首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The MASA syndrome is an X-linked disorder with mental retardation, spastic paraparesis, and adducted thumbs as the most characteristic features. We performed linkage analysis, using Xq28 markers, on a large MASA syndrome family. The maximum lodscore was 6.37 at 0 recombination for DXS52 and 5.99 at 0 recombination for DXS305. Crossovers were demonstrated between the disorder and DXS455. Clinical and linkage data from this family further support the hypothesis that the MASA syndrome and X-linked hydrocephalus are allelic disorders.  相似文献   

2.
A three generation family with X linked myotubular myopathy (MTM1) was studied with several polymorphic markers from the distal long arm of the X chromosome. A recombination between the disease gene and four markers (loci DXS52, DXS134, DXS15, F8C) from the Xq28 cluster was detected. A new polymorphic marker (U6.2) defining the locus DXS304 in the Xq27-28 region proximal to the Xq28 cluster did not show any recombination with MTM1. These results suggest the following order of loci in distal Xq: cen-DXS42-DXS105-(DXS304, MTM1)-(DXS52, DXS134, DXS15, F8C)-tel.  相似文献   

3.
The linkage relationship between the factor VIII gene (F8C) and the DXS52 locus was examined in 8 families. Two recombinations were identified in 35 informative meioses (Zmax = 5.67; theta = 0.05), one in a family with hemophilia A, the other in a family with the fra(X) syndrome. Based on the latter recombination, the most probable order of loci was determined to be centromere-fra(X)-DXS15-DXS52-F8C-telomere. When these data are added to those reported previously the most probable genetic distance between F8C and DXS52 is 3 cM (Z = 14.62). Identification of these and other recombinations suggests that the use of DXS52 as a genetic marker for carrier detection and prenatal diagnosis of hemophilia A has an error rate between 3-5%.  相似文献   

4.
The use of linked DNA markers and linkage analysis in the fragile X [fra(X)] syndrome allows for improved genetic counseling and prenatal diagnosis. In order to provide the most accurate information, it is important to determine the order and location and position of flanking markers. Conflicting results have been reported for the order of 3 DNA markers distal to the fra(X) locus. We analyzed the linkage relationships of the distal markers ST14 (DXS52), DX13 (DXS15), and F8 (F8C) in 102 fra(X) families. The results indicated that the 3 DNA markers were closely linked to one another and mapped approximately 11 to 15% recombination units away from the fra(X) locus. The most likely order was fra(X)-DXS52-DXS15-F8. The order fra(X)-DXS52-F8 and 728 times more likely than the order fra(X)-F8-DXS52. One family showed a probable double recombinant: in one individual there was recombination between fra(X)-DXS52 and between DXS52-F8. The low probability of this occurring, 0.3%, raises the possibility of an alternate chromosome arrangement or an unusual recombinant mechanism in some individuals.  相似文献   

5.
The most common inherited form of hydrocephalus, X linked hydrocephalus (HSAS), is characterised by mental retardation, adducted thumbs, and spastic paraplegia. Genetic analysis has mapped the locus for HSAS to subchromosomal band Xq28 within a region of approximately 2 megabases of DNA. In order to refine the location of the disease gene we have conducted genetic linkage analysis with Xq28 marker loci in four additional HSAS families. A lod score of 4.26 with polymorphic marker DXS52 (St14) confirms the linkage of HSAS to Xq28. Identification of a recombination event between the HSAS gene and Xq28 loci F8C and DXS605 (2-19) reduces the size of the interval likely to contain the disease locus to about 1.5 megabases, the distance between DXS605 and DXS52. The locus for neural cell adhesion molecule, L1CAM, maps within this interval and therefore represents a candidate gene for HSAS.  相似文献   

6.
Multipoint linkage analysis was undertaken with eight Xq cloned DNA sequences which identify one or more restriction fragment length polymorphisms in 26 families. These families comprise seven phase known normal families with three or more males in the third generation, seven families segregating for haemophilia B, one large family with dyskeratosis congenita, and 11 families with the fragile X syndrome. Phase known meioses informative for three or more loci supported the order centromere--DXYS1--DXS107--DXS102, DXS51--F9--FRAXA--DXS15, DXS52, F8--Xqter in each group of families studied. One of the normal families was segregating for protan colour blindness and showed a phase known recombination which would support the order centromere--F9--DXS52--CBP--Xqter. With the exception of DXYS1, all of these sequences have been localised to Xq27----qter by in situ hybridisation or hybridisation to Xq fragment panels, and on this basis should lie within 20 cM of one another. No recombination was observed between the sequences localised to Xq28, namely DXS52, F8, and DXS15 (between DXS15 and DXS52 Z = 12.25 at theta = 0 with confidence limits of 0 to 5 cM). However, an excess of recombination was apparent in the region of FRAXA with maximal lod scores as follows: F9 versus FRAXA (Z = 2.05, theta = 0.19), DXS52 versus FRAXA (Z = 1.85, theta = 0.26), and DXS15 versus FRAXA (Z = 1.33, theta = 0.27). No consistent differences were observed in the frequency of recombination when families with the fragile X syndrome were compared with normal families or families segregating for other X linked conditions. These results are compared with other published work and support the conclusion that although measurable linkage exists between these flanking markers and FRAXA, the intervals as measured by the frequency of meiotic recombination will seriously limit their clinical usefulness.  相似文献   

7.
The locus for X linked recessive myotubular myopathy (MTM1) has previously been mapped to Xq28 by linkage analysis. We report two new families that show recombination between MTM1 and either DXS304 or DXS52. These families and a third previously described recombinant family were analysed with two highly polymorphic markers in the DXS304-DXS52 interval, the DXS455 VNTR and a newly characterised microsatellite, DXS1684 (82% heterozygosity). These markers did not recombine with MTM1 in the three families. Together with the recent mapping of an interstitial X chromosome deletion in a female patient with moderate signs of myotubular myopathy, our data suggest the following order of loci in Xq28: cen-DXS304-(DXS455, MTM1)-DXS1684-DXS305-DXS52-tel. This considerably refined localisation of the MTM1 locus should facilitate positional cloning of the gene. The availability of highly polymorphic and very closely linked markers will markedly improve carrier and prenatal diagnosis of MTM1.  相似文献   

8.
Emery-Dreifuss muscular dystrophy (EMD) is characterised by (1) early contractures of the Achilles tendons, elbows, and postcervical muscles, (2) slowly progressive muscle wasting and weakness with a predominantly humeroperoneal distribution in the early stages, and (3) cardiomyopathy with conduction defects and risk of sudden death. Inheritance is usually X linked recessive but can be autosomal dominant. Family linkage studies have mapped X linked EMD to the distal long arm of the X chromosome but precise genetic localisation has been hampered by the rarity of this condition. We report three new families with X linked Emery-Dreifuss muscular dystrophy studied with DNA markers from Xq27-qter and three previously published families typed for additional markers. No recombination was observed with the red/green cone pigment locus, RGCP (lod score, Z = 2.46), the factor VIII coagulant gene locus, F8C (Z = 6.39), or with DXS115 (Z = 4.94). Two recombinants were observed which mapped EMD distal to DXS15 (DX13) and DXS52 (St14) respectively. Multipoint linkage analysis gave odds exceeding 200:1 for EMD being distal to these markers. A multipoint analysis incorporating published data gave the map cen-DXS304-9cM-DXS15-3cM-DXS52-2 cM-(RGCP,EMD)-3cM-F8C-2cM-DXS115 with odds of 120:1 in favour of a location for EMD between DXS52 and F8C as compared to the next best position distal to F8C.  相似文献   

9.
10.
Linkage data using the polymorphic loci F9, DXS105, DXS98, DXS52, DXS15, and F8 and the DNA probe 1A1 are presented from 14 families segregating for fragile X [fra(X)] syndrome. Recombination fractions corresponding to the maximum LOD scores obtained by two-point linkage analysis suggest that DXS98 (Zmax = 3.23, theta = 0.0) and DXS105 (Zmax = 2.09, theta = 0.0) are the closest markers proximal to FRAXA and that DXS52 is the closest distal marker (Zmax = 3.55, theta = 0.16). FRAXA is located within a 25 cM interval between F9 and DXS52, coincident with DXS98, on multipoint linkage analysis. Phase-known three way crossover information places F8 outside the cluster (DXS52, DXS15, 1A1). Confidence limits for the markers DXS98 and DXS52 are relatively wide (0.0-0.15 and 0.06-0.31, respectively), but when used in combination with cytogenetic examination offer improved carrier detection in comparison with cytogenetic analysis alone.  相似文献   

11.
X linked hydrocephalus and MASA syndrome.   总被引:10,自引:2,他引:10       下载免费PDF全文
X linked hydrocephalus and MASA syndrome are clinically related, neurological disorders with an X linked recessive mode of inheritance. Although originally described as distinct entities, their similarity has become apparent as the number of reported families has increased and a high degree of intra- and interfamilial variation in clinical signs noted for both disorders. Consideration of this clinical overlap together with finding that genes for both diseases map to the same chromosomal band (Xq28) led to the hypothesis that they were caused by mutation at the same locus. This was confirmed by identification of mutations in patients with X linked hydrocephalus and MASA syndrome within the gene for neural cell adhesion molecule L1. Here we review the clinical and genetic characteristics of these disorders and the underlying molecular defects in the L1 gene.  相似文献   

12.
We describe a 5-generation Hispanic family with 13 males and 1 female affected with MASA syndrome. The proposita, a 17-year-old female, and her affected male relatives shared many of the cognate manifestations--mental retardation (14/14), aphasia or delayed speech (13/13), shuffling gait (8/13), adduction of thumbs (14/14)--as well as scoliosis (2/13) and increased deep tendon reflexes in the lower extremities (10/13). Southern analysis with the polymorphic DNA probes DXS14 (Xp11), DXS72 (Xq21), and F8C (Xq28) confirmed linkage to the Xq28 region with a maximum lod score of 3.01 for this family.  相似文献   

13.
We have evaluated, both clinically and by linkage analysis, a large family with 22 known affected males with the MASA syndrome (McKusick 303300). Clinical findings varied widely amongst the affected family members, with some appearing initially to have the MASA syndrome and others to have X-linked hydrocephalus (HSAS) (McKusick 307000). Important findings included the presence of adducted thumbs in two obligate carriers, learning problems or mild mental retardation in three females, two of whom were obligate carriers, and hydrocephalus with neonatal death in three females born to obligate carriers. X-inactivation analysis in lymphocytes from the two women with adducted thumbs revealed preferential inactivation of one X chromosome, suggesting that nonrandom X-inactivation may be responsible for clinical expression in females. The presence of HSAS in some individuals of this family and the MASA syndrome in others further supports the hypothesis that these two conditions are the result of a mutation in the same gene.  相似文献   

14.
Linkage analysis was performed in 34 fragile X (fra(X)) families in order to study the efficiency of carrier detection using the restriction fragment length polymorphisms (RFLPs) closely linked to fra(X) locus (FRAXA). The marker loci used were F9, DXS105, DXS98, DXS369, DXS297 and DXS477 proximally and DXS465, DXS296, DXS304, DXS52 and F8C distally to FRAXA. Flanking heterozygosity was achieved in 60% of the females with a combination of 3 restriction enzymes and 6 closest RFLP markers. When adding more distant markers and other restriction enzymes to the analysis, the proportion of females heterozygous for flanking polymorphisms increased to 96%. With RFLP-analysis most (85/91) females at high risk of being a carrier could be separated clearly into 2 groups: those with a very low and those with a very high risk. The 6 cases with a recombination between flanking markers did not benefit from RFLP-analysis.  相似文献   

15.
In 1972, Fried described a large Scottish family affected by X linked mental retardation (XLMR), hydrocephalus, and mild facial dysmorphism. The phenotype has considerable similarity to the MASA syndrome, which results from mutations of the L1CAM gene in Xq28, and this family has since been assumed to be an example of this condition. We have reinvestigated the family for linkage to X chromosome markers, and obtained additional clinical information on surviving affected subjects. The phenotype in these patients has evolved into a distinctive syndrome, with severe mental retardation (MR), spastic diplegia, ventricular dilatation, and calcification of the basal ganglia. Linkage to Xq28 markers has been excluded, suggesting that Fried syndrome is not allelic with MASA syndrome. Two point and multipoint linkage analysis indicates that the gene for this condition lies within the interval KAL-DXS989 in Xp22. We propose the designation Fried syndrome to emphasise the disorder's distinctive phenotype.  相似文献   

16.
A new RFLP marker U6.2 defining the locus DXS304 was recently mapped to the distal long arm of the X chromosome. In the present study we report the results of genetic linkage analysis of 13 fragile X [fra(X)] families that were informative for the new marker. Analysis of the recombinants for F9-FRAXA, DXS105-FRAXA, DXS98-FRAXA, DXS52-FRAXA, DXS15-FRAXA, and F8C-FRAXA, places DXS304 distal and near to the FRAXA locus. Combined with results from previous studies, our results support the order Xcen.-F9-DXS105-DXS98-FRAXA-DXS304-DXS5 2-DXS15-F8C-Xqter. Close linkage was observed between DXS304 and the disease locus with a peak lod score of 5.12 at theta = 0.04 from the present study and, with a peak lod score of 17.45 at theta = 0.035 when our data are combined with published data from 2 other studies. The present study confirms that U6.2 is useful for prenatal diagnosis and carrier testing in families affected by fra(X) syndrome.  相似文献   

17.
RFLP studies were done in 82 (75%) of all known hemophilia A families in the Finnish population (approximately 5 million). Two intragenic RFLPs (Bc1I/F8A, XbaI/p482.6) and two extragenic markers (TaqI/St14, Bg1II/DX13) were used. Among 263 females at risk, carriership could be evaluated with an intragenic marker in 47% and with an extragenic marker in 26%. In 27% of the females, carriership could be neither excluded nor confirmed; 68% of these females were relatives of an isolated patient. Eight recombinations between the factor VIII gene (F8C) and DXS52 (lod 25.02 at theta max 0.06), eight recombinations between F8C and DXS15 (lod 21.91 at theta max 0.05), and two recombinations between DXS52 and DXS15 (lod 33.56 at theta max 0.01) were found. Using multipoint linkage analysis, the most likely order of loci supported by the data was: F8C-DXS15-DXS52-DXS134. RFLP segregation analysis provides a highly useful method of carrier detection and prenatal diagnosis of hemophilia A, but its limitations must be carefully taken into account.  相似文献   

18.
Smith-Fineman-Myers综合征基因定位于Xq25   总被引:6,自引:2,他引:4  
目的 定位 Smith Finem an Myers 综合征基因,为分离该基因奠定基础。方法 应用覆盖 X染色体全长的、具有多态性的短串联重复序列( S T R) 对 X 染色体进行扫查,确定致病基因所在区域和与致病基因连锁的 S T R 位点,再对该位点两侧的 S T R 位点进行分析,确定致病基因的精确位置。结果 用20个覆盖 X 染色体全长的、具有多态性的 S T R 位点对该综合征患者家系中的13 个能明确提供连锁分析信息的家系成员进行分析,发现位于 Xq25 上的 D X S1001 与致病基因紧密连锁,最大两点lods 得分为301(θ= 0) ,对 D X S1001 两侧的 S T R 分析证实,该致病基因位于 D X S1001 区域,单体型分析表明该致病基因位于 D X S8064 和 D X S8050 之间,区域为146c M。结论  Smith Finem an Myers 综合征基因,位于 Xq25 上的 D X S8064 和 D X S8050 之间的146c M 区域,该基因的定位为分离该基因奠定了基础。  相似文献   

19.
We report on linkage data between DXS105, DXS98, the locus for the fragile X syndrome (FRAXA), and 3 other polymorphic loci that flank the FRAXA locus. An analysis was undertaken to determine the relative positions of DXS105 and DXS98 and to test the assignment of DXS105 to a location proximal and closely linked to FRAXA. In this study of fragile X fra(X) syndrome families, the DXS105 locus was calculated to be proximal to FRAXA with a maximum lod score of 10.36 at theta = 0.08. DXS105 was also shown to be closely linked to the gene for factor IX (F9)(Z = 11.84 at theta = 0.08) and to DXS98 (Z = 4.91 at theta = 0.04). The order of the loci proximal to FRAXA is most likely centromere-factor IX-DXS105-DXS98-FRAXA-telomere. The use of DXS105 and DXS98 in clinical investigations should significantly increase the accuracy of risk assessment in informative fragile X families.  相似文献   

20.
In an extended family with eight individuals with infantile autism, in association with other developmental disorders and fragile (X) (q27.3), DNA techniques were used to investigate linkage between X chromosomal probes and the disorder. F9 was not informative and recombination was found between fragile X and DXS15, DXS51 and DXS52.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号