首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118–140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126–140 entered a nonpolar environment in a striking display of an amphipathic transmembrane β-barrel. In contrast, human granulocytes were found to bind α-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.  相似文献   

2.
Activation of Galpha(i)-coupled receptors often causes enhancement of the inositol phosphate signal triggered by Galpha(q)-coupled receptors. To investigate the mechanism of this synergistic receptor crosstalk, we studied the Galpha(i)-coupled adenosine A(1) and alpha(2C) adrenergic receptors and the Galpha(q)-coupled bradykinin B(2) and a UTP-preferring P2Y receptor. Stimulation of either Galpha(i)-coupled receptor expressed in COS cells increased the potency and the efficacy of inositol phosphate production by bradykinin or UTP. Likewise, overexpression of Gbeta(1)gamma(2) resulted in a similar increase in potency and efficacy of bradykinin or UTP. In contrast, these stimuli did not affect the potency of direct activators of Galpha(q); a truncated Gbeta(3) mutant had no effect on the receptor-generated signals whereas signals generated at the G-protein level were still enhanced. This suggests that the Gbetagamma-mediated signal enhancement occurs at the receptor level. Almost all possible combinations of Gbeta(1-3) with Ggamma(2-7) were equally effective in enhancing the signals of the B(2) and a UTP-preferring P2Y receptor, indicating a very broad specificity of this synergism. The enhancement of the bradykinin signal by (i) Galpha(i)-activating receptor ligands or (ii) cotransfection of Gbetagamma was suppressed when the B(2) receptor was replaced by a B(2)Gbeta(2) fusion protein. Gbetagamma enhanced the B(2) receptor-stimulated activation of G-proteins as determined by GTPgammaS-induced decrease in high affinity agonist binding and by B(2) receptor-enhanced [(35)S]GTPgammaS binding. These findings support the concept that Gbetagamma exchange between Galpha(i)- and Galpha(q)-coupled receptors mediates this type of receptor crosstalk.  相似文献   

3.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.  相似文献   

4.
A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.  相似文献   

5.
Hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase, promotes dissociation of αs from Gβγ, accelerates removal of covalently attached palmitate from the Gα subunit, and triggers release of a fraction of αs from the plasma membrane into the cytosol. To elucidate relations among these three events, we assessed biochemical effects in vitro of attached palmitate on recombinant αs prepared from Sf9 cells. In comparison to the unpalmitoylated protein (obtained from cytosol of Sf9 cells, treated with a palmitoyl esterase, or expressed as a mutant protein lacking the site for palmitoylation), palmitoylated αs (from Sf9 membranes, 50% palmitoylated) was more hydrophobic, as indicated by partitioning into TX-114, and bound βγ with 5-fold higher affinity. βγ protected GDP-bound αs, but not αs· GTP[γS], from depalmitoylation by a recombinant esterase. We conclude that βγ binding and palmitoylation reciprocally potentiate each other in promoting membrane attachment of αs and that dissociation of αs·GTP from βγ is likely to mediate receptor-induced αs depalmitoylation and translocation of the protein to cytosol in intact cells.  相似文献   

6.
The skeletal muscle L-type Ca2+ channel is a complex of five subunits that is specifically localized in the triad. Its primary function is the rapid activation of Ca2+ release from cytoplasmic stores in a process called excitation-contraction coupling. To study the role of α1S–β1a interactions in the incorporation of the functional channel complex into the triad, α1S and β1a [or a β1a-green fluorescent protein (GFP) fusion protein] were expressed alone and in combination in myotubes of the dysgenic cell line GLT. βGFP expressed in dysgenic myotubes that lack the skeletal muscle α1S subunit was diffusely distributed in the cytoplasm. On coexpression with the α1S subunit βGFP distribution became clustered and colocalized with α1S immunofluorescence. Based on the colocalization of βGFP and α1S with the ryanodine receptor the clusters were identified as T-tubule/sarcoplasmic reticulum junctions. Expression of α1S with and without β1a restored Ca2+ currents and depolarization-induced Ca2+ release. The translocation of βGFP from the cytoplasm into the junctions failed when βGFP was coexpressed with α1S mutants in which the β interaction domain had been altered (α1S-Y366S) or deleted (α1S-Δ351–380). Although α1S-Y366S did not associate with βGFP it was incorporated into the junctions, and it restored Ca2+ currents and depolarization-induced Ca2+ release. Thus, β1a requires the association with the β interaction domain in the I–II cytoplasmic loop of α1S for its own incorporation into triad junctions, but stable α1S–β1a association is not necessary for the targeting of α1S into the triads or for its normal function in Ca2+ conductance and excitation-contraction coupling.  相似文献   

7.
Human metapneumovirus (hMPV) is a recently described paramyxovirus that causes lower respiratory infections in children and adults worldwide. The hMPV fusion (F) protein is a membrane-anchored glycoprotein and major protective antigen. All hMPV F protein sequences determined to date contain an Arg-Gly-Asp (RGD) sequence, suggesting that F engages RGD-binding integrins to mediate cell entry. The divalent cation chelator EDTA, which disrupts heterodimeric integrin interactions, inhibits infectivity of hMPV but not the closely related respiratory syncytial virus (RSV), which lacks an RGD motif. Function-blocking antibodies specific for αvβ1 integrin inhibit infectivity of hMPV but not RSV. Transfection of nonpermissive cells with αv or β1 cDNAs confers hMPV infectivity, whereas reduction of αv and β1 integrin expression by siRNA inhibits hMPV infection. Recombinant hMPV F protein binds to cells, whereas Arg-Gly-Glu (RGE)-mutant F protein does not. These data suggest that αvβ1 integrin is a functional receptor for hMPV.  相似文献   

8.
9.
The formation of ordered cross-β amyloid protein aggregates is associated with a variety of human disorders. While conventional infrared methods serve as sensitive reporters of the presence of these amyloids, the recently discovered amyloid secondary structure of cross-α fibrils presents new questions and challenges. Herein, we report results using Fourier transform infrared spectroscopy and two-dimensional infrared spectroscopy to monitor the aggregation of one such cross-α–forming peptide, phenol soluble modulin alpha 3 (PSMα3). Phenol soluble modulins (PSMs) are involved in the formation and stabilization of Staphylococcus aureus biofilms, making sensitive methods of detecting and characterizing these fibrils a pressing need. Our experimental data coupled with spectroscopic simulations reveals the simultaneous presence of cross-α and cross-β polymorphs within samples of PSMα3 fibrils. We also report a new spectroscopic feature indicative of cross-α fibrils.

Amyloids are elongated fibers of proteins or peptides typically composed of stacked cross β-sheets (1, 2). Self-assembling amyloids are notorious for their involvement in human neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases (1, 2). Phenol soluble modulins (PSMs) are amyloid peptides secreted by the bacteria Staphylococcus aureus (S. aureus) (35). Of the PSM family, PSMα3 is of recent interest due to its unique secondary structure upon fibrillation. Whereas other PSM variants undergo conformational changes with aggregation, the α-helical PSMα3 peptide retains its secondary structure while stacking in a manner reminiscent of β-sheets, forming what has been termed cross-α fibrils (3, 4, 6). Although “α-sheet” amyloid fibrils have been previously observed in two-dimensional infrared (2DIR) (7) and associated with PSMs (8), the novel cross-α fibril is distinct from that class of structures. To avoid confusion between these two similarly named but distinct secondary structures, a comparison between the α-sheet domain in cytosolic phosphatase A2 (9) (Protein Data Bank [PDB] identification:1rlw) (10) and cross-α fibrils adopted by PSMα3 (PDB ID:5i55) (3) has been highlighted in SI Appendix, Fig. S1. Interestingly, shorter terminations of PSMα3 have been shown to exhibit β-sheet polymorphs (11). The proposed cross-α fibril structure of the full-length PSMα3 peptide has been confirmed with X-ray diffraction and circular dichroism (4). The present study aims to further characterize these fibrils with linear and nonlinear infrared spectroscopies.S. aureus is an infectious human pathogen with the ability to form communities of microorganisms called biofilms that hinder traditional treatment methods (1214). PSMs contribute to inflammatory response and play a crucial role in structuring and detaching biofilms (11, 12, 14). While biofilm growth requires the presence of multiple PSMs (14, 15), Andreasen and Zaman have demonstrated that PSMα3 acts as a scaffold, seeding the amyloid formation of other PSMs (5). To effectively inhibit S. aureus biofilm growth, a better understanding of PSMα3 aggregation is needed.The α-helical structure of PSMα3 (12) presents a challenge for probing the vibrational modes and secondary structure of both the monomer and the fibrils. While IR spectroscopy has been used extensively to characterize β-sheets (1619), the spectral features associated with α-helices are difficult to distinguish from those of the random coil secondary structure (20, 21). This limitation has left researchers to date with an incomplete picture of the spectroscopic features unique to cross-α fibers. The present work combines a variety of 2DIR methods to remove these barriers and probe the active infrared vibrational modes of cross-α fibers.The full-length, 22-residue PSMα3 peptide was synthesized and prepared for aggregation studies following reported methods (3, 4, 11). A total of 10 mM PSMα3 was incubated in D2O at room temperature over 7 d. These data were compared to the monomer treated under similar conditions. Monomeric samples were prepared at a significantly lower concentration of 0.5 mM to prevent aggregation. Fiber formation was confirmed by transmission electron microscopy (see SI Appendix, Fig. S2 for details). Fourier transform infrared (FTIR) spectra were taken for both the fibrils in solution as well as the low concentration monomers. Spectroscopic simulations of the PSMα3 monomer and fibers were performed on previously reported PDB structures (PDB identification: 5i55) (3) (Fig. 1).Open in a separate windowFig. 1.PDB structures of PSMα3 (A) monomers and (B) cross-α fibers extended along the screw axis. (C) FTIR spectra of 0.5 mM monomeric PSMα3 (blue) compared to the 10 mM PSMα3 fibril (red) in D2O upon aggregation.  相似文献   

10.
A mammalian recombinant strategy was established to dissect rules of basement membrane laminin assembly and secretion. The α-, β-, and γ-chain subunits of laminin-1 were expressed in all combinations, transiently and/or stably, in a near-null background. In the absence of its normal partners, the α chain was secreted as intact protein and protein that had been cleaved in the coiled-coil domain. In contrast, the β and γ chains, expressed separately or together, remained intracellular with formation of ββ or βγ, but not γγ, disulfide-linked dimers. Secretion of the β and γ chains required simultaneous expression of all three chains and their assembly into αβγ heterotrimers. Epitope-tagged recombinant α subunit and recombinant laminin were affinity-purified from the conditioned medium of αγ and αβγ clones. Rotary-shadow electron microscopy revealed that the free α subunit is a linear structure containing N-terminal and included globules with a foreshortened long arm, while the trimeric species has the typical four-arm morphology of native laminin. We conclude that the α chain can be delivered to the extracellular environment as a single subunit, whereas the β and γ chains cannot, and that the α chain drives the secretion of the trimeric molecule. Such an α-chain-dependent mechanism could allow for the regulation of laminin export into a nascent basement membrane, and might serve an important role in controlling basement membrane formation.  相似文献   

11.
Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson’s disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.

Molecular chaperones are crucial components of the cellular proteostasis network and are characteristically overexpressed during cell stress (14). Their roles involve the suppression of aberrant processes, including misfolding and aggregation of proteins, within the context of the complex flux of protein production and degradation. In addition to guiding nascent proteins toward their native structures following biosynthesis on ribosomes, chaperones are increasingly recognized as inhibitors of key steps in the aberrant conversion of normally soluble proteins into amyloid fibrils, protein aggregates that are associated with a wide range of neurodegenerative diseases (58). The overall process that leads to the formation of amyloid fibrils consists of a series of microscopic events, including primary and secondary nucleation and fibril elongation and fragmentation (9). Recent analysis of the kinetics of aggregation of several proteins has revealed that molecular chaperones can inhibit the process of amyloid formation through a variety of different microscopic mechanisms (10). In some cases, molecular chaperones have been found to suppress a single specific microscopic step in the aggregation process. In other cases, they have been shown to affect more than one type of aggregation event (7, 8, 11, 12). The modulation of the different molecular steps of protein aggregation is mediated by the binding of chaperones to misfolded protein monomers and various aggregates (11, 13, 14). For a comprehensive understanding of such inhibition processes it is therefore crucial to elucidate the thermodynamic and kinetic determinants of the binding of chaperones to different species populated during amyloid formation.A prevalent group of molecular chaperones that inhibit amyloid formation are the small heat-shock proteins (sHsps), including the vertebrate αB-crystallin (αB-c). The structure of αB-c is a conserved α-crystallin domain with a β-sheet structure, flanked by a hydrophobic N-terminal region and a polar C-terminal tail, both structurally flexible and mutually different (15). Similar to other sHsps in solution, αB-c exists in a polydisperse oligomeric state characterized by dynamic subunit exchange leading to oligomers with 10 to 50 subunits and molecular weights from 300 to 1,000 kDa (16, 17). αB-c has been shown to inhibit the overall amyloid formation process of α-synuclein (α-syn), a protein closely associated with the onset and progression of Parkinson’s disease (18). The mechanism of inhibition has been shown to originate from interactions of the chaperone with aggregated forms of α-syn, ranging from oligomers to mature amyloid fibrils, rather than with α-syn monomers (19, 20). In particular, it has been demonstrated that αB-c binds to α-syn fibrils and inhibits their elongation in solution, thus suppressing the toxicity associated with α-syn aggregation in cells (13, 21).The mechanistic importance of the interactions of αB-c with protein aggregates raises the key question of how chaperones recognize misfolded and aggregated proteins among the diverse ensemble of native states. Elucidating the binding interactions between these proteins poses fundamental challenges that originate from the heterogeneity and dynamic nature of the systems. Both the chaperone and aggregate populations are polydisperse, and the large difference in size between relatively small chaperones and high-molecular-weight client protein aggregates make interactions between them difficult to access with conventional biophysical techniques designed to probe interactions between individual biomolecules (22, 23). We have addressed these limitations using a microfluidic platform to characterize the binding (24). By exploiting the different diffusion coefficients of bound and unbound chaperones we have shown that it is possible to quantify the thermodynamics and the kinetics of binding on the time scale of minutes, where the spatial variation in concentration along the device has a negligible effect on the kinetics due to the short measurement times (24, 25). Here, we apply this approach to identify the intermolecular interactions underlying the recognition of α-syn amyloid fibrils by αB-c and to characterize the energetic trade-off during this binding process in a quantitative manner.  相似文献   

12.
T cell receptor (TCR) α and δ gene segments are organized within a single genetic locus but are differentially regulated during T cell development. An enhancer-blocking element (BEAD-1, for blocking element alpha/delta 1) was localized to a 2.0-kb region 3′ of TCR δ gene segments and 5′ of TCR α joining gene segments within this locus. BEAD-1 blocked the ability of the TCR δ enhancer (Eδ) to activate a promoter when located between the two in a chromatin-integrated construct. We propose that BEAD-1 functions as a boundary that separates the TCR α/δ locus into distinct regulatory domains controlled by Eδ and the TCR α enhancer, and that it prevents Eδ from opening the chromatin of the TCR α joining gene segments for VDJ recombination at an early stage of T cell development.  相似文献   

13.
An alpha-bungarotoxin-horseradish peroxidase conjugate, which binds specificity to nicotinic acetylcholine receptors, was synthesized. This conjugate was bound by 5-7% of the synapses in the inner plexiform layer of the chicken retina. Bipolar ribbon synapses as well as amacrine synapses bound the conjugate.  相似文献   

14.
15.
OBJECTIVES—To investigate the regulatory roles of interleukin 1β (IL1β), tumour necrosis factor α (TNFα), interferon γ (IFNγ) or transforming growth factor β1 (TGFβ1) on hyaluronan (HA) synthesis by human fibroblastic synovial lining cells.
METHODS—Concentrations of HA in culture supernatants of fibroblastic synovial lining cell line (RAMAK-1 cell line) with or without stimulation by IL1β, TNFα, IFNγ or TGFβ1 were measured by sandwich binding protein assay. Levels of HA synthase mRNA of the cells with or without stimulation were detected by reverse transcribed polymerase chain reaction. Molecular weights of HA in the culture supernatants of the cells with or without stimulation were measured using high performance gel permeation liquid chromatography.
RESULTS—HA synthesis by the cells was not significantly augmented by TNFα or by IFNγ. It was significantly stimulated by IL1β but inhibited by TGFβ1. Molecular weights of HA in the culture supernatants of the cells were unchanged by stimulation with TNFα. They were remarkably increased by stimulation with IL1β and IFNγ, but reduced with TGFβ1.
CONCLUSION—IL1β is an up regulator of HA synthesis, while TGFβ1 is a down regulator. HA production in the synovial lining cells of inflamed joints (for example, rheumatoid arthritis) might be regulated by the balance of these cytokines.

Keywords: synovial lining cells; hyaluronan, interleukin 1β; transforming growth factor β1  相似文献   

16.
Whether there is one or multiple αβT cell antigen receptor (TCR) recognition modules in a given TCR/CD3 complex is a long-standing controversy in immunology. We show that T cells from transgenic mice that coexpress comparable amounts of two distinct TCRβ chains incorporate at least two αβTCRs in a single TCR/CD3 complex. Evidence for bispecific αβTCRs was obtained by immunoprecipitation and immunoblotting and confirmed on the surface of living cells both by fluorescence resonance energy transfer and comodulation assays by using antibodies specific for TCRβ-variable regions. Such (αβ)2TCR/CD3 or higher-order complexes were evident in T cells studied either ex vivo or after expansion in vitro. T cell activation is thought by many, but not all, to require TCR cross-linking by its antigen/major histocompatibility complex ligand. The implications of a multivalent (αβ)2TCR/CD3 complex stoichiometry for the ordered docking of specific antigen/major histocompatibility complex, CD4, or CD8 coreceptors and additional TCRs are discussed.  相似文献   

17.
Streaming potentials across cloned epithelial Na+ channels (ENaC) incorporated into planar lipid bilayers were measured. We found that the establishment of an osmotic pressure gradient (Δπ) across a channel-containing membrane mimicked the activation effects of a hydrostatic pressure differential (ΔP) on αβγ-rENaC, although with a quantitative difference in the magnitude of the driving forces. Moreover, the imposition of a Δπ negates channel activation by ΔP when the Δπ was directed against ΔP. A streaming potential of 2.0 ± 0.7 mV was measured across αβγ-rat ENaC (rENaC)-containing bilayers at 100 mM symmetrical [Na+] in the presence of a 2 Osmol/kg sucrose gradient. Assuming single file movement of ions and water within the conduction pathway, we conclude that between two and three water molecules are translocated together with a single Na+ ion. A minimal effective pore diameter of 3 Å that could accommodate two water molecules even in single file is in contrast with the 2-Å diameter predicted from the selectivity properties of αβγ-rENaC. The fact that activation of αβγ-rENaC by ΔP can be reproduced by the imposition of Δπ suggests that water movement through the channel is also an important determinant of channel activity.  相似文献   

18.
The muscle actins in higher vertebrates display highly conserved amino acid sequences, yet they show distinct expression patterns. Thus, cardiac α-actin, skeletal α-actin, vascular smooth muscle α-actin, and enteric smooth muscle γ-actin comprise the major actins in their respective tissues. To assess the functional and developmental significance of cardiac α-actin, the murine (129/SvJ) cardiac α-actin gene was disrupted by homologous recombination. The majority (≈56%) of the mice lacking cardiac α-actin do not survive to term, and the remainder generally die within 2 weeks of birth. Increased expression of vascular smooth muscle and skeletal α-actins is observed in the hearts of newborn homozygous mutants and also heterozygotes but apparently is insufficient to maintain myofibrillar integrity in the homozygous mutants. Mice lacking cardiac α-actin can be rescued to adulthood by the ectopic expression of enteric smooth muscle γ-actin using the cardiac α-myosin heavy chain promoter. However, the hearts of such rescued cardiac α-actin-deficient mice are extremely hypodynamic, considerably enlarged, and hypertrophied. Furthermore, the transgenically expressed enteric smooth muscle γ-actin reduces cardiac contractility in wild-type and heterozygous mice. These results demonstrate that alterations in actin composition in the fetal and adult heart are associated with severe structural and functional perturbations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号