resistance to Apo2L/TRAIL, after prolonged incubation with this cytokine, was associated with increased levels of FLICE inhibitory protein (FLIP), and was overcome by cycloheximide and bisindolylmaleimide, that specifically down-regulated FLIP expression, as well as by transfection of a FLIP anti-sense oligonucleotide. IGF-1 activated Akt; up-regulated the caspase inhibitors FLIP, cIAP-2, XIAP, and survivin; and attenuated Apo2L/TRAIL-induced apoptosis. This effect was inhibited by the IGF-1 receptor neutralizing antibody aIR3, the PI-3K inhibitor wortmannin, and the heat shock protein-90 chaperone inhibitor geldanamycin. Transfection of constitutively active Akt protected from TRAIL. Conversely, interferon-gamma and TNF-alpha had a sensitizing effect. We conclude that FLIP may negatively regulate Apo2L/TRAIL-induced apoptosis in thyroid carcinomas. Microenvironmental paracrine survival factors, such as IGF-1, up-regulate caspase inhibitors, including FLIP, and protect from Apo2L/TRAIL in a PI-3K/Akt-dependent manner. T helper-1 cytokines and compounds that selectively abrogate the IGF-1 signaling pathway may be helpful adjunct agents in Apo2L/TRAIL-based anti-cancer therapeutic regimens.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted great attention as a promising anti-cancer reagent. Recombinant soluble TRAIL (rsTRAIL) derivatives induce apoptosis in various cancer cells, but not in most normal cells. However, a number of cancerous cell types are resistant to TRAIL cytotoxicity, limiting its application in cancer therapy. In the present study, we report that actinomycin D (Act D) pretreatment increases apoptosis in human neuroblastoma SH-SY5Y cells treated with rsTRAIL. Both caspase-9 and caspase-7, but not caspase-3, were activated during the apoptosis process. z-VAD-fmk, a pan-caspase inhibitor, only partially suppressed apoptosis of the cells, suggesting that the Act D-enhanced apoptosis of SH-SY5Y occurred via caspase-dependent and -independent manners. In cells pretreated with Act D, we found decreased mitochondrial transmembrane potential, high levels of reactive oxygen species (ROS), and up-regulated apoptotic-inducing factor (AIF). Cell death was blocked in cells stably transfected with AIF-siRNA plasmid. Taken together, these data indicate that Act D sensitizes SH-SY5Y cells to rsTRAIL-induced apoptosis via caspase activation, impairment of the mitochondrial membrane, release of ROS, and up-regulation of AIF expression. This study provides a novel strategy for the therapy of malignant neuroblastoma resistant to rsTRAIL cytotoxicity.  相似文献   

13.
Many malignant glioma cells express death receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), yet some of these cells are resistant to TRAIL. Here, we examined signaling events in TRAIL-induced apoptosis and searched for therapeutic agents that could overcome TRAIL resistance in glioma cells. TRAIL induced apoptosis through death receptor 5 (DR5) and was mediated by caspase-8-initiated extrinsic and intrinsic mitochondrial pathways in sensitive glioma cell lines. TRAIL also triggered apoptosis in resistant glioma cell lines through the same pathways, but only if the cells were pretreated with chemotherapeutic agents, cisplatin, camptothecin and etoposide. Previous studies suggested that this was due to an increase in DR5 expression in wild-type TP53 cells, but this mechanism did not account for cells with mutant TP53. Here, we show that a more general effect of these agents is to downregulate caspase-8 inhibitor c-FLIP(S) (the short form of cellular Fas-associated death domain-fike interleukin-1-converting enzyme-inhibitory protein) and up-regulate Bak, a pro-apoptotic Bcl-2 family member, independently of cell's TP53 status. Furthermore, we showed that TRAIL alone or in combination with chemotherapeutic agents, induced apoptosis in primary tumor cultures from patients with malignant gliomas, reinforcing the potential of TRAIL as an effective therapeutic agent for malignant gliomas.  相似文献   

14.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the latest members of the TNF superfamily known to induce apoptosis in a wide variety of tumor cells. Some cell types, however, are quite resistant to TRAIL. We investigated the effect of ectopic expression of Bcl-2 and Bcl-xL on TRAIL-induced apoptosis in human acute myelogenous leukemia HL-60 cells. We found that HL-60 cells, which express TRAIL receptors (also called death receptor, DR) DR4, DR5, and Dc (decoy) R2, are highly sensitive to TRAIL-induced cytotoxicity. Greater than 90% killing occurred within 24 h of TRAIL treatment. The expression of Bcl-2 and Bcl-xL, however, completely abolished the TRAIL-induced cytotoxic effects. Treatment of HL-60 cells with TRAIL induced caspase-8 activation within 2-4 h, but no activation could be seen in Bcl-2-expressing or Bcl-xL-expressing cells. TRAIL also induced cleavage of BID, which was also abolished by Bcl-2 and Bcl-xL. Similarly, TRAIL activated caspase-3 and caspase-7 in control cells but not in cells expressing Bcl-2 or Bcl-xL. Cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP), was abrogated by ectopic expression of Bcl-2 and Bcl-xL. Inhibition of caspases by the pan-caspase inhibitor, benzyloxycarbonyl-valine-alanine-aspartate-fluoromethylketone (zVAD-fmk) abolished the TRAIL-induced apoptosis. Overall, these results indicate that TRAIL-induced apoptosis involves activation of caspase-8, caspase-7, caspase-3, and BID cleavage, and Bcl-2 and Bcl-xL prevents TRAIL-induced apoptosis by abrogating caspase activation and BID cleavage.  相似文献   

15.
During inflammatory reactions in the central nervous system (CNS), resident macrophages, the microglia, are exposed to Th1 cell-derived cytokines and pro-apoptotic Fas ligand (FasL). Despite the presence of TNF-alpha and IFN-gamma, both being capable of sensitizing microglia to FasL, apoptosis of microglia is not a hallmark of inflammatory diseases of the CNS. In the present study, TGF-beta is found to counteract the effect of TNF-alpha and IFN-gamma to sensitize microglia to FasL-mediated apoptosis. Resistance to Fas-mediated apoptosis by TGF-beta does not correlate with a down-regulation of Fas expression. As a key inhibitor of Fas-mediated apoptosis, we found expression of the cellular FLICE-inhibitory protein (c-FLIP) to be induced by TGF-beta in resting as well as in activated microglia. Induction of FLIP was found to depend on a mitogen-activated protein kinase kinase (MKK)-dependent pathway as shown by the use of the specific MKK-inhibitor PD98059. The presence of FLIP strongly interfered with FasL-induced activation of caspase-8 and caspase-3 preventing subsequent cell death. The presented data provide the first evidence for a TGF-beta-mediated FLIP in macrophage-like cells and suggest a mode of action for the anti-apoptotic role of TGF-beta in the CNS.  相似文献   

16.
Newcastle disease virus (NDV) is a potential antitumor agent, and its antitumor effect has been evaluated in preclinical tests. However, the mechanisms of NDV‐based antitumor therapy are still not completely clear. In the present study we found that NDV‐stimulation enhanced the killing ability of mouse spleen natural killer (NK) cells towards mouse hepatoma cell lines, and tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL) plays an important role in this tumoricidal activity. NDV stimulation induced up‐regulation of TRAIL both at the mRNA and protein levels in NK cells. Blocking TRAIL by antibody (Ab) almost completely eliminated the killing effect of NK cells on hepatoma cell lines. Furthermore, neutralizing interferon (IFN)‐γ by Ab could inhibit TRAIL expression and tumoricidal activity of NDV‐stimulated NK cells. These results indicated a substantial role of TRAIL as an effector molecule in NDV‐induced NK cells mediated tumoricidal activity. The NDV stimulation triggered TRAIL expression in mouse spleen NK cells could be mediated by IFN‐γ induction. Anat Rec, 296:1552–1560, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Ewing's sarcoma cells are highly susceptible to apoptosis via tumor necrosis factor apoptosis-inducing ligand (TRAIL). Resistance to TRAIL has been linked to deficient expression of caspase-8 in vitro. Here, we report on the status of caspase-8 expression in tumors from patients with Ewing's sarcoma, the effect of interferon-gamma on caspase-8 expression and apoptosis, and the role of caspase-8 for TRAIL- and chemotherapy-mediated apoptosis in Ewing's sarcoma. Using immunohistochemistry, we show that low expression of caspase-8 is seen in about 24% of tumors. Interferon-gamma induces expression of caspase-8 at concentrations achievable in humans and sensitizes cells to TRAIL. Transfection of wild type but not mutant caspase-8 into caspase-8-deficient Ewing's sarcoma cells restored sensitivity to TRAIL, indicating that up-regulation of caspase-8 is sufficient to restore TRAIL sensitivity. In contrast, no role for caspase-8 in chemotherapy-induced apoptosis was identified, because 1) transfection of caspase-8 or treatment with interferon-gamma did not alter the sensitivity of caspase-8-deficient cells to chemotherapeutics, 2) application of chemotherapy did not select for caspase-8-negative tumor cells in vivo, and 3) the caspase-8 status of tumors did not influence survival after chemotherapy-based protocols. In conclusion, our data provide a rationale for the inclusion of interferon-gamma in upcoming clinical trials with TRAIL.  相似文献   

18.
《Immunobiology》2017,222(11):998-1003
CD40 is a cell surface receptor which belongs to tumor necrosis factor receptor (TNFR) family members. It transmits signals that regulate diverse cellular responses such as proliferation, differentiation, adhesion molecule expression and apoptosis. Unlike other TNFR family members (TRAIL-R, Fas-R and TNFR1), the CD40 cytoplasmic tail lacks death domain. However, CD40 is capable of inducing apoptosis in different types of cancer cells including lymphoma. The apoptotic effect of CD40 is linked to the involvement of Fas, TRAIL or receptor interacting protein 1 (RIP1) kinase. We have previously shown that CD40 activation has anti-apoptotic or apoptotic effect in follicular lymphoma (FL) cell lines. In this study, we investigated the mechanism by which CD40 mediates apoptosis in a follicular lymphoma cell line, HF4.9. We show here that CD40-induced apoptosis was dependent on caspase-8 activation because caspase-8 specific inhibitor, Z-IETD-FMK completely prevented apoptosis. Therefore, the involvement of TRAIL, Fas and RIP1 in caspase-8 activation was examined. The exogenous TRAIL-induced apoptosis was fully prevented by anti-TRAIL neutralizing antibody. However, the antibody had no effect on CD40-induced apoptosis indicating that CD40 did not induce the expression of endogenous TRAIL in HF4.9 cells. Moreover, the cells were not sensitive to Fas-mediated apoptosis. Interestingly, RIP1 specific inhibitor, necrostatin-1 decreased CD40-induced apoptosis, which showed that RIP1 has a role in caspase-8 activation. In conclusion, the survival or apoptotic effects of CD40-mediated signaling might be related to the differentiation stages of FL cells.  相似文献   

19.
《Immunobiology》2017,222(2):198-205
Our previous study showed that TLR3 induces apoptosis via both death receptors and mitochondial in human endothelial cells. We report here that the activation of TLR4 induced dose- and time-dependent cell death in moncytic THP-1 cells. LPS treatment of THP-1 cells induced the activation of both caspase 8 and 9, suggesting the involvement of intrinsic and extrinsic apoptosis pathways. TNFα was induced by TLR4 activation at both mRNA and protein levels, but its neutralization did not down-regulated TLR4-induced cell death. TLR4 activation also induced the up-regulation of TRAIL and its receptors DR4 and DR5, and the neutralization of TRAIL ameliorated TLR4 induced apoptosis, suggesting the involvement of TRAIL and its receptors DR4 and DR5 in LPS-induced cell death. Meanwhile, LPS treatment down-regulated the expression of FLICE inhibitory protein (FLIP), a suppressor of death receptor-induced cell death. In addition, TLR4 activation down-regulated the anti-apoptotic protein bcl-2, and up-regulated the pro-apoptotic proteins Noxa and Puma, suggesting that mitochondrial apoptotic pathway was also involved in LPS-induced cell death. Furthermore, we found that TAP63α might confer to the activation of intrinsic and extrinsic apoptotic pathways. The treatment of THP-1 cells with LPS induced the translocation of TAP63α from cytoplasm to nucleus. Taken together, our study suggested that both death receptors and mitochondial were involved in TLR4-induced cell death, and TAP63α may be a target for the prevention of LPS-induced cell death.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) based strategy is a promising targeted therapeutic approach for the treatment of ovarian cancer. However, the effectiveness of the treatment remains limited due to the inherent or acquired resistance of tumor cells to TRAIL. Our previously study demonstrated that downregulation of NOB1 (NIN1/RPN12 binding protein 1 homolog) expression by a lentiviral short hairpin RNA (shRNA) delivery system (Lv/sh-NOB1) suppressed ovarian cancer growth. Here, Lv/sh-NOB1 and TRAIL were combined and tested the effects of this combination on ovarian cancer cells to identify more effective therapeutics against ovarian cancer by several in vitro experiments. Tumor growth ability in SKVO3 xenograft nude mice was also determined to define this combination treatment effect in tumorigenesis in vivo. In vitro assay showed that Lv/sh-NOB1 in combination with TRAIL treatment in ovarian cancer cell synergistically suppressed the proliferation and colony formation, as well as induced cell apoptosis and increased the activity of caspase-3, -8 and -9. In vivo assay showed that Lv/sh-NOB1 combination with TRAIL synergistically suppressed tumor growth of nude mice model. Importantly, we found that downregulation of NOB1 could upregulate DR5 expression and active MAPK pathway, which might contribute to increase sensitivity TRAIL to ovarian cancer cells. These findings suggested that Lv/sh-NOB1 combination with TRAIL treatment may be a potential treatment approach for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号