首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Osteoclasts form ruffled borders and sealing zones toward bone surfaces to resorb bone. Sealing zones are defined as ringed structures of F-actin dots (actin rings). Polarized osteoclasts secrete protons to bone surfaces via vacuolar proton ATPase through ruffled borders. Catabolic enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K are also secreted to bone surfaces. Here we show a simple method of identifying functional vestiges of polarized osteoclasts. Osteoclasts obtained from cocultures of mouse osteoblasts and bone marrow cells were cultured for 48 h on dentin slices. Cultures were then fixed and stained for TRAP to identify osteoclasts on the slices. Cells were removed from the slices with cotton swabs, and the slices subjected to TRAP and Mayer's hematoxylin staining. Small TRAP-positive spots (TRAP-marks) were detected in the resorption pits stained with Mayer's hematoxylin. Pitted areas were not always located in the places of osteoclasts, but osteoclasts existed on all TRAP-marks. A time course experiment showed that the number of TRAP-marks was maintained, while the number of resorption pits increased with the culture period. The position of actin rings formed in osteoclasts corresponded to that of TRAP-marks on dentin slices. Immunostaining of dentin slices showed that both cathepsin K and vacuolar proton ATPase were colocalized with the TRAP-marks. Treatment of osteoclast cultures with alendronate, a bisphosphonate, suppressed the formation of TRAP-marks and resorption pits without affecting the cell viability. Calcitonin induced the disappearance of both actin rings and TRAP-marks in osteoclast cultures. These results suggest that TRAP-marks are vestiges of proteins secreted by polarized osteoclasts.  相似文献   

2.
Nakamura H  Sato G  Hirata A  Yamamoto T 《BONE》2004,34(1):48-56
Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.  相似文献   

3.
The osteoclast is the specialized multinucleated cell primarily responsible for the degradation of the organic and inorganic components of bone matrix. The functional and developmental relationship between osteoclasts and foreign body giant cells is unclear. The osteoclast plasma membrane ruffled border juxtaposed to the bone surface is a unique morphologic characteristic of active osteoclasts. In the studies reported here giant cell formation was induced in response to a variety of materials implanted onto the richly vascularized chick chorioallantoic membrane. Light and electron microscopic techniques were used to examine the morphologic characteristics of the giant cells. In addition, immunohistochemical methods were used to demonstrate the appearance of a 150 kD cell surface antigen on chicken osteoclasts recognized by monoclonal antibody 121F. Giant cells that formed in response to mineralized bone particles exhibited ruffled borders and stained positively with the 121F antibody. Many giant cells that formed in response to hydroxyapatite possessed ruffled borders similar to but not as extensive as those observed on giant cells formed on bone. Immunohistochemical localization of the 121F antigen on these cells suggested that the antigen was present, but staining intensity was reduced compared to that of bone-associated giant cells. The formation of mineral matrix complexes by the adsorption to hydroxyapatite of bone extract or osteocalcin enhanced ruffled borders and the presence of the 121F antigen on elicited giant cells. In contrast, giant cells that formed on non-resorbable materials, such as Sepharose beads, mica, and methacrylate, lacked ruffled borders and were negative for the 121F antigen. It appears that expression of the 121F osteoclast antigen correlates with the appearance and extent of ruffled membranes on giant cells. Furthermore, it appears that giant cell ruffled membrane development and the presence of the 121F osteoclast antigen are related to giant cell formation in response to resorbable materials that are subject to extracellular dissolution. Expression of this antigen may be indicative of the developmental and/or functional state of giant cells (osteoclasts) that form on resorbable substrates. In addition, components of the bone matrix, including osteocalcin, in association with bone mineral, lead to elevated levels of this osteoclast antigen.  相似文献   

4.
We compared the distribution of a cysteine proteinase inhibitor, cystatin C, with that of cathepsin K in osteoclasts of the mouse tibia by immunolight and immunoelectron microscopy. Light microscopically, strong immunoreactivity for cystatin C was found extracellularly along the resorption lacuna and intracellularly in the organelles of osteoclasts. In serial sections, various patterns of cystatin C and cathepsin K localization were seen, specifically: (1) some resorption lacuna were positive for both cystatin C and cathepsin K; (2) others were positive for either cystatin C or cathepsin K, but not both; and (3) some lacuna were negative for both. In osteoclasts, the localization of cystatin C was similar to that of cathepsin K. Furthermore, cystatin C immunoreactivity was detected in preosteoclasts and osteoblasts, whereas cathepsin K was seen only in preosteoclasts. Electron microscopically, cystatin C immunoreactive products were found in the rough endoplasmic reticulum (ER), Golgi apparatus, vesicles, granules, and vacuoles of osteoclasts. These cystatin C-positive vesicles had fused or were in the process of fusion with the ampullar vacuoles (extracellular spaces) containing cystatin C-positive, fragmented, fibril-like structures. The extracellular cystatin C was deposited on and between the cytoplasmic processes of ruffled borders, and on and between type I collagen fibrils. In the basolateral region of osteoclasts, cystatin C-positive vesicles and granules also fused with vacuoles that contained cystatin C-positive or negative fibril-like structures. These results indicate that osteoclasts not only synthesize and secrete cathepsin K from the ruffled border into the bone resorption lacunae, but also a cysteine proteinase inhibitor, cystatin C. Therefore, it is suggested that cystatin C regulates the degradation of bone matrix by cathepsin K, both extracellularly and intracellularly.  相似文献   

5.
Tartrate-resistant acid phosphatase (TRAP) is an enzyme highly expressed in osteoclasts and thought to participate in osteoclast-mediated bone turnover. Cathepsin K (Ctsk) is the major collagenolytic cysteine proteinase expressed in osteoclasts and has recently been shown to be able to proteolytically process and activate TRAP in vitro. In this study, 4-week-old Ctsk(-/-) mice were analysed for TRAP expression at the mRNA, protein and enzyme activity levels to delineate a role of cathepsin K in TRAP processing in osteoclasts in vivo. The absence of cathepsin K in osteoclasts was associated with increased expression of TRAP mRNA, monomeric TRAP protein and total TRAP activity. Proteolytic processing of TRAP was not abolished but prematurely arrested at an intermediate stage without changing enzyme activity, a finding confirmed with RANKL-differentiated osteoclast-like cell line RAW264.7 treated with the cysteine proteinase inhibitor E-64. Thus, the increase in total TRAP activity was mainly due to increased cellular content of monomeric TRAP. The increase in monomeric TRAP expression was more pronounced in osteoclasts of the distal compared to the proximal part of the metaphyseal trabecular bone, suggesting a site-dependent role for cathepsin K in TRAP processing. Moreover, intracellular localization of monomeric TRAP was altered in distal metaphyseal osteoclasts from Ctsk(-/-) mice. Additionally, TRAP was secreted into the ruffled border as the processed form in osteoclasts of Ctsk(-/-) mice, unlike in osteoclasts from wild-type mice which secreted TRAP to the resorption lacuna as the monomeric form. The results demonstrate that cathepsin K is not only involved in proteolytic processing but also affects the intracellular trafficking of TRAP, particularly in osteoclasts of the distal metaphysis. However, contribution by other yet unidentified protease(s) to TRAP processing must also be invoked since proteolytic cleavage of TRAP is not abolished in Ctsk(-/-) mice. Importantly, this study highlights functional differences between bone-resorbing clasts within the trabecular metaphyseal bone, suggesting potentially important differences in the regulation of differentiation and activation depending on the precise anatomical localization of the clast population.  相似文献   

6.
Bone resorption by osteoclasts depends on the activity of various proteolytic enzymes, in particular those belonging to the group of cysteine proteinases. Next to these enzymes, tartrate-resistant acid phosphatase (TRAP) is considered to participate in this process. TRAP is synthesized as an inactive proenzyme, and in vitro studies have shown its activation by cysteine proteinases. In the present study, the possible involvement of the latter enzyme class in the in vivo modulation of TRAP was investigated using mice deficient for cathepsin K and/or L and in bones that express a high (long bone) or low (calvaria) level of cysteine proteinase activity. The results demonstrated, in mice lacking cathepsin K but not in those deficient for cathepsin L, significantly higher levels of TRAP activity in long bone. This higher activity was due to a higher number of osteoclasts. Next, we found considerable differences in TRAP activity between calvarial and long bones. Calvarial bones contained a 25-fold higher level of activity than long bones. This difference was seen in all mice, irrespective of genotype. Osteoclasts isolated from the two types of bone revealed that calvarial osteoclasts expressed higher enzyme activity as well as a higher level of mRNA for the enzyme. Analysis of TRAP-deficient mice revealed higher levels of nondigested bone matrix components in and around calvarial osteoclasts than in long bone osteoclasts. Finally, inhibition of cysteine proteinase activity by specific inhibitors resulted in increased TRAP activity. Our data suggest that neither cathepsin K nor L is essential in activating TRAP. The findings also point to functional differences between osteoclasts from different bone sites in terms of participation of TRAP in degradation of bone matrix. We propose that the higher level of TRAP activity in calvarial osteoclasts compared to that in long bone cells may partially compensate for the lower cysteine proteinase activity found in calvarial osteoclasts and TRAP may contribute to the degradation of noncollagenous proteins during the digestion of this type of bone. An erratum to this article is available at .  相似文献   

7.
Numerous experimental and clinical observations suggest that overall changes in bone resorption during menopause or treatment with hormone replacement therapy (HRT) are combined effects of changes in osteoclast number and function. Moreover, due to a coupling between osteoclastic bone resorption and osteoblastic bone formation, pronounced alteration of osteoclast number will eventually lead to alteration of osteoblastic bone formation. Fragments of type I collagen, such as the C- and N-terminal telopeptides of collagen type I (CTX and NTX, respectively), are generated during bone resorption and hence can be used as surrogate markers of osteoclast function. Circulating levels of different enzymes in the serum, such as TRAP 5b and cathepsin K are proportional to the number of osteoclasts, and hence can be used as surrogate markers of osteoclast number. Since antiresorptive effects can be obtained in different ways, we felt it was timely to discuss the different scenarios, highlight differences specific to different pharmacological interventions with different mechanisms of action, and discuss how these bone markers can assist us in a deeper analysis of the pharmacodynamics and safety profile of existing and upcoming drug candidates.  相似文献   

8.
Pycnodysostosis (Pycno) is an autosomal recessive osteosclerotic skeletal dysplasia that is caused by the markedly deficient activity of cathepsin K. This lysosomal cysteine protease has substantial collagenase activity, is present at high levels in osteoclasts, and is secreted into the subosteoclastic space where bone matrix is degraded. In vitro studies revealed that mutant cathepsin K proteins causing Pycno did not degrade type I collagen, the protein that constitutes 95% of organic bone matrix. To determine the in vivo effects of cathepsin K mutations on bone metabolism in general and osteoclast-mediated bone resorption specifically, several bone metabolism markers were assayed in serum and urine from seven Pycno patients. Two markers of bone synthesis, type I collagen carboxy-terminal propeptide and osteocalcin, were normal in all Pycno patients. Tartrate-resistent acid phosphatase, an osteoclast marker, was also normal in these patients. Two markers that detect type I collagen telopeptide cross-links from the N and C termini, NTX and CTX, respectively, were low in Pycno. A third marker which detects a more proximal portion of the C terminus of type I collagen in serum, ICTP, was elevated in Pycno, a seemingly paradoxical result. The finding of decreased osteoclast-mediated type I collagen degradation as well as the use of alternative collagen cleavage sites by other proteases, and the accumulation of larger C-terminal fragments containing the ICTP epitope, established a unique biochemical phenotype for Pycno.  相似文献   

9.
Summary The localization of acid phosphatase (ACPase) activity in and near parathyroid hormone (PTH) activated osteoclasts was investigated using electron microscopic cytochemical methods. At 3 hours after oviposition in Japanese Quail hens, medullary bone osteoclasts were highly reactive for ACPase but lacked ruffled borders. There was no evidence of extracellular ACPase activity associated with these osteoclasts. At 20 minutes after PTH administration, osteoclasts had developing ruffled borders and ACPase activity was found in the matrix and extracellular space adjacent to most of these ruffled borders. ACPase activity was seldom observed beyond the resorption zone delineated eated by the osteoclast clear zones. These results provide direct cytochemical evidence that the ruffled border functions in the release and/or activation of ACPase. In addition, these results show that ACPase localization is rapidly responsive to exogenous PTH.  相似文献   

10.
The activation sequence of clasts (the designation clast was used because ultrastructurally in this tissue, it is not always possible to differentiate between chondroclasts sitting on cartilage and osteoclasts sitting on bone matrix) was studied in vivo using the healing of low-phosphate, vitamin D-deficiency rickets as a model system. Thus, the bones of 7-week-old rachitic animals were analyzed with a combination of morphological, biochemical, and molecular biological methods at 48 and 72 h, respectively, after change to normal food. A quantitative ultrastructural analysis showed that the number of clast profiles exhibiting the characteristic polarized features of actively resorbing cells, i.e., ruffled borders and clear zones, had reached normal levels after 48 h. By combining the data with quantitative analyses by the immunogold technique, we demonstrated that cathepsin K secretion was coupled to ruffled border formation in clasts irrespective of whether the number of polarized clasts was low (in rickets) or high (in healing). In contrast, the levels of tartrate-resistant acid phosphatase (TRAP) both between ruffles and in the outside matrix adjoining the ruffled border were low in polarized clasts both in rickets and at the early (48 h) healing time-point, but were increased at the latest (72 h) healing time-point. Interestingly, expression of TRAP and the cathepsin K at the mRNA level, as well as protein expression and the activity of TRAP, were not different during the healing sequence. Although the two enzymes are confined to the same clast populations, their secretion during the resorption process is apparently differentially regulated: cathepsin K secretion is coupled to ruffled border formation in clasts, whereas TRAP is secreted at a later stage during the resorption sequence, suggesting a role for secreted TRAP as a modulator of resorptive activity.  相似文献   

11.
Morphological characterization of skeletal cells in Cbfa1-deficient mice   总被引:4,自引:0,他引:4  
Hoshi K  Komori T  Ozawa H 《BONE》1999,25(6):289-651
  相似文献   

12.
Osteoclasts are effector cells in bone breakdown, and the active bone resorption is confined to the ruffled border zone of these cells. An acid milieu is maintained in this zone which is probably a prerequisite for bone resorption. Tartrate-resistant acid phosphatase (TRAP) activity has been recognized as a characteristic property of osteoclasts and in several studies proposed as a cytochemical marker of osteoclasts. We have previously isolated and characterized a tartrate-resistant and iron-activated acid ATPase (TrATPase) from rat bone, the enzyme being a member of the TRAP family. In the present study the ultrastructural localization of this enzyme was delineated by employing immunogold technique on low temperature-embedded maxillar rat bone. Intensive immunolabeling was seen on the bone surfaces facing the ruffled border zone while lower amounts of marker were seen in adjacent bone areas, that is, on the bone surfaces facing the clear zone and deeper-into the bone. Within the osteoclasts gold markers were observed mainly in vesicular structures interpreted as lysosomes. Immunolabeling was also observed in the recently described endocytic cells located near osteoblasts and osteoclasts. Also in these cells, the marker was confined to lysosomelike structures. The amount of label in bone facing osteoblasts was low, as was the amount within osteoblasts. Our observation of extracellular localization, in particular accumulation of TrATPase in bone matrix facing the ruffled border area of the osteoclasts, favors the view that the enzyme is exported to areas of active bone resorption, thereby indicating a potential role for the enzyme in this process.  相似文献   

13.
Interstitial collagenase activity stimulates bone resorption by mouse marrow osteoclasts [1]. Here, we show that collagenase activity promotes bone resorption by activating adherent osteoclasts to resorb bone. Inhibition of interstitial collagenase activity, either with peptidomimetic hydroxymates or with a specific anti-interstitial collagenase inhibiting antibody, reduced bone resorption by 73-92%. Equal numbers of osteoclasts adhered to bone in the presence of collagenase inhibitors and osteoclast survival was unaffected. In contrast, formation of actin rings and polarization of the vacuolar-H+-ATPase (V-ATPase) to ruffled membranes, two indicators of osteoclast activation, were decreased by inhibiting collagenase activity and stimulated in the presence of cleaved or heat-denatured type I collagen in proportion to increases and decreases of bone resorptive activity. Addition of excess recombinant osteoprotegerin-ligand to cultures did not restore bone resorption in the presence of interstitial collagenase inhibitors. These data support the hypothesis that cleaved collagen stimulates osteoclastic bone resorption by triggering cytoskeletal reorganization and transport of V-ATPase from cytoplasmic stores to ruffled membranes.  相似文献   

14.
Previous reports indicate that mice deficient for cathepsin K (Ctsk), a key protease in osteoclastic bone resorption, develop osteopetrosis due to their inability to properly degrade organic bone matrix. Some features of the phenotype of Ctsk knockout mice, however, suggest the presence of mechanisms by which Ctsk-deficient mice compensate for the lack of cathepsin K. To study these mechanisms in detail, we generated Ctsk-deficient (Ctsk-/-) mice and analyzed them at the age of 2, 7, and 12 months using peripheral quantitative computed tomography, histomorphometry, resorption marker measurements, osteoclast and osteoblast differentiation cultures, and gene expression analyses. The present study verified the previously published osteopetrotic features of Ctsk-deficient mice. However, these changes did not exacerbate during aging indicating the absence of Ctsk to have its most severe effects during the rapid growth period. Resorption markers ICTP and CTX were decreased in the media of Ctsk-/- osteoclasts cultured on bone slices indicating impaired bone resorption. Ctsk-/- mice exhibited several mechanisms attempting to compensate for Ctsk deficiency. The number of osteoclasts in trabecular bone was significantly increased in Ctsk-/- mice compared to controls, as was the number of osteoclast precursors in bone marrow. The mRNA levels for receptor activator of nuclear factor (kappa)B ligand (RANKL) in Ctsk-/- bones were increased resulting in increased RANKL/OPG ratio favoring osteoclastogenesis. In addition, expression of mRNAs of osteoclastic enzymes (MMP-9, TRACP) and for osteoblastic proteases (MMP-13, MMP-14) were increased in Ctsk-/- mice compared to controls. Impaired osteoclastic bone resorption in Ctsk-/- mice results in activation of osteoblastic cells to produce increased amounts of other proteolytic enzymes and RANKL in vivo. We suggest that increased RANKL expression mediates enhanced osteoclastogenesis and increased protease expression by osteoclasts. These observations underline the important role of osteoblastic cells in regulation of osteoclast activity and bone turnover.  相似文献   

15.
Expression of bone resorption genes in osteoarthritis and in osteoporosis   总被引:6,自引:0,他引:6  
Cathepsin K and MMP-9 are considered to be the most abundant proteases in osteoclasts. TRAP is a marker for osteoclasts, and there is increasing evidence of its proteolytic role in bone resorption. RANKL is a recently discovered regulator of osteoclast maturation and activity and induces expression of many genes. This study compared cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin gene expression in the proximal femur of patients with osteoarthritis with that of patients with femoral neck fracture. Fifty-six patients undergoing arthroplasty because of osteoarthritis or femoral neck fracture were included in the study. Total mRNA was extracted from the bone samples obtained from the intertrochanteric region of the proximal femur. Real-time RT-PCR was used to quantify CTSK (cathepsin K), MMP-9 (matrix metalloproteinase 9), ACP5 (TRAP), TNFSF11 (RANKL), TNFRSF11B (OPG), and BGLAP (osteocalcin) mRNAs. The levels of mRNAs coding for MMP-9 and osteocalcin indicated higher expression in the osteoarthritic group (P = 0.011, P = 0.001, respectively), whereas RANKL expression and the ratio RANKL/OPG were both significantly lower in the osteoarthritic group than in the fracture group. Expression of cathepsin K, MMP-9, and TRAP relative to RANKL was significantly higher in the osteoarthritic group. Ratios of all three proteolytic enzymes relative to formation marker osteocalcin were higher in the fracture group. Gene expression of cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin and the association between their mRNA levels pointed to higher bone resorption and bone formation in osteoarthritis, differences in balance between them, and differences in regulation of bone resorption in osteoarthritic and osteoporotic bone.  相似文献   

16.
The development of multinucleated cells with tartrate-resistant acid phosphatase (TRAP) activity was studied in coverslip cultures of murine blood leukocytes and in cocultures of blood leukocytes with murine fetal bone rudiments. Cells with TRAP activity were not present among the leukocytes before culture and were absent in the bone rudiments at the time of explanation. After 14 days, macrophages with only tartrate-sensitive acid phosphatase activity developed in cultures of leukocytes without long bones. Multinucleated cells were not seen. In cocultures of leukocytes with bone rudiments, however, multinucleated cells with a strong TRAP activity had formed after 10-14 days of coculture. These TRAP-positive cells had invaded the bones and resorbed part of the calcified matrix. Electron microscopy revealed ruffled borders on the resorbing cells. In cocultures, TRAP-positive cells also formed from leukocyte fractions depleted of strongly adherent cells. Also on the cellophane supports of the cocultures, mononuclear cells with a stellate appearance and a strong TRAP activity were seen. We suggest that, in the cocultures, osteoclasts developed from a TRAP-negative, circulating progenitor cell. The presence of osteoclast progenitor cells in the circulation is discussed in light of the descent of osteoclasts from hematopoietic stem cells. That appearance of TRAP activity was always seen in resorbing cells and was not acquired in monocytes present in the leukocyte fraction by mere culture means that in the mouse TRAP is a useful marker for osteoclasts.  相似文献   

17.
Bone homeostasis requires stringent regulation of osteoclasts, which secrete proteolytic enzymes to degrade the bone matrix. Despite recent progress in understanding how bone resorption occurs, the mechanisms regulating osteoclast secretion, and in particular the trafficking route of cathepsin K vesicles, remain elusive. Using a genetic approach, we describe the requirement for protein kinase C–delta (PKCδ) in regulating bone resorption by affecting cathepsin K exocytosis. Importantly, PKCδ deficiency does not perturb formation of the ruffled border or trafficking of lysosomal vesicles containing the vacuolar‐ATPase (v‐ATPase). Mechanistically, we find that cathepsin K exocytosis is controlled by PKCδ through modulation of the actin bundling protein myristoylated alanine‐rich C‐kinase substrate (MARCKS). The relevance of our finding is emphasized in vivo because PKCδ?/? mice exhibit increased bone mass and are protected from pathological bone loss in a model of experimental postmenopausal osteoporosis. Collectively, our data provide novel mechanistic insights into the pathways that selectively promote secretion of cathepsin K lysosomes independently of ruffled border formation, providing evidence of the presence of multiple mechanisms that regulate lysosomal exocytosis in osteoclasts. © 2012 American Society for Bone and Mineral Research.  相似文献   

18.
Vacuolar H+‐ATPase (V‐ATPase), a multisubunit enzyme located at the ruffled border and in lysosomes of osteoclasts, is necessary for bone resorption. We previously showed that heterozygous mice with an R740S mutation in the a3 subunit of V‐ATPase (+/R740S) have mild osteopetrosis resulting from an ~90% reduction in proton translocation across osteoclast membranes. Here we show that lysosomal pH is also higher in +/R740S compared with wild‐type (+/+) osteoclasts. Both osteoclast number and size were decreased in cultures of +/R740S compared with +/+ bone marrow cells, with concomitant decreased expression of key osteoclast markers (TRAP, cathepsin K, OSCAR, DC‐STAMP, and NFATc1), suggesting that low lysosomal pH plays an important role in osteoclastogenesis. To elucidate the molecular mechanism of this inhibition, NFATc1 activation was assessed. NFATc1 nuclear translocation was significantly reduced in +/R740S compared with +/+ cells; however, this was not because of impaired enzymatic activity of calcineurin, the phosphatase responsible for NFATc1 dephosphorylation. Protein and RNA expression levels of regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of NFATc1 activation and a protein degraded in lysosomes, were not significantly different between +/R740S and +/+ osteoclasts, but the RCAN1/NFATc1 ratio was significantly higher in +/R740S versus +/+ cells. The lysosomal inhibitor chloroquine significantly increased RCAN1 accumulation in +/+ cells, consistent with the hypothesis that higher lysosomal pH impairs RCAN1 degradation, leading to a higher RCAN1/NFATc1 ratio and consequently NFATc1 inhibition. Our data indicate that increased lysosomal pH in osteoclasts leads to decreased NFATc1 signaling and nuclear translocation, resulting in a cell autonomous impairment of osteoclastogenesis in vitro. © 2013 American Society for Bone and Mineral Research  相似文献   

19.
M. Ito  N. Amizuka  T. Nakajima  H. Ozawa   《BONE》2001,28(6):609-616
We examined the effects of a third generation bisphosphonate [YM-175; disodium dihydrogen (cycloheptylamino)-methylene-1,1-bisphosphonate] on osteoclasts in osteosclerotic (oc/oc) mice to elucidate the cellular mechanism for incorporation of the bisphosphonate. Osteoclasts of oc/oc mice were in direct contact with bone matrix but devoid of ruffled borders. Tartrate-resistant acid phosphatase (TRAPase) showed spotty localization intercellularly, whereas vacuolar H+-ATPase (V-ATPase) immunoreactivity was observed homogeneously in the cytoplasm. Upon injection of bisphosphonate, most osteoclasts lost cell polarity and were detached from bone surfaces. The detached osteoclasts underwent apoptosis as characterized by condensation of chromatin, absence of Golgi apparatus, and formation of many vesicles in the cytoplasm. Both TRAPase and V-ATPase were evenly distributed in the cytoplasm. The pyknotic nuclei of osteoclasts revealed DNA fragments as evidenced by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. The results indicate that osteoclasts lacking ruffled borders in oc/oc mice incorporated the bisphosphonate from a site different from ruffled borders and that bisphosphonate may directly affect osteoclasts without mediating its deposition to the bone matrix.  相似文献   

20.
Mice deficient in the chloride channel ClC-7, which is likely involved in acidification of the resorption lacuna, display severe osteopetrosis. To fully characterize the osteopetrotic phenotype, the phenotypes of osteoclasts and osteoblasts were evaluated. ClC-7−/− mice and their corresponding wild-type littermates were killed at 4–5 weeks of age. Biochemical markers of bone resorption (CTX-I), osteoclast number (TRAP5b), and osteoblast activity (ALP) were evaluated in serum. Splenocytes were differentiated into osteoclasts using M-CSF and RANKL. Mature osteoclasts were seeded on calcified or decalcified bone slices, and CTX-I, Ca2+, and TRAP were measured. Acidification rates in membrane vesicles from bone cells were measured using acridine orange. Osteoblastogenesis and nodule formation in vitro were investigated using calvarial osteoblasts. ClC-7−/− osteoclasts were unable to resorb calcified bone in vitro. However, osteoclasts were able to degrade decalcified bone. Acid influx in bone membrane vesicles was reduced by 70% in ClC-7−/− mice. Serum ALP was increased by 30% and TRAP5b was increased by 250% in ClC-7−/− mice, whereas the CTX/TRAP5b ratio was reduced to 50% of the wild-type level. Finally, evaluation of calvarial ClC-7−/− osteoblasts showed normal osteoblastogenesis. In summary, we present evidence supporting a pivotal role for ClC-7 in acidification of the resorption lacuna and evidence indicating that bone formation and bone resorption are no longer balanced in ClC-7−/− mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号