首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo regulation of plasma free fatty acids in insulin resistance   总被引:2,自引:0,他引:2  
Elevated plasma free fatty acid (FFA) concentrations as seen in obesity, insulin resistance, and type 2 diabetes are partly caused by impaired inhibition of intracellular lipolysis in adipose tissue, and this is considered to be part of the insulin resistance syndrome (IRS). Based on predicted insulin resistance at the level of intracellular lipolysis, patients with the IRS would loose weight by disinhibited lipolysis. Since this is not the case in clinical practice, impaired stimulation of intracellular lipolysis must also play a role. We studied acute plasma FFA changes, representing stimulation and inhibition of intracellular adipose tissue lipolysis, in obese patients with IRS and in healthy controls. Thirteen insulin-resistant (IR) subjects (7 men and 6 women) and 10 controls (6 men and 4 women) underwent a mental stress test (20 minutes) preceded by 60 minutes of rest. After mental stress, an oral glucose tolerance test (OGTT) was performed. Baseline FFA levels were higher in IR patients compared to controls (0.59 +/- 0.06 and 0.31 +/- 0.06 mmol/L, respectively; P =.004). During the 20 minutes of mental stress, FFAs increased significantly in IR subjects from 0.55 +/- 0.07 to 0.67 +/- 0.07 mmol/L (P <.001) and from 0.21 +/- 0.04 to 0.36 +/- 0.07 mmol/L in controls (P =.001). Although the absolute change of plasma FFA was not different, the relative increase was lower in IR subjects (28% +/- 7%) compared to controls (89 +/- 24%; P =.02). Despite the more pronounced mean maximal insulin concentration during the OGTT in IR subjects compared to controls (600.0 +/- 126.6 pmol/L and 208.1 +/- 30.0 pmol/L, respectively), the relative decrease of FFAs was lower in IR subjects (11% +/- 5% v 36% +/- 11% in controls after 30 minutes; P =.04). In conclusion, our study shows impaired acute responses of plasma FFAs upon stimulation by mental stress and inhibition by endogenous insulin in insulin resistance in vivo. The presence of both defects helps to understand weight maintenance in insulin resistance.  相似文献   

2.
OBJECTIVE: The regulation and function of systemic ghrelin levels appear to be associated with food intake and energy balance rather than GH. Since GH, in turn, acutely induces lipolysis and insulin resistance in skeletal muscle, we aimed to study the isolated and combined effects of GH, free fatty acids (FFAs) and insulin sensitivity on circulating ghrelin levels in human subjects. DESIGN: Seven GH-deficient patients (aged 37 +/- 4 years (mean +/- s.e.)) were studied on four occasions in a 2 x 2 factorial design with and without GH substitution and with and without administration of acipimox, which lowers FFA levels by inhibition of the hormone-sensitive lipase, in the basal state and during a hyperinsulinemic euglycemic clamp. RESULTS: Serum FFA levels decreased with acipimox administration irrespective of GH status. The GH-induced reduction in insulin sensitivity was countered by acipimox. Fasting ghrelin levels decreased insignificantly during GH administration alone, but were reduced by 33% during co-administration of GH and acipimox (Aci) (in ng/l): 860 +/- 120 (-GH - Aci), 711 +/- 130 (-GH + Aci), 806 +/- 130 (+GH - Aci), 574 +/- 129 (+GH + Aci), P < 0.01. The clamp was associated with a further, moderate lowering of ghrelin. GH and acipimox induced a reciprocal 25% increase in serum leptin levels (microg/l): 11.2 +/- 4.4 (-GH - Aci), 11.7 +/- 4.4 (-GH + Aci), 11.5 +/- 4.4 (+GH - Aci), 13.9 +/- 4.2 (+GH + Aci), P = 0.005. CONCLUSION: Our data suggest that antilipolysis via suppression of the hormone-sensitive lipase in combination with GH administration is associated with significant and reciprocal changes in ghrelin and leptin.  相似文献   

3.
Hepatic cirrhosis is frequently associated with glucose intolerance and insulin resistance, but the mechanisms underlying the insulin insensitivity are unknown. Plasma concentrations of nonesterified fatty acids (NEFA) are typically elevated in cirrhosis, and the glucose-fatty acid cycle provides a mechanism by which fatty acids may play a role in regulating glucose metabolism. We have therefore investigated the effect of acute inhibition of lipolysis, using the nicotinic acid analogue, acipimox, in 10 male patients with cirrhosis. All subjects were studied in the postabsorptive state after a 10- to 12-hour fast and were given either acipimox 250 mg or a placebo orally 2 hours before a 75-g oral glucose tolerance test (OGTT) and an infusion of insulin (50 mU/kg/h) and glucose (6 mg/kg/min) (insulin sensitivity tests [IST]). The drug was taken in a double-blind crossover design for each test. During the 2 hours following acipimox, there were rapid decreases in plasma NEFA, glycerol, and 3-hydroxybutyrate, confirming inhibition of lipolysis, while there were significant decreases in glucose, insulin, and C-peptide (P less than .001) compared with patients receiving the placebo. Acipimox blunted the increase in glucose after oral glucose loading and decreased incremental glucose concentration (from 579 +/- 76 to 445 +/- 65 mmol/min/L, P less than .02) and incremental insulin concentration (from 13.4 +/- 2.5 to 9.0 +/- 1.4 U/min/L, P = .056) in the OGTT. Improvements in classification of glucose tolerance were seen in five subjects. During the IST, significant reductions occurred in steady-state blood glucose (to 8.8 +/- 1 mmol/L, P less than .02) and C-peptide (to 3.0 +/- 0.5 nmol/L, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
CONTEXT: Metabolic abnormalities such as hypertriglyceridemia remain a challenge for optimizing long-term health in HIV-infected patients. OBJECTIVE: Elevation of free fatty acids (FFAs) may contribute to hyperlipidemia and insulin resistance in HIV. We evaluated the efficacy and safety of chronic inhibition of lipolysis in HIV-infected men and women with hypertrigyceridemia. We hypothesized that acipimox would lead to significant reductions in triglycerides and improved insulin sensitivity, compared with placebo. DESIGN: A 3-month, randomized, double-blind, controlled trial of acipimox (250 mg thrice daily) vs. placebo was conducted in 23 HIV-infected men and women with hypertriglyceridemia (>150 mg/dl), abnormal fat distribution, and no current lipid-lowering therapy. The primary outcome variable was triglyceride concentration, and insulin sensitivity measured by hyperinsulinemic euglycemic clamp was a secondary outcome. SETTING: The study was conducted at an academic medical center. RESULTS: Acipimox resulted in significant reductions in FFAs [mean change -0.38 (0.06) vs. 0.08 (0.06) mEq/liter with placebo, -68 vs. +17% change from mean baseline, P < 0.0001], decreased rates of lipolysis (P < 0.0001), and a median triglyceride decrease from 238 mg/dl at baseline to 190 mg/dl, compared with an increase from 290 to 348 mg/dl in the placebo group (P = 0.01). Acipimox improved insulin sensitivity [acipimox +2.31 (0.74) vs. placebo -0.21 (0.90) mg glucose per kilogram lean body mass per minute, or +31 vs. -2% change from mean baseline values, P = 0.04]. Improvements in insulin sensitivity were significantly correlated with reductions in FFAs (r = -0.62, P = 0.003) and lipolysis (r = -0.59, P = 0.005). CONCLUSIONS: Acipimox resulted in significant sustained reductions in lipolysis, improved glucose homeostasis, and significant but modest reductions in triglycerides in HIV-infected individuals with abnormal fat distribution and hypertriglyceridemia. Improvement in overall metabolic profile with acipimox suggests a potential clinical utility for this agent that requires further investigation.  相似文献   

5.
OBJECTIVE: To assess the acute regulation of leptin concentrations by insulin, glucose and free fatty acids (FFAs). DESIGN: Four protocols: saline control experiment (CON); hyperglycemic clamps (approximately 8.3 mmol/l, 120 min) after an overnight fast (12 FAST); after a 36 h fast (36 FAST); and after a 36 h fast during which Intralipid/heparin was given over the last 24 h (36 FAST+FFA). SUBJECTS: Lean, young, healthy volunteers; control group (n=6), experimental group (n=6). MEASUREMENTS: Serum leptin concentrations. RESULTS: Glucose and insulin concentrations were similar during the three clamp protocols. Average FFAs during the last 60 min of the clamp were 671+/-68 microM (CON),109+/-15 microM (12 FAST), 484+/-97 microM (36 FAST) and 1762+/-213 microM (36 FAST+FFA). Leptin concentrations decreased similarly during 36 FAST and 36 FAST+FFA. Leptin concentrations at 120 min (expressed as percentage of mean basal value) were 0.82+/-0.02 (CON), 0.93+/-0.08 (12 FAST) (P=0.29), 1.19+/-0.06 (36 FAST) (P<0.01) and 1.44+/-0.12 (36 FAST+FFA) (P<0.01). CONCLUSION: During a one-day fast leptin concentrations decrease regardless of maintainance of an isocaloric balance. During acute hyperinsulinemic hyperglycemia leptin concentrations increase only after a preceding fast. This increase was most pronounced during simultaneous elevation of FFAs. Overall, our findings are compatible with the hypothesis that leptin secretion may be coupled to triglyceride synthesis rather than to the absolute lipid content of the adipocyte. International Journal of Obesity (2001) 25, 138-142  相似文献   

6.
GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the antilipolytic drug acipimox, and compared the GHRP-2-induced GH release with the response to GHRH. The area under the curve (AUC) of the GH response after GHRP-2 alone was 4.8 times higher compared with GHRH alone (1834 +/- 255 vs. 382 +/- 78 microg/L.60 min, P: < 0.001). Acipimox, which reduced FFAs from 607 micromol/L to 180 micromol/L, increased the GH AUC to 1087 after GHRH and to 2956 microg/L.60 min after GHRP-2 (P: < 0.01). The AUC after acipimox/GHRP-2 were positively correlated with the AUC after GHRP-2 alone (r = 0.93, P: < 0.01); this was also observed between acipimox/GHRH and GHRH alone (r = 0.73, P: = 0.03). Significant negative correlations were observed between basal FFAs and AUC after GHRH or GHRP-2 after combining the data with and without acipimox (r = 0.58, P: = 0.01 and r = 0.48, P: = 0.04, respectively), and between basal FFAs and GH at t = 0 (r = -0.44, P: = 0.001). Interestingly, GHRP-2 administration was followed by a significant early rise in plasma FFAs by 60% (P = 0.01), indicating an acute lipolytic effect. In conclusion, reduction of circulating FFAs strongly enhances GHRP-2-stimulated GH release in elderly men. The data indicate that the decreased GH release associated with aging can be reversed by acipimox and that the pituitary GH secretory capacity in elderly men is still sufficient.  相似文献   

7.
A single session of exercise several hours before a high-fat meal reduces postprandial lipemia. The purpose of the present study was to test the hypothesis that this effect is independent of substrate metabolism during exercise. Twelve men aged 21 to 36 years underwent three oral fat tolerance tests with intervals of at least 1 week. On one occasion, only activities of daily living were allowed the preceding day (control). On the other two occasions, subjects ran on a treadmill for 90 minutes on the afternoon preceding the fat tolerance test; 90 minutes before running, they ingested either acipimox, an inhibitor of lipolysis in adipose tissue, or placebo. Acipimox abolished the increase in the nonesterified fatty acid (NEFA) concentration observed during the run after placebo and reduced lipid oxidation (placebo, 37 +/- 7 g; acipimox, 21 +/- 3 g; P < .05, mean +/- SEM), but had no effect on gross energy expenditure (placebo, 4.86 +/- 0.20 MJ; acipimox, 4.83 +/- 0.18 MJ). Before each of the three fat tolerance tests, subjects reported to the laboratory after an overnight fast. Blood samples were obtained in the fasted state and for 6 hours after consumption of a high-fat meal (per kilogram of body mass: 1.2 g fat, 1.2 g carbohydrate, and 61 kJ energy). Plasma concentrations of NEFA were higher postprandially with acipimox, compared with control and placebo (P < .05), as were glucose concentrations measured over the first 4 hours. The insulin response to the meal was lower in placebo compared with control and acipimox (P < .05). Despite these counterregulatory responses, postprandial lipemia was reduced to the same degree (compared with control, P < .05) by exercise preceded by acipimox and by exercise preceded by placebo (area under the plasma triacylglycerol concentration v time curve: control, 8.77 +/- 1.17 mmol/L x 6 h; placebo, 6.95 +/- 0.97 mmol/L x 6 h; acipimox, 6.81 +/- 0.81 mmol/L x 6 h). These findings suggest that some factor other than the nature of the metabolic substrate used during exercise determines the attenuating effect of prior exercise on postprandial lipemia.  相似文献   

8.
Liang Z  Luo GC  Hu QH  Li MZ  Chen N  Yan DW  Chai J  Chen ZL  Li HY  Ou HT 《中华内科杂志》2007,46(7):559-561
目的应用高葡萄糖钳夹技术评价糖耐量异常(IGT)的Graves病(GD)患者胰岛B细胞功能及胰岛素抵抗。方法筛选合并IGT的GD患者6例(均为初诊未治),应用高葡萄糖钳夹技术检测胰岛素分泌及胰岛素敏感性,并与正常对照组10例进行比较,所有研究对象均检测谷氨酸脱羧酶(GAD)抗体。结果合并IGT的GD组与正常对照组比较,第一时相胰岛素分泌[(636.31±105.54)mIU/L比(233.56±21.33)mIU/L]、第二时相胰岛素分泌[(146.68±25.0)mIU/L比(67.06±6.23)mIU/L]、最大胰岛素分泌量[(195.05±32.94)mIU/L比(87.64±9.78)mIU/L],胰岛素敏感性指数(11.52±1.90比21.72±3.25),差异均有统计学意义(P值均〈0.05)。所有研究对象GAD抗体检测均为阴性。结论GAD抗体阴性的GD合并IGT患者胰岛素分泌呈亢进状态,胰岛素敏感性显著低于正常对照组。  相似文献   

9.
OBJECTIVE: Concentrations of the orexigenic peptide ghrelin is affected by a number of hormones, which also affect circulating levels of free fatty acids (FFAs). The present study was therefore designed to determine the direct effect of FFAs on circulating ghrelin. DESIGN: Eight lean, healthy men were examined for 8 h on four occasions using variable infusion rates (0, 3, 6 and 12 microl/kg per min) of intralipid to create different plasma FFA concentrations. Constant levels of insulin and GH were obtained by administration of acipimox (250 mg) and somatostatin (300 microg/h). At the end of each study day a hyperinsulinaemic-euglycaemic clamp was performed. RESULTS: Four distinct levels of FFAs were obtained at the end of the lipid infusion period (FFA(LIPID): 0.03 +/- 0.00 vs: 0.49 +/- 0.04, 0.92 +/- 0.08 and 2.09 +/- 0.38 mmol/l; ANOVA P < 0.0001) and during hyperinsulinaemia (FFA(LIPID+INSULIN): 0.02 +/- 0.00 vs: 0.34 +/- 0.03, 0.68 +/- 0.09 and 1.78 +/- 0.32 mmol/l; ANOVA P < 0.0001). Whereas, somatostatin infusion alone reduced ghrelin concentration by approximately 67%, concomitant administration of increasing amounts of intralipid reduced circulating ghrelin by a further 14, 19 and 19% respectively (change in ghrelin: 0.52 +/- 0.05 vs: 0.62 +/- 0.06, 0.72 +/- 0.09 and 0.71 +/- 0.05 microg/l; ANOVA P = 0.04). No further reduction in ghrelin concentration was observed during hyperinsulinaemia. CONCLUSION: FFA exposure between 0 and 1 mmol/l significantly suppresses ghrelin levels independent of ambient GH and insulin levels.  相似文献   

10.
OBJECTIVE: Previous studies evaluating the lipolytic effect of GH have in general been performed in subjects on chronic GH therapy. In this study we assessed the lipolytic effect of GH in previously untreated patients and examined whether the negative effect of enhanced lipolysis on glucose metabolism could be counteracted by acute antilipolysis achieved with acipimox. METHODS: Ten GH-deficient (GHD) adults participated in four experiments each, during which they received in a double-blind manner: placebo (A); GH (0.88+/-0.13 mg) (B); GH+acipimox 250 mg b.i.d. (C); and acipimox b.i.d. (no GH) (D), where GH was given the night before a 2 h euglycemic, hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry. RESULTS: GH increased basal free fatty acid (FFA) levels by 74% (P=0.0051) and insulin levels by 93% (P=0.0051). This resulted in a non-significant decrease in insulin-stimulated glucose uptakes (16.61+/-8.03 vs 12.74+/-5.50 micromol/kg per min (s.d.), P=0.07 for A vs B). The rates of insulin-stimulated glucose uptake correlated negatively with the FFA concentrations (r=-0.638, P<0.0001). However, acipimox caused a significant improvement in insulin-stimulated glucose uptake in the GH-treated patients (17.35+/-5.65 vs 12.74+/-5.50 micromol/kg per min, P=0.012 for C vs B). The acipimox-induced enhancement of insulin-stimulated glucose uptake was mainly due to an enhanced rate of glucose oxidation (8.32+/-3.00 vs 5.88+/-2.39 micromol/kg per min, P=0.07 for C vs B). The enhanced rates of glucose oxidation induced by acipimox correlated negatively with the rate of lipid oxidation in GH-treated subjects both in basal (r=-0.867, P=0.0093) and during insulin-stimulated (r=-0.927, P=0.0054) conditions. GH did not significantly impair non-oxidative glucose metabolism (6.86+/-5.22 vs 8.67+/-6.65 micromol/kg per min, P=NS for B vs A). The fasting rate of endogenous glucose production was unaffected by GH and acipimox administration (10.99+/-1.98 vs 11.73+/-2.38 micromol/kg per min, P=NS for B vs A and 11.55+/-2.7 vs 10.99+/-1.98 micromol/kg per min, P=NS for C vs B). On the other hand, acipimox alone improved glucose uptake in the untreated GHD patients (24.14+/-8.74 vs 16.61+/-8.03 micromol/kg per min, P=0.0077 for D vs A) and this was again due to enhanced fasting (7.90+/-2.68 vs 5.16+/-2.28 micromol/kg per min, P=0.01 for D vs A) and insulin-stimulated (9.78+/-3.68 vs 7.95+/-2.64 micromol/kg per min, P=0.07 for D vs A) glucose oxidation. CONCLUSION: The study of acute administration of GH to previously untreated GHD patients provides compelling evidence that (i) GH-induced insulin resistance is mainly due to induction of lipolysis by GH; and (ii) inhibition of lipolysis can prevent the deterioration of insulin sensitivity. The question remains whether GH replacement therapy should, at least at the beginning of therapy, be combined with means to prevent an excessive stimulation of lipolysis by GH.  相似文献   

11.
We tested whether plasma levels of leptin and insulin are associated with the lower blood pressure in women of Peruvian Indian heritage compared with Caucasian women. A total of 181 women from Peru and 85 from Sweden, aged 20 to 60 years, with normal plasma glucose levels participated in the study. Measurements of anthropometry, blood pressure, and blood tests were performed after overnight fasting. Compared with women from Ume? in Sweden, women from Lima, Peru had higher body mass index (BMI) (26.2 +/- 4.9 v 24.4 +/- 3.8 kg/m(2)), waist circumference (85 +/- 11 v 79 +/- 10 cm), lower systolic blood pressure (99 +/- 15 v 114 +/- 14 mm; P <.001) and diastolic blood pressure (67 +/- 7 v 74 +/- 10 mm; P <.001). In addition, they had a reduction of the ratio of plasma leptin to BMI (0.52 +/- 0.22 v 0.61 +/- 0.36; P <.001), greater plasma insulin (80 +/- 42 v 41 +/- 21 pmol/L), but lower plasma glucose (4.2 +/- 0.5 v 5.1 +/- 0.5 mmol/L; P <.001). Furthermore, the 181 women from Lima had higher plasma triglyceride levels (1.5 +/- 0.8 v 1.3 +/- 0.7; P =.039), but lower plasma high-density lipoprotein (HDL)-cholesterol (1.0 +/- 0.2 v 1.5 +/- 0.4 mmol/L; P <.001) and total plasma cholesterol (5.0 +/- 1.1 v 5.9 +/- 1.3 mmol/L; P <.001) levels. Plasma leptin correlated with blood pressure and BMI in both populations (P <.001). In multiple regression analysis, BMI, but not log leptin, emerged as the determinant for systolic blood pressure. We concluded that women living in Lima have significant lower blood pressure levels in association with elevated plasma insulin concentrations, but lower plasma leptin values adjusted for BMI in comparison with women from northern Sweden. This may suggest that the concept of metabolic syndrome is different among women with Peruvian Indian heritage in comparison to a Caucasian population.  相似文献   

12.
BACKGROUND/AIM: Our previous studies showed that administration of dexamethasone plus food increased serum leptin levels 100% more than dexamethasone alone. We hypothesized that this increase in leptin from the meal could result directly from the provision of fuel metabolites rather than from the meal-induced rise in insulin. In the current study, we tested the effect of an i.v. lipid fuel source (Intralipid 20%/heparin) that would incur only a modest increase in insulin. This study was undertaken because the role of lipid in the regulation of human leptin levels has been controversial, with differing effects reported: stimulatory, inhibitory, or no effect at all. METHODS: In order to evaluate how lipids affect serum leptin in humans, we administered the following to seven lean, healthy, fasting subjects: (i) Intralipid 20% at 0.83 ml/kg.h plus heparin (800 IE/h) infused i.v. for 7 h (LIPID), (ii) LIPID with one initial pulse of insulin (0.09 U/kg) given s.c. (LIPID+INS), (iii) LIPID with dexamethasone (2 mg i.v. push) given at the start of the infusion (LIPID+DEX), and (iv) LIPID with insulin plus dexamethasone (LIPID+INS+DEX). Control trials in another 14 subjects matched hormonal conditions but lacked the LIPID infusion. Blood levels were collected over 8 h for determination of free fatty acids (FFA), glucose, insulin, and leptin under each experimental condition. RESULTS: Over the 420 min of LIPID infusion, FFA levels rose four-fold from 0.28+/-0.05 mmol/l to 0.99+/-0.05 mmol/l. Serum leptin levels were suppressed by 10-20% in the LIPID condition as compared with control (no LIPID) between 90 min (P=0.008) and 360 min (P=0.045). LIPID+DEX did not increase leptin. A pulse of insulin (INS) increased serum insulin levels to 49.9+/-6.1 U/ml at 90 min and increased serum leptin by 21.3+/-6.6% at 480 min (P=0.054). LIPID decreased leptin in the face of this insulin-induced increase (LIPID+INS), between 360 min (P=0.017) and 420 min (P=0.003), with a 23% suppressive effect at 420 min. LIPID+DEX elevated leptin levels by 112.5+/-35.8% at 480 min (P=0.037), however, the Intralipid/heparin infusion did not blunt the rise of leptin under these conditions. CONCLUSIONS: These data showed that Intralipid/heparin: (i) are not sufficient to trigger the effect of dexamethasone on leptin, (ii) have an acute inhibitory effect on both fasting and insulin-stimulated leptin levels, and (iii) that this inhibitory effect cannot reverse the strong stimulatory effect of dexamethasone and insulin on serum leptin.  相似文献   

13.
Glucose intolerance is often found in patients with hyperthyroidism, but the pathogenetic mechanisms are not fully understood. Since lipolysis is increased in hyperthyroidism, elevated plasma nonesterified fatty acids (NEFAs) may contribute to abnormal glucose metabolism in hyperthyroidism. The aim of this study was to investigate whether decreasing the plasma NEFA level with acipimox can affect glucose metabolism in hyperthyroidism. We performed an intravenous glucose tolerance test (IVGTT) with acipimox 250 mg or placebo in six untreated hyperthyroid men and six age- and body mass index (BMI)-matched controls. Fasting plasma NEFA levels were significantly higher in the hyperthyroid patients versus the controls (997.0 +/- 303.4 v290.5 +/- 169.1 micromol/L, P < .001). Plasma NEFAs decreased rapidly with acipimox treatment in both controls and hyperthyroid patients. In the controls, the glucose disappearance constant (K(G)) was not different for acipimox treatment versus placebo (2.18 +/- 0.62 v 2.42 +/- 1.00% x min(-1)). In hyperthyroid patients, acipimox treatment increased the K(G) significantly compared with placebo treatment (2.44 +/- 0.84 v 1.58 +/- 0.37% x min(-1), P < .05). Changes in K(G) values with acipimox treatment were inversely correlated with changes in plasma NEFA levels (r = -.65, P < .05). Acipimox treatment increased the acute insulin response (AIR) in hyperthyroid patients (943 +/- 381 v 698 +/- 279 microU/mL x min, P < .05), whereas it did not change the AIR in controls. Changes in the AIR with acipimox treatment correlated significantly with changes in the K(G) (r = .70, P < .05). There was a weak correlation between changes in the AIR with acipimox treatment and changes in plasma NEFA levels (r = -.55, P = .06). In summary, decreasing the plasma NEFA level with acipimox in hyperthyroid patients increases both the K(G) and AIR during an IVGTT. These findings suggest that the abnormal glucose metabolism in hyperthyroidism could be attributed, at least in part, to the increase of plasma NEFA.  相似文献   

14.
Thorough mastication has the potential to affect postprandial plasma glucose concentrations by improving digestibility and absorption of nutrients. To evaluate the effects of mastication on postprandial plasma glucose concentration, we compared usual and thorough mastication in subjects with normal glucose tolerance (NGT group, n = 16) and subjects predisposed to type 2 diabetes (first-degree relatives of type 2 diabetic patients, subjects with impaired glucose tolerance, and type 2 diabetic patients) (predisposed group, n = 10) in a crossover trial of 52 test meals. Plasma glucose and serum insulin concentrations were measured for 3 hours postprandially, and the insulinogenic index (the ratio of incremental serum insulin to plasma glucose concentration during the first 30 minutes after meal) was calculated. In the NGT group, thorough mastication reduced the postprandial plasma glucose concentration at 90 minutes (5.8 +/- 0.3 vs 6.5 +/- 0.4 mmol/L, P < .05) and 120 minutes (5.4 +/- 0.2 vs 6.3 +/- 0.4 mmol/L, P < .05) and the area under the curve (AUC) from -15 to 180 minutes (19.1 +/- 0.6 vs 20.6 +/- 0.8 [mmol . L]/h, P < .05) without an increase in the AUC for insulin. In the predisposed group, thorough mastication significantly augmented plasma glucose and serum insulin concentrations and the AUCs compared with usual mastication. Thorough mastication elicited a significantly higher insulinogenic index than usual mastication in the NGT group (205.0 +/- 27.6 vs 145.6 +/- 17.7 pmol/mmol, P < .05), whereas the predisposed group showed significantly less early-phase insulin secretion than the NGT group. In the NGT group the postprandial plasma glucose concentration upon thorough mastication of meal was significantly lower, most probably because of the potentiation of early-phase insulin secretion. In the subjects predisposed to type 2 diabetes, thorough mastication did not potentiate early-phase insulin secretion and elicited a higher postprandial plasma glucose concentration.  相似文献   

15.
OBJECTIVES: In acromegaly GH secretion is markedly increased due in most cases to a GH secreting pituitary adenoma. GH secretion is modulated by variations in the levels of free fatty acids (FFA). Recent studies in different clinical situations, have shown that reduction in FFA with acipimox (A) modifies somatotroph cell responsiveness. The aim of the present study was to evaluate the effect of acute pharmacological reduction of plasma FFA on both basal GH levels and GHRH-mediated GH secretion in acromegalic patients. PATIENTS: Six acromegalic patients (four female, two male) aged 57 +/- 4 years., with active disease due to pituitary adenomas were studied. Four of the patients had been treated previously by surgery and/or radiotherapy. The diagnosis of active acromegaly was established by clinical assessment, increased serum IGF-I and impaired GH suppression after oral glucose. MEASUREMENTS: Four tests were performed: placebo, A (250 mg, orally, - 210 minutes and - 60 minutes), GHRH (100 microg, iv, 0 minutes) and GHRH plus A. The different tests on each subject were performed in random order one week apart, each subject served as their own control. Serum GH was measured by RIA at appropriate intervals. The area under the curve (AUC) was calculated by the trapezoidal METHOD: Statistical analysis was performed by Wilcoxon test. P < 0.05 was considered significant. RESULTS: The administration of A induced a FFA reduction during the entire test both when administered with placebo and with GHRH: AUC (mmol/l x 90 minutes): placebo plus placebo: 88.2 +/- 7.3. Placebo plus A: 23.2 +/- 4.6 (P < 0.05). Placebo plus GHRH: 85.4 +/- 6.9. A plus GHRH: 21.8 +/- 3.8 (P < 0.05). Mean peak GH level (microg/l) after placebo plus placebo was 5.0 +/- 1.8 not significantly different than after placebo plus A with a mean peak of 6.2 +/- 2 (P = ns). Mean peak GHRH-induced GH secretion was 26.0 +/- 15.4 and was not modified by previous A administration with mean peak of 24.4 +/- 11.8 (P = ns). CONCLUSIONS: In acromegalic patients acute pharmacological reduction of FFA with acipimox did not modify basal GH levels or GHRH-induced GH secretion, suggesting that the adenomatous somatotroph cell is unresponsive to physiological signals such as FFA which act at a pituitary level. These data support the hypothesis of an intrinsic neoplastic pituitary defect for the pathogenesis of acromegaly.  相似文献   

16.
AIMS: Metabolic responses to manipulation of the plasma free fatty acid (FFA) concentration were assessed in six healthy men via cross-over design to determine whether FFAs independently influence insulin sensitivity. METHODS: Intramyocellular lipid (IMCL) was measured by proton magnetic resonance spectroscopy and insulin sensitivity via frequently sampled intravenous glucose tolerance test (IVGTT) after 67 h of two identical low carbohydrate/high fat (LC) diets which were used to elevate IMCL and plasma FFAs. To uncouple the influence of FFAs and IMCL on insulin sensitivity, FFAs were suppressed 30 min prior to and during IVGTT in one treatment [LC + nicotinic acid (NA)] by NA ingestion. RESULTS: Vastus lateralis IMCL was significantly elevated in LC (13.3 +/- 1.1 x 10(-3)) and LC + NA (13.5 +/- 1.1 x 10(-3)) (P < 0.01 for both), but was not different between conditions (P > 0.05). Plasma FFAs were raised in LC (0.79 +/- 0.08 mmol/l) and LC + NA (0.80 +/- 0.11 mmol/l) (P < 0.01 for both) and were significantly reduced by NA ingestion prior to (0.36 +/- 0.05 mmol/l, P < 0.01) and during IVGTT (P < 0.05) in LC + NA. Despite marked differences in plasma FFA availability, insulin sensitivity and glucose tolerance were not different between LC and LC + NA (P > 0.05 for both). CONCLUSIONS: Plasma FFAs appear to exert no immediate effect on insulin sensitivity/glucose tolerance independent of their action on intracellular lipid moieties. Further research is required to elucidate the duration of FFA suppression required to restore insulin sensitivity following lipid-induced insulin resistance.  相似文献   

17.
OBJECTIVE: A number of recent studies suggest that leptin has effects on glucose metabolism and pancreatic hormone secretion. Therefore, the effect of leptin administration on circulating glucose, insulin and glucagon in fed and fasted mice was investigated. The potential contribution of the sympathetic nervous system to the effects of leptin was also examined. DESIGN: Recombinant human or murine leptin was administered intraperitoneally (300 microg/mouse per 12 h over 24 h) to fed or fasted, normal or chemically sympathectomized NMRI mice. Blood samples were collected at baseline and after 24 h. MEASUREMENTS: Plasma concentrations of glucose, insulin and glucagon. RESULTS: In the fed state (n = 24), leptin administration did not affect glucose, insulin or glucagon concentrations after 24 h. Fasting (n = 24) reduced body weight by 2.2+/-0.4 g, plasma glucose by 3.7+/-0.4 mmol/l, plasma insulin by 138+/-35 pmol/l, and plasma glucagon by 32+/-7 pg/ml. In fasted mice, human leptin (n = 24) increased plasma glucose by 1.5+/-0.2 mmol/l (P = 0.041), plasma insulin by 95+/-22 pmol/l (P = 0.018), and plasma glucagon by 16+/-3 pg/ml (P = 0.025), relative to saline-injected control animals. Murine leptin exerted similar stimulating effects on circulating glucose (+1.0+/-0.2 mmol/l, P = 0.046), insulin (+58+/-17 pmol/l, P = 0.038) and glucagon (+24+/-9 pg/ml, P = 0.018) as human leptin in fasted mice (n = 12) with no significant effect in fed mice (n = 12). Human leptin did not affect circulating glucose, insulin or glucagon in fasted mice after chemical sympathectomy with 6-hydroxydopamine (40 mg/kg iv 48 h prior to fasting; n = 12). CONCLUSION: Leptin increases circulating glucose, insulin and glucagon in 24 h fasted mice by a mechanism requiring intact sympathetic nerves.  相似文献   

18.
Glucose potentiates arginine-induced insulin release. We investigated the dose-response characteristics for both phases of glucose-induced insulin release in normal man, and studied the influence of hyperglycemia on arginine-induced insulin secretion. Dose-response curves of plasma C-peptide increments achieved during 60-minute hyperglycemia clamps (7, 11, 17, 24, and 32 mmol/L) with and without a primed continuous infusion of arginine (infusion rate, 15 mg/kg/min) were analyzed with a modified Michaelis-Menten equation. The ED50 (half-maximally stimulating blood glucose concentration) of first-phase insulin release (determined from plasma C-peptide increments at 5 minutes) was significantly lower than the ED50 for the second phase (60 minutes; 8.4 +/- 0.8 v 14.3 +/- 1.3 mmol/L, respectively, P less than .002). Combined glucose-arginine stimulation significantly increased insulin release. Vmax of both phases of glucose-arginine-stimulated insulin release were positively correlated (r = .75, P less than .05). The ED50 of the influence of glucose on first-phase arginine-induced insulin release was significantly lower than the ED50 for the second phase (9.0 +/- 1.1 v 12.7 +/- 1.0 mmol/L, respectively, P less than .02). For each insulin secretion phase separately, the ED50 for the influence of hyperglycemia on arginine-induced insulin release were not significantly different from the ED50 for glucose-induced insulin secretion (without arginine). When dose-response curves of plasma insulin increments were analyzed with the same equation, the ED50 of second-phase glucose-induced plasma insulin increments was significantly higher than the ED50 assessed from the plasma C-peptide increments (21.6 +/- 2.8 v 14.3 +/- 1.3 mmol/L, respectively, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of 3 days of intensive treatment with acipimox, an antilipolytic nicotinic acid derivative, on plasma leptin levels was studied in eight patients with Type 2 diabetes mellitus in a double-blind, placebo-controlled, cross-over study. Acipimox reduced plasma free fatty acids (FFA) markedly and lowered plasma triglycerides, glucose and insulin. Plasma leptin levels were elevated in all eight patients during 3 days of acipimox treatment (mean increase+/-s.e.: 2.38+/-0.57ng/ml, P<0.005) and the 24h mean effect of acipimox on leptin levels increased during the experimental period (P<0.03). The effect on plasma insulin and glucose resembled a mirror image of the effect on plasma leptin during 3 days of treatment. The suggestion that leptin mediates insulin resistance and may be involved in the development of the diabetic syndrome cannot be supported by the present results. It has been reported that FFA stimulates leptin secretion. Surprisingly, despite a markedly reduced FFA level, leptin concentration increased in the present study. We suggest that a primary acipimox effect is to increase leptin secretion, and that this prevails over the reduced FFA stimulus.  相似文献   

20.
Severe hypoglycemia, the most serious side effect of sulfonylurea therapy, has been reported to occur more frequently with glyburide than glimepiride. The present studies were undertaken to test the hypothesis that a differential effect on glucagon secretion may be involved. We performed hyperinsulinemic hypoglycemic (approximately 2.5 mmol/L) clamps in 16 healthy volunteers who received in randomized order placebo, glyburide (10 mg), and glimepiride (4 mg) just before beginning the insulin infusion and measured plasma glucagon, insulin, C-peptide, glucagon, epinephrine, cortisol, and growth hormone levels during the clamp and during a 3-hour recovery period after discontinuation of the insulin infusion. Neither sulfonylurea altered glucagon responses or those of other counterregulatory hormones (except cortisol) during the clamp. However, glyburide delayed plasma glucose recovery from hypoglycemia (plasma glucose at end of recovery period: control, 4.9 +/- 0.2 mmol/L; glyburide, 3.7 +/- 0.2 mmol/L; P = .0001; glimepiride, 4.5 +/- 0.2 mmol/L; P = .08). Despite lower plasma glucose levels, glyburide stimulated insulin secretion during this period (0.89 +/- 0.13 vs 1.47 +/- 0.15 pmol x kg(-1) x min(-1), control vs glyburide; P = .001), whereas glimepiride did not (P = .08). Short-term administration of glyburide or glimepiride did not alter glucagon responses during hypoglycemia. In contrast, during recovery from hypoglycemia, glyburide but not glimepiride inappropriately stimulates insulin secretion at low plasma glucose levels. This differential effect on insulin secretion may be an important factor in explaining why glyburide causes severe hypoglycemia more frequently than glimepiride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号