首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hematopoietic stem cells (HSCs) represent an important target for the treatment of various blood disorders. As the source of critical cells within the immune system, genetic modification of HSCs can also be used to modulate immune responses. The effectiveness of HSC-mediated gene therapy largely depends on efficient gene delivery into long-term repopulating progenitors and targeted transgene expression in an appropriate progeny of the transduced pluripotent HSCs. Self-inactivating (SIN) lentiviral vectors have been demonstrated to be capable of transducing mitotically inactive cells, including HSCs, and accommodating a nonviral promoter to control the transgene expression in transduced cells. In this study, we constructed 2 SIN lentiviral vectors, EF.GFP and DR.GFP, to express the green fluorescent protein (GFP) gene controlled solely by the promoter of either a housekeeping gene EF-1alpha or the human HLA-DRalpha gene, which is selectively expressed in antigen-presenting cells (APCs). We demonstrated that both vectors efficiently transduced human pluripotent CD34+ cells capable of engrafting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. When the EF.GFP vector was used, constitutive high-level GFP expression was obtained in all the human HSC progeny detectable in NOD/SCID mice and in subsequent in vitro differentiation assays, indicating that engrafting human HSCs have been transduced. In contrast, the DR.GFP vector mediated transgene expression specifically in human HLA-DR+ cells and highly in differentiated dendritic cells (DCs), which are critical in regulating immunity. Furthermore, human DCs derived from transduced and engrafted human cells potently stimulated allogeneic T-cell proliferation. This study demonstrated successful targeting of transgene expression to APCs/DCs after stable gene transduction of pluripotent HSCs.  相似文献   

2.
We compared the efficiency of transduction by an HIV-1-based lentiviral vector to that by a Moloney murine leukemia virus (MLV) retroviral vector, using stringent in vitro assays of primitive, quiescent human hematopoietic progenitor cells. Each construct contained the enhanced green fluorescent protein (GFP) as a reporter gene. The lentiviral vector, but not the MLV vector, expressed GFP in nondivided CD34(+) cells (45.5% GFP+) and in CD34(+)CD38(-) cells in G0 (12.4% GFP+), 48 hr after transduction. However, GFP could also be detected short-term in CD34(+) cells transduced with a lentiviral vector that contained a mutated integrase gene. The level of stable transduction from integrated vector was determined after extended long-term bone marrow culture. Both MLV vectors and lentiviral vectors efficiently transduced cytokine-stimulated CD34(+) cells. The MLV vector did not transduce more primitive, quiescent CD34(+)CD38(-) cells (n = 8). In contrast, stable transduction of CD34(+)CD38(-) cells by the lentiviral vector was seen for over 15 weeks of extended long-term culture (9.2 +/- 5.2%, n = 7). GFP expression in clones from single CD34(+)CD38(-) cells confirmed efficient, stable lentiviral transduction in 29% of early and late-proliferating cells. In the absence of growth factors during transduction, only the lentiviral vector was able to transduce CD34(+) and CD34(+)CD38(-) cells (13.5 +/- 2.5%, n = 11 and 12.2 +/- 9.7%, n = 4, respectively). The lentiviral vector is clearly superior to the MLV vector for transduction of quiescent, primitive human hematopoietic progenitor cells and may provide therapeutically useful levels of gene transfer into human hematopoietic stem cells.  相似文献   

3.
Ramezani A  Hawley TS  Hawley RG 《Blood》2003,101(12):4717-4724
Retroviral vectors are the most efficient means of stable gene delivery to hematopoietic stem cells (HSCs). However, transgene expression from retroviral vectors is frequently subject to the negative influence of chromosomal sequences flanking the site of integration. Toward the development of autonomous transgene expression cassettes, we inserted the human interferon-beta scaffold attachment region (IFN-SAR) and the chicken beta-globin 5' DNase I hypersensitive site 4 (5'HS4) insulator both separately and together into a series of self-inactivating (SIN) lentiviral vector backbones. Transduced cells of the human CD34+ hematopoietic progenitor line KG1a-pooled populations as well as individual clones harboring single integrants--were analyzed for reporter expression during culture periods of up to 4 months. Vectors carrying both the 5'HS4 insulator and the IFN-SAR consistently outperformed control vectors without inserts as well as vectors carrying either element alone. The performance of a set of vectors containing the murine stem cell virus long terminal repeat as an internal promoter was subsequently assessed during in vitro monocytic differentiation of transduced primary human CD34+ cord blood cells. Similar to what was observed in the KG1a hematopoietic progenitor cell model, optimal reporter expression in primary monocytes was obtained with the vector bearing both regulatory elements. These findings indicate that the 5'HS4/IFN-SAR combination is particularly effective at maintaining open chromatin domains permissive for high-level transgene expression at early and late stages of hematopoietic development, and thus could be of utility in HSC-directed retroviral vector-mediated gene transfer applications.  相似文献   

4.
5.
6.
Marodon G  Mouly E  Blair EJ  Frisen C  Lemoine FM  Klatzmann D 《Blood》2003,101(9):3416-3423
Achieving cell-specific expression of a therapeutic transgene by gene transfer vectors represents a major goal for gene therapy. To achieve specific expression of a transgene in CD4(+) cells, we have generated lentiviral vectors expressing the enhanced green fluorescent protein (eGFP) reporter gene under the control of regulatory sequences derived from the CD4 gene--a minimal promoter and the proximal enhancer, with or without the silencer. Both lentiviral vectors could be produced at high titers (more than 10(7) infectious particles per milliliter) and were used to transduce healthy murine hematopoietic stem cells (HSCs). On reconstitution of RAG-2-deficient mice with transduced HSCs, the specific vectors were efficiently expressed in T cells, minimally expressed in B cells, and not expressed in immature cells of the bone marrow. Addition of the CD4 gene-silencing element in the vector regulatory sequences led to further restriction of eGFP expression into CD4(+) T cells in reconstituted mice and in ex vivo-transduced human T cells. Non-T CD4(+) dendritic and macrophage cells derived from human CD34(+) cells in vitro expressed the transgene of the specific vectors, albeit at lower levels than CD4(+) T cells. Altogether, we have generated lentiviral vectors that allow specific targeting of transgene expression to CD4(+) cells after differentiation of transduced mice HSCs and human mature T cells. Ultimately, these vectors may prove useful for in situ injections for in vivo gene therapy of HIV infection or genetic immunodeficiencies.  相似文献   

7.
8.
9.
Tumor suppressor p53 plays an important role in regulating cell cycle progression and apoptosis. Here we applied RNA interference to study the role of p53 in human hematopoietic development in vivo. An siRNA construct specifically targeting the human tumor-suppressor gene p53 was introduced into human CD34(+) progenitor cells by lentivirus-mediated gene transfer, which resulted in more than 95% knockdown of p53. We adapted the human-SCID mouse model to optimize the development of hematopoietic cells, particularly of T cells. This was achieved by the intraperitoneal injection of CD34(+) precursor cells into newborn Rag2(-/-) gammac(-/-) mice that lack T, B, and NK cells. Robust development of T cells was observed in these mice, with peripheral T-cell repopulation 8 weeks after injection of the precursor cells. Other lymphocyte and myeloid subsets also developed in these mice. Injecting p53 siRNA-transduced CD34(+) cells resulted in stable expression and down-modulation of p53 in the mature T-cell offspring. Inactivating p53 did not affect the development of CD34(+) cells into various mature leukocyte subsets, including T cells, but it conferred resistance to gamma-irradiation and other p53-dependent apoptotic stimuli to the T cells.  相似文献   

10.
目的通过RNA干扰技术抑制人胃癌细胞BGC823中人端粒保护蛋白(human protection of telomeresl,hPOTl)的表达,观察hPOTl RNA干扰对胃癌BGC823细胞突变型p53基因转录水平的影响。方法从hPOTl编码区外显子8的区域选取一段19个碱基的序列gtactagaagcctatctca为RNA干扰靶向序列,构建hPOTl的RNA干扰真核表达载体,转人体外培养的低分化人胃癌细胞BGC823,提取细胞总RNA,半定量RT-PCR检测hPOTl和突变型p53基因mRNA表达水平的改变,验证hPOTlRNA干扰载体的基因沉默效率,了解抑制hPOTl表达后突变型p53基因mRNA水平的改变。结果经DNA测序鉴定,hPOTlRNA干扰载体包含干扰序列的插入片段,插入位置正确。经半定量RT-PCR鉴定,RNA干扰组细胞的hPOTl mRNA表达水平明显下调,基因沉默效率在70%左右;突变型p53表达下调。结论通过RNA干扰技术抑制人胃癌细胞BGC823中hPOTl表达后,突变型p53表达下调,提示hPOTl与突变型p53之间有一定的相关性。  相似文献   

11.
12.
Lentiviral-mediated gene transfer into haematopoietic stem cells   总被引:2,自引:0,他引:2  
OBJECTIVES: Lentiviral vectors can transduce nondividing cells. As most haematopoietic stem cells (HSCs) are nondividing in vivo, lentiviral vectors are promising viral vectors to transfer genes into HSCs. DESIGN AND SETTING: We have used HIV-1 based lentiviral vectors containing the green fluorescent protein (GFP) gene to transduce umbilical cord blood CD34+ and CD34+/CD38- cells prior to transplantation into NOD/SCID mice. RESULTS: High level engraftment of human cells was obtained and transgene expression was seen in both myeloid and lymphoid lineages. Bone marrow from the primary transplant recipients mice was transplanted into secondary recipients. GFP expression was seen in both lymphoid and myeloid cells in the secondary recipients 6 weeks posttransplantation. Human haematopoietic progenitor colonies were grown from both primary and secondary recipients. Over 50% of the haematopoietic colonies in these recipients were positive for the GFP transgene by PCR. Following inverse PCR, amplified fragments were sequenced and integration of the vector into human genomic DNA was demonstrated. Several vectors containing different internal promoters were tested in NOD/SCID mice that had been transplanted with transduced CD34+ and CD34+/CD38- cells. The elongation factor-1alpha (EF-1alpha) promoter gave the highest level of expression, both in the myeloid and lymphoid progeny of the engrafting cells. CONCLUSIONS: These data collectively indicate that candidate human HSCs can be efficiently transduced with lentiviral vectors and that the transgene is highly expressed in their progeny cells.  相似文献   

13.
Our goal is to develop cell vaccines against leukemia cells, genetically modified to express molecules with potent immune-stimulatory capacities. Pre-clinical evaluation of this approach in murine models has demonstrated efficient anti-leukemic responses with the expression of immunomodulators, in particular GM-CSF and CD80, in irradiated cell vaccines. We have previously shown efficient insertion of GM-CSF and CD80 genes into primary human leukemia cells with the use of second and third generation self-inactivating (SIN) lentiviral vectors (Blood 96 (2000), 1317; Leukemia 16 (2002), 1645). The advantages of lentiviral vectors for development of autologous leukemia cell vaccines include: (1) efficient and consistent gene delivery; (2) high levels of transgene expression; (3) persistent expression of the transduced gene; (4) no viral proteins, as only the transduced gene is expressed; (5) no undesirable cytotoxic effects, and; (6) simplicity of use [leukemia cells are exposed to vector(s) only once]. In this work, we evaluated the insertion of the central polypurine tract and the central termination sequence into a SIN lentiviral vector encoding for GM-CSF and CD80, which significantly enhanced the transduction efficiency of primary leukemia cells and provided higher levels of GM-CSF and CD80 co-expression. We also demonstrate a methodology to deliver simultaneously a combination of immunomodulatory molecules (GM-CSF, CD80, IL-4, and CD40L) to activate different pathways of immune stimulation. Therefore, lentiviral vectors offer a simple, versatile, and reliable approach for engineering leukemic cells for use as cell vaccines.  相似文献   

14.
Horn PA  Topp MS  Morris JC  Riddell SR  Kiem HP 《Blood》2002,100(12):3960-3967
Vector-containing medium harvested from murine packaging cell lines has been shown to contain factors that can negatively influence the transduction and maintenance of hematopoietic stem cells. Thus, we generated a human packaging cell line with a gibbon ape leukemia virus pseudotype (Phoenix-GALV), and we evaluated vectors produced by Phoenix-GALV for their ability to transduce hematopoietic progenitor/stem cells. In 3 baboons, we used a competitive repopulation assay to directly compare GALV-pseudotype retrovirus vectors produced by either Phoenix-GALV or by the NIH 3T3-derived packaging cell line, PG13. In 3 additional baboons we compared Phoenix-GALV-derived vectors to more recently developed lentiviral vectors. Gene transfer efficiency into hematopoietic repopulating cells was assessed by evaluating the number of genetically modified peripheral blood and marrow cells using flow cytometry and real-time polymerase chain reaction. Transduction efficiency of hematopoietic repopulating cells was significantly higher using the Phoenix-GALV-derived vector as compared with the PG13-derived vectors or lentiviral vectors, with stable transduction levels up to 25%. We followed 2 animals for more than one year. Flow cytometric analysis of hematopoietic subpopulations in these animals revealed transgene expression in CD13(+) granulocytes, CD20(+) B lymphocytes, CD3(+) T lymphocytes, CD61(+) platelets, as well as red blood cells, indicating multilineage engraftment of cells transduced by Phoenix-GALV-pseudotype vectors. In addition, transduction of human CD34(+) cells was significantly more efficient than transduction of baboon CD34(+) cells, suggesting that Phoenix-GALV-derived oncoretroviral vectors may be even more efficient in human stem cell gene therapy applications.  相似文献   

15.
Gene transfer into hematopoietic stem cells (HSCs) is an ideal treatment strategy for many genetic and hematologic diseases. However, progress has been limited by the low HSC transduction rates obtained with retroviral vectors based on murine leukemia viruses. This study examined the potential of vectors derived from the nonpathogenic human foamy virus (HFV) to transduce human CD34(+) cells and murine HSCs. More than 80% of human hematopoietic progenitors present in CD34(+) cell preparations derived from cord blood were transduced by a single overnight exposure to HFV vector stocks. Mice that received transduced bone marrow cells expressed the vector-encoded transgene long term in all major hematopoietic cell lineages and in over 50% of cells in some animals. Secondary bone marrow transplants and integration site analysis confirmed that gene transfer occurred at the stem cell level. Transgene silencing was not observed. Thus vectors based on foamy viruses represent a promising approach for HSC gene therapy. (Blood. 2001;98:604-609)  相似文献   

16.
Frecha C  Costa C  Nègre D  Amirache F  Trono D  Rio P  Bueren J  Cosset FL  Verhoeyen E 《Blood》2012,119(5):1139-1150
In vivo lentiviral vector (LV)-mediated gene delivery would represent a great step forward in the field of gene therapy. Therefore, we have engineered a novel LV displaying SCF and a mutant cat endogenous retroviral glycoprotein, RDTR. These RDTR/SCF-LVs outperformed RDTR-LVs for transduction of human CD34(+) cells (hCD34(+)). For in vivo gene therapy, these novel RDTR/SCF-displaying LVs can distinguish between the target hCD34(+) cells of interest and nontarget cells. Indeed, they selectively targeted transduction to 30%-40% of the hCD34(+) cells in cord blood mononuclear cells and in the unfractionated BM of healthy and Fanconi anemia donors, resulting in the correction of CD34(+) cells in the patients. Moreover, RDTR/SCF-LVs targeted transduction to CD34(+) cells with 95-fold selectivity compared with T cells in total cord blood. Remarkably, in vivo injection of the RDTR/SCF-LVs into the BM cavity of humanized mice resulted in the highly selective transduction of candidate hCD34(+)Lin(-) HSCs. In conclusion, this new LV will facilitate HSC-based gene therapy by directly targeting these primitive cells in BM aspirates or total cord blood. Most importantly, in the future, RDTR/SCF-LVs might completely obviate ex vivo handling and simplify gene therapy for many hematopoietic defects because of their applicability to direct in vivo inoculation.  相似文献   

17.
The pituitary tumor transforming (PTTG) gene family comprises PTTG1, 2, and 3. Forced expression of PTTG1 (securin) induces cellular transformation and promotes tumor development in animal models. PTTG1 is overexpressed in various human cancers. However, the expression and pathogenic implications of the PTTG gene family in hepatocellular carcinoma are largely unknown. Gene silencing using short interfering RNA (siRNA) has become an efficient means to study the functions of genes and has been increasingly used for cancer gene therapy approaches. We report that PTTG1, but not PTTG2 and 3, was highly and frequently expressed in liver cancer tissues from patients and highly in SH-J1, SK-Hep1, and Huh-7 hepatoma cell lines. Adenoviral vector encoding siRNA against PTTG1 (Ad.PTTG1-siRNA) depleted PTTG1 specifically and efficiently in SH-J1 hepatoma cells, which resulted in activation of p53 that led to increased p21 expression and induction of apoptosis. The depletion of PTTG1 in HCT116 colorectal cancer cells exhibited a cytotoxic effect in a p53-dependent manner. Ad.PTTG1-siRNA-mediated cytotoxic effect was dependent on expression levels of PTTG1 and p53 in hepatoma cell lines. Huh-7 hepatoma cells, once transduced with Ad.PTTG1-siRNA, displayed markedly attenuated growth potential in nude mice. Intra-tumor delivery of Ad.PTTG1-siRNA led to significant inhibition of tumor growth in SH-J1 tumor xenograft established in nude mice. In conclusion, PTTG1 overexpressed in hepatoma cell lines negatively regulates the ability of p53 to induce apoptosis. PTIG1 gene silencing using siRNA may be an effective modality to treat liver cancer, in which PTTG1 is abundantly expressed. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/ suppmat/index.html).  相似文献   

18.
A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34(+) cells, that reside in the G(0) phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying "early-acting cytokines" on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34(+) cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34(+) cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34(+) cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34(+) cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.  相似文献   

19.
Barrette S  Douglas JL  Seidel NE  Bodine DM 《Blood》2000,96(10):3385-3391
The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34(+) cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin(-) bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.  相似文献   

20.
The ability of advanced-generation lentiviral vectors to transfer the green fluorescent protein (GFP) gene into human hematopoietic stem cells (HSCs) was studied in culture conditions that allowed expansion of transplantable human HSCs. Following 96 hours' exposure to flt3/flk2 ligand (FL), thrombopoietin (TPO), stem cell factor (SCF), and interleukin-6 (IL-6) and overnight incubation with vector particles, cord blood (CB) CD34(+) cells were further cultured for up to 4 weeks. CD34(+) cell expansion was similar for both transduced and control cells. Transduction efficiency of nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) was assessed by transplants into NOD/SCID mice. Mice that received transplants of transduced week 1 and week 4 expanded cells showed higher levels of human engraftment than mice receiving transplants of transduced nonexpanded cells (with transplants of 1 x 10(5) CD34(+) cells, the percentages of CD45(+) cells were 20.5 +/- 4.5 [week 1, expanded] and 27.2 +/- 8.2 [week 4, expanded] vs 11.7 +/- 2.5 [nonexpanded]; n = 5). The GFP(+)/CD45(+) cell fraction was similar in all cases (12.5% +/- 2.9% and 12.2% +/- 2.7% vs 12.7% +/- 2.1%). Engraftment was multilineage, with GFP(+)/lineage(+) cells. Clonality analysis performed on the bone marrow of mice receiving transduced and week 4 expanded cells suggested that more than one integrant likely contributed to the engraftment of GFP-expressing cells. Serial transplantations were performed with transduced week 4 expanded CB cells. Secondary engraftment levels were 10.7% +/- 4.3% (n = 12); 19.7% +/- 6.2% of human cells were GFP(+). In tertiary transplants the percentage of CD45(+) cells was lower (4.3% +/- 1.7%; n = 10); 14.8% +/- 5.9% of human cells were GFP(+), and human engraftment was multilineage. These results show that lentiviral vectors efficiently transduce HSCs, which can undergo expansion and maintain proliferation and self-renewal ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号