首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological role of B cell lymphoma 2 (Bcl-2) homology 3-only proteins has been investigated in mice lacking the individual genes identifying rate-limiting roles for Bim (Bcl-2-interacting mediator of cell death) and Puma (p53-up-regulated modulator of apoptosis) in apoptosis induction. The loss of Bim protects lymphocytes from apoptosis induced by cytokine deprivation and deregulated Ca++ flux and interferes with the deletion of autoreactive lymphocytes and the shutdown of immune responses. In contrast, Puma is considered the key mediator of p53-induced apoptosis. To investigate the hypothesis that Bim and Puma have overlapping functions, we generated mice lacking both genes and found that bim-/-/puma-/- animals develop multiple postnatal defects that are not observed in the single knockout mice. Most strikingly, hyperplasia of lymphatic organs is comparable with that observed in mice overexpressing Bcl-2 in all hemopoietic cells exceeding the hyperplasia observed in bim-/- mice. Bim and Puma also have clearly overlapping functions in p53-dependent and -independent apoptosis. Their combined loss promotes spontaneous tumorigenesis, causing the malignancies observed in Bcl-2 transgenic mice, but does not exacerbate the autoimmunity observed in the absence of Bim.  相似文献   

2.
The mechanisms by which Ca(2+)-independent phospholipase A(2) (iPLA(2)) mediates cell growth in p53-positive LNCaP and p53-negative PC-3 prostate cancer cell lines were studied. Exposure of cells to the iPLA(2) selective inhibitor bromoenol lactone (BEL; 0-20 microM) induced concentration- and time-dependent decreases in cell growth based on 3-(4, dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide staining and cell number. Decreased cell growth was not caused by cell death as BEL exposure did not alter nuclear morphology or increase annexin V (apoptotic cell marker) or propidium iodide (necrotic cell marker) staining after 48 h. Decreased growth correlated to a G(1)/G(0) arrest in LNCaP cells and aG(2)/M arrest in PC-3 cells. In LNCaP cells, G(1) arrest was preceded by time- (0-48 h) and concentration-dependent (0-10 microM) increases in the expression of the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitor p21. Increases in p53 expression preceded increases in p21 expression by 8 h. In LNCaP cells, BEL treatment decreased the expression of the p53 antagonist Mdm2, while increasing Akt phosphorylation. BEL treatment also increased Akt phosphorylation in PC-3 cells, but Mdm2 was not detected. The ability of BEL to increase Akt phosphorylation was inhibited by the phosphoinositide 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]. BEL treatment also decreased agonist-induced activation of the epidermal growth factor receptor. These data suggest that inhibition of iPLA(2) decreases prostate cancer cell growth by p53-dependent and independent mechanisms. Furthermore, alterations in Mdm2 and epidermal growth factor receptor activation following BEL exposure suggest novel roles for iPLA(2) in prostate cancer cell signaling.  相似文献   

3.
4.
Hypoxia-induced stress plays a central role in retinal vascular disease and cancer. Increased hypoxia-inducible factor-1 alpha (Hif-1 alpha) expression leads to HIF-1 formation and the production of vascular endothelial growth factor (VEGF). Cytokines, including insulin-like growth factor-1 (IGF-1), also stimulate VEGF secretion. In this study, we examined the relationship between IGF-1 signaling, HIF-1 alpha protein turnover and VEGF secretion in the ARPE-19 retinal pigment epithelial cell line. Northern analysis revealed that IGF-1 stimulated Hif-1 alpha message expression, whereas the hypoxia-mimetic CoCl2 did not. CoCl2 treatment increased Hif-1 alpha protein accumulation to a greater extent than IGF-1 treatment. However, IGF-1 stimulated a more significant increase in VEGF secretion. IGF-1-stimulated VEGF promoter activity was phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR (mammalian target of rapamycin)-dependent, whereas VEGF secretion was only partially reduced by inhibition of PI3K/Akt/mTOR and HIF-1 activities. Analysis of VEGF promoter truncation mutants indicated that sensitivity to CoCl2 was hypoxia response element (HRE)-dependent with the region upstream of the HRE conferring IGF-1 sensitivity. In conclusion, IGF-1 regulates VEGF expression and secretion via HIF-1-dependent and -independent pathways.  相似文献   

5.
6.
7.
In the present article, we describe a mechanistic study of a novel derivative of N-amidino-substituted benzimidazo[1,2-alpha]quinoline in two human colorectal cancer cell lines differing in p53 gene status. We used a proteomic approach based on two-dimensional gel electrophoresis coupled with mass spectrometry to complement the results obtained by common molecular biology methods for analyzing cell proliferation, cell cycle, and apoptosis. Tested quinoline derivative inhibited colon cancer cell growth, whereby p53 gene status seemed to be critical for its differential response patterns. DNA damage and oxidative stress are likely to be the common triggers of molecular events underlying its antiproliferative effects. In HCT 116 (wild-type p53), this compound induced a p53-dependent response resulting in accumulation of the G(1)- and S-phase cells and induction of apoptosis via both caspase-3-dependent and caspase-independent pathways. Quinoline derivative triggered transient, p53-independent G(2)-M arrest in mutant p53 cells (SW620) and succeeding mitotic transition, whereby these cells underwent cell death probably due to aberrant mitosis (mitotic catastrophe). Proteomic approach used in this study proved to be a valuable tool for investigating cancer cell response to newly synthesized compound, as it specifically unraveled some molecular changes that would not have been otherwise detected (e.g., up-regulation of the p53-dependent chemotherapeutic response marker maspin in HCT 116 and impairment in ribosome biogenesis in SW620). Finally, antiproliferative effects of tested quinoline derivative on SW620 cells strongly support its possible role as an antimetastatic agent and encourage further in vivo studies on the chemotherapeutic potential of this compound against colorectal carcinoma.  相似文献   

8.
9.
TIR domain--containing adaptors regulate TLR-mediated signaling pathways   总被引:1,自引:0,他引:1  
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses via signaling pathways mediated by several Toll/IL-1R (TIR) domain-containing adaptors such as MyD88, TIRAP, and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4 that is responsible for type I interferon production in response to double-stranded RNA and LPS, respectively. TIRAP specifically participates in the MyD88-dependent pathways shared by TLR2 and TLR4, and TRAM is essential for the TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors play an important role in the TLR mediated signaling pathways.  相似文献   

10.
Most targeted anticancer drugs are inhibitors of kinases that are aberrantly activated in cancer cells. However, the mechanisms by which kinase inhibitors suppress tumor growth remain unclear. In this study, we found that UCN-01, a staurosporine analogue and broad-range kinase inhibitor used in clinical trials, inhibits colon cancer cell growth by inducing apoptosis via PUMA, a BH3-only Bcl-2 family member and a p53 target. PUMA expression was markedly elevated in a p53-independent fashion following UCN-01 treatment. The induction of PUMA by UCN-01 was mediated by direct binding of FoxO3a to the PUMA promoter following inhibition of AKT signaling. Deficiency in PUMA abrogated UCN-01-induced apoptosis, caspase activation, and mitochondrial dysfunction, and rendered UCN-01 resistance in a clonogenic assay, whereas elevated PUMA expression or a BH3 mimetic sensitized UCN-01 induced apoptosis. Chemosensitization by UCN-01 seemed to involve simultaneous PUMA induction through both p53-dependent and p53-independent mechanisms. Furthermore, deficiency in PUMA suppressed the antitumor effects of UCN-01 in a xenograft model, concurrent with reduced apoptosis and caspase activation in vivo. These results suggest that PUMA-mediated apoptosis is pivotal for the anticancer activities of UCN-01, and possibly other clinically used kinase inhibitor drugs, and that PUMA manipulation may be useful for improving their anticancer activities.  相似文献   

11.
反应性星形胶质细胞增生是神经退行性疾病的特征性病理性改变之一。炎性细胞因子,如TNF-α和IL-1β,已被证实在神经退行性疾病中介导反应性星形胶质细胞增生,尽管其分子机制仍不清楚。本研究探讨严重反应性星形胶质细胞增生的一个主要方面——转录因子FOXO3a在星形胶质细胞增生中的作用。本研究通过Ki67和BrdU免疫染色证实TNF-α和IL-1β促进星形胶质细胞增生。本研究进一步发现细胞因子介导的星形胶质细胞增生伴有FOXO3a磷酸化的增加和核表达的下降。颅内注射TNF-α和IL-1β导致星形胶质细胞增生和肥大,这与星形胶质细胞中的Foxo3a核表达下降有关。为了确定Foxo3a在星形胶质细胞增生中的作用,在腺病毒中过表达野生型Foxo3a,引起p27Kip1及Gadd45α上调,且显著抑制细胞因子介导的星形胶质细胞增生。与之相反,负显性型FOXO3a的过表达使p27Kip1降低,下调Cyclin D1,促进星形胶质细胞增生。同样,Foxo3a敲除小鼠中分离的星形胶质细胞表现出更高的增生趋势。颅内注射细胞因子后,Foxo3a敲除小鼠在体内表现出严重的星形胶质细胞增生。综上所述,FOXO3a在促炎因子刺激时对于遏制星形胶质细胞增生发挥重要作用,FOXO3a功能的缺失可能是严重反应性星形胶质细胞增生中星形胶质细胞增生的原因。了解FOXO3a在反应性星形胶质细胞增生中的关键调节作用可能为神经炎症提供一个新的治疗靶点。  相似文献   

12.
The gp130 cytokine receptor activates a cardiomyocyte survival pathway during the transition to heart failure following the biomechanical stress of pressure overload. Although gp130 activation is observed transiently during transverse aortic constriction (TAC), its mechanism of inactivation is largely unknown in cardiomyocytes. We show here that suppressor of cytokine signaling 3 (SOCS3), an intrinsic inhibitor of JAK, shows biphasic induction in response to TAC. The induction of SOCS3 was closely correlated with STAT3 phosphorylation, as well as the activation of an embryonic gene program, suggesting that cardiac gp130-JAK signaling is precisely controlled by this endogenous suppressor. In addition to its cytoprotective action, gp130-dependent signaling induces cardiomyocyte hypertrophy. Adenovirus-mediated gene transfer of SOCS3 to ventricular cardiomyocytes completely suppressed both hypertrophy and antiapoptotic phenotypes induced by leukemia inhibitory factor (LIF). To our knowledge, this is the first clear evidence that these two separate cardiomyocyte phenotypes induced by gp130 activation lie downstream of JAK. Three independent signaling pathways, STAT3, MEK1-ERK1/2, and AKT activation, that are coinduced by LIF stimulation were completely suppressed by SOCS3 overexpression. We conclude that SOCS3 is a mechanical stress-inducible gene in cardiac muscle cells and that it directly modulates stress-induced gp130 cytokine receptor signaling as the key molecular switch for a negative feedback circuit for both myocyte hypertrophy and survival.  相似文献   

13.
Perifosine is a novel p.o. bioavailable alkylphospholipid. Perifosine has displayed significant antiproliferative activity in vitro and in vivo in several human tumor model systems and has recently entered phase I clinical trials. Recent studies have identified that perifosine could cause cell cycle arrest with induction of p21(WAF1/CIP1) in a p53-independent fashion; however, the basis for that effect is not known. Structurally, perifosine resembles naturally occurring phospholipids. Therefore, we hypothesized that perifosine might perturb pathways related to phospholipids modulated by growth factor action. We demonstrate here that perifosine causes dose-dependent inhibition of protein kinase B/Akt phosphorylation and thus activation at concentrations causing growth inhibition of PC-3 prostate carcinoma cells. Only the myristoylated form of Akt (MYR-Akt), which bypasses the requirement for pleckstrin homology (PH) domain-mediated membrane recruitment, abrogated perifosine-mediated decrease of Akt phosphorylation and cell growth inhibition by perifosine. We demonstrate further that perifosine decreases the plasma membrane localization of Akt, and this is substantially relieved by MYR-Akt along with relief of downstream drug effect on induction of p21(WAF1/CIP1). Perifosine does not directly affect phosphoinositide 3-kinase (PI3K), phosphoinositide-dependent kinase 1, or Akt activity at concentrations inhibiting Akt phosphorylation and membrane localization. Our results demonstrate that Akt is an important cellular target of perifosine action. In addition, these studies show that the membrane translocation of certain PH domain-containing molecules can be greatly perturbed by the alkylphospholipid class of drugs and imply further that the PI3K/Akt pathway contributes to regulation of p21(WAF1/CIP1) expression.  相似文献   

14.
p53-dependent ceramide response to genotoxic stress.   总被引:2,自引:0,他引:2       下载免费PDF全文
Both p53 and ceramide have been implicated in the regulation of growth suppression. p53 has been proposed as the "guardian of the genome" and ceramide has been suggested as a "tumor suppressor lipid. " Both molecules appear to regulate cell cycle arrest, senescence, and apoptosis. In this study, we investigated the relationship between p53 and ceramide. We found that treatment of Molt-4 cells with low concentrations of actinomycin D or gamma-irradiation, which activate p53-dependent apoptosis, induces apoptosis only in cells expressing normal levels of p53. In these cells, p53 activation was followed by a dose- and time-dependent increase in endogenous ceramide levels which was not seen in cells lacking functional p53 and treated similarly. Similar results were seen in irradiated L929 cells whereby the p53-deficient clone was significantly more resistant to irradiation and exhibited no ceramide response. However, in p53-independent systems, such as growth suppression induced by TNF-alpha or serum deprivation, ceramide accumulated irrespective of the upregulation of p53, indicating that p53 regulates ceramide accumulation in only a subset of growth-suppressive pathways. Finally, ceramide did not increase p53 levels when used at growth-suppressive concentrations. Also, when cells lacking functional p53, either due to mutation or the expression of the E6 protein of human papilloma virus, were treated with exogenous ceramide, there was equal growth suppression, cell cycle arrest, and apoptosis as compared with cells expressing normal p53. These results indicate that p53 is unlikely to function "downstream" of ceramide. Instead, they suggest that, in situations where p53 performs a critical regulatory role, such as the response to genotoxic stress, it functions "upstream" of ceramide. These studies begin to define a relationship between these two pathways of growth inhibition.  相似文献   

15.
Doxorubicin is an effective drug against breast cancer. However, the favorable therapeutic response to doxorubicin is often associated with severe toxicity. The present research was aimed at developing a strategy of increasing doxorubicin sensitivity so that lower doses may be used without compromising efficacy. The MCF-7 human breast cancer cell line currently in use in our laboratory did not respond to doxorubicin cell killing during a 24-h treatment period. By combining doxorubicin with selenium, we were successful in producing a brisk enhancement of apoptosis. We examined the effects of these two agents on Akt activation and found that selenium was capable of depressing doxorubicin-induced Akt phosphorylation. Several lines of evidence converged to support the notion that this effect is important in mediating the synergy between selenium and doxorubicin. Selenium was no longer able to sensitize cells to doxorubicin under a condition in which Akt was constitutively activated. Increased Akt phosphorylation following treatment with doxorubicin was accompanied by increased phosphorylation of glycogen synthase kinase 3beta (GSK3beta) and FOXO3A, which are substrates of Akt (both GSK3beta and FOXO3A lose their proapoptotic activities when they are phosphorylated). Selenium reduced the abundance of phospho-GSK3beta induced by doxorubicin, whereas chemical inhibition of GSK3beta activity muted the apoptotic response to the selenium/doxorubicin combination. Additional experiments showed that selenium increased the transactivation activity of FOXO3A, as evidenced by a reporter gene assay, as well as by the elevated expression of Bim (a target gene of FOXO3A). The functional significance of Bim was confirmed by the observation that RNA interference of Bim markedly reduced the potency of selenium/doxorubicin to induce apoptosis.  相似文献   

16.
Epithelial ovarian carcinoma (EOC) remains a highly lethal malignancy. Despite the progress in surgical and therapeutic strategies, resistance to chemotherapy is still a major concern. Cytotoxic therapies mediate killing of cancer cells by activating the intrinsic mitochondrial apoptotic pathway, and p53 status is a key factor in determining the efficacy of apoptotic signaling. The extrinsic (CD95) death receptor-dependent signaling pathway also contributes to the efficacy of cancer therapy. We previously showed that EOC are generally resistant to CD95-dependent apoptosis. In p53 wild-type EOC tumors, CD95-mediated apoptosis is impaired at the receptor level by the long form of cellular FLICE-inhibitory protein, whereas this mechanism does not account for resistance in tumors with mutated p53 (p53mu). In the present study, we examined both intrinsic and death receptor-dependent apoptotic signaling in p53mu OVCAR3 EOC cell line, showing that these cells are less susceptible to cisplatin treatment as compared with p53 wild-type EOC cells and also resist CD95-mediated apoptosis due to inefficient formation of the death-inducing signaling complex and weak mitochondrial signal amplification. However, pretreatment of OVCAR3 cells with clinically relevant cisplatin concentrations significantly improved receptor-dependent apoptotic signaling by up-modulating CD95 receptor expression and increasing death-inducing signaling complex formation efficiency. The synergy of cisplatin pretreatment and CD95 triggering in inducing cell death was also shown in p53mu tumor cells derived from ascitic fluid of advanced-stage EOC patients. These findings support the effectiveness of a combined therapeutic treatment able to sensitize cancer cells to apoptosis even when p53 is functionally inactivated.  相似文献   

17.
Dendritic cells (DC) produce interleukin-12 (IL-12) in response to Toll-like receptor (TLR) activation. Two major TLR signaling pathways participate in the response to pathogens: the nuclear factor-kappaB (NF-kappaB)-dependent pathway leading to inflammatory cytokine secretion including IL-12 and the interferon (IFN)-dependent pathway inducing type I IFN and IFN-regulated genes. Here we show that the two pathways cooperate and are likely both necessary for inducing an optimal response to pathogens. R-848/Resiquimod (TLR7 ligand in the mouse and TLR7/8 ligand in human) synergized with poly(I:C) (TLR3 ligand) or lipopolysaccharide (LPS; TLR4 ligand) in inducing high levels of bioactive IL-12p70 secretion and IFN-beta mRNA accumulation by mouse bone marrow-derived DC (BM-DC). Strikingly, IL-12p70 but not IL-12p40 secretion was strongly reduced in BM-DC from STAT1(-/-) and IFNAR(-/-) mice. STAT1 tyrosine-phosphorylation, IL-12p35, and IFN-beta mRNA accumulation were strongly inhibited in IFNAR(-/-) BM-DC activated with the TLR ligand combinations. Similar observation were obtained in human TLR8-expressing monocyte-derived DC (moDC) using neutralizing anti-IFNAR2 antibodies, although results also pointed to a possible involvement of IFN-lambda1 (also known as IL-29). This suggests that TLR engagement on DC induces endogenous IFNs that further synergize with the NF-kappaB pathway for optimal IL-12p70 secretion. Moreover, analysis of interferon regulatory factors (IRF) regulation in moDC suggests a role for IRF7/8 in mediating IRF3-independent type I IFN and possibly IL-12p35 synthesis in response to TLR7/8.  相似文献   

18.
19.
20.
Lee BJ  Chon KM  Kim YS  An WG  Roh HJ  Goh EK  Wang SG 《Chemotherapy》2005,51(2-3):103-110
In head and neck cancer including hypopharyngeal cancer, cisplatin and 5-fluorouracil (5-FU) usually have been used as neoadjuvant chemotherapeutic agents. We investigated the effects of cisplatin, 5-FU and radiation on p53 protein expression and cell responses (cell cycle arrest and/or apoptosis) in the hypopharyngeal carcinoma cell line (PNUH-12; mutant type p53). PNUH-12 cells were treated with cisplatin, 5-FU and radiation. The changes in the cells were assessed by a cell cytotoxicity assay, Western blotting (p53 and p21(WAF1/CIP1) proteins), a DNA fragmentation assay, propidium iodide (PI) staining and DNA flow cytometry. The expression of p53 protein was increased after treatment with cisplatin and 5-FU, but not radiation. The expression of p21(WAF1/CIP1) protein was increased only after treatment with 5-FU, not cisplatin or radiation. With cisplatin and radiation, we observed apoptosis both by DNA fragmentation and PI staining and increased S phase in cisplatin and G2 phase in radiation by DNA flow cytometry. But, with 5-FU, we could not observe apoptosis by DNA fragmentation and PI stain but only an increased G1 phase by DNA flow cytometry. In PNUH-12, radiation induced p53-independent apoptosis and p21(WAF1/CIP1)-independent G2-phase cell cycle arrest. Cisplatin induced p53-dependent apoptosis and p21(WAF1/CIP1)-independent S-phase cell cycle arrest and 5-FU induced p53 and p21(WAF1/CIP1)-dependent G1-phase cell cycle arrest, not apoptosis. Cisplatin and 5-FU induced p53-dependent pathways, but radiation p53-independent pathway. The cell responses by cisplatin, 5-FU and radiation were all different pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号