首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25?nM?1?min?1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96?nmol?min?1?nmol?1 P450 and apparent Km value of 0.09?mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03?mM, and Vmax values were 2.94, 6.1 and 13.8?nmol?min?1?nmol?1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

2.
Nornicotine is an N-demethylated metabolite of nicotine. In the present study, human cytochrome P450 (P450) isoform(s) involved in nicotine N-demethylation were identified. The Eadie-Hofstee plot of nicotine N-demethylation in human liver microsomes was biphasic with high-affinity (apparent K(m) = 173 +/- 70 microM, V(max) = 57 +/- 17 pmol/min/mg) and low-affinity (apparent K(m) = 619 +/- 68 microM, V(max) = 137 +/- 6 pmol/min/mg) components. Among 13 recombinant human P450s expressed in baculovirus-infected insect cells (Supersomes), CYP2B6 exhibited the highest nicotine N-demethylase activity, followed by CYP2A6. The apparent K(m) values of CYP2A6 (49 +/- 12 microM) and CYP2B6 (550 +/- 46 microM) were close to those of high- and low-affinity components in human liver microsomes, respectively. The intrinsic clearances of CYP2A6 and CYP2B6 Supersomes were 5.1 and 12.5 nl/min/pmol P450, respectively. In addition, the intrinsic clearance of CYP2A13 expressed in Escherichia coli (44.9 nl/min/pmol P450) was higher than that of CYP2A6 expressed in E. coli (2.6 nl/min/pmol P450). Since CYP2A13 is hardly expressed in human livers, the contribution of CYP2A13 to the nicotine N-demethylation in human liver microsomes would be negligible. The nicotine N-demethylase activity in microsomes from 15 human livers at 20 microM nicotine was significantly correlated with the CYP2A6 contents (r = 0.578, p < 0.05), coumarin 7-hydroxylase activity (r = 0.802, p < 0.001), and S-mephenytoin N-demethylase activity (r = 0.694, p < 0.005). The nicotine N-demethylase activity at 100 microM nicotine was significantly correlated with the CYP2B6 contents (r = 0.677, p < 0.05) and S-mephenytoin N-demethylase activities (r = 0.740, p < 0.005). These results as well as the inhibition analyses suggested that CYP2A6 and CYP2B6 would significantly contribute to the nicotine N-demethylation at low and high substrate concentrations, respectively. The contributions of CYP2A6 and CYP2B6 would be dependent on the expression levels of these isoforms in any human liver.  相似文献   

3.
Involvement of CYP1A2 in mexiletine metabolism   总被引:2,自引:2,他引:0       下载免费PDF全文
Aims Mexiletine has been reported to be hydroxylated by cytochrome P450 2D6 (CYP2D6) in humans. However, the involvement of CYP1A2 in the metabolism of mexiletine has been proposed based on the interaction with theophylline which is mainly metabolized by CYP1A2. The aim of this study was to clarify the role of human CYP1A2 in mexiletine metabolism.
Methods Human CYP isoforms involved in mexiletine metabolism were investigated using microsomes from human liver and B-lymphoblastoid cells expressing human CYPs. The contributions of CYP1A2 and CYP2D6 to mexiletine metabolism were estimated by the relative activity factor (RAF).
Results Mexiletine p - and 2-hydroxylase activities in human liver microsomes were inhibited by ethoxyresorufin and furafylline as well as quinidine. Mexiletine p - and 2-hydroxylase activities in microsomes from nine human livers correlated significantly with bufuralol 1'-hydroxylase activity ( r =0.907, P <0.001 and r =0.886, P <0.01, respectively). Microsomes of B-lymphoblastoid cells expressing human CYP1A2 exhibited lower mexiletine p - and 2-hydroxylase activities than those expressing human CYP2D6. It was estimated by RAF that the major isoform involved in mexiletine metabolism was CYP2D6, and the contribution of CYP1A2 to both mexiletine p - and 2-hydroxylase activities was 7–30% in human liver microsomes. However, the K m values of the expressed CYP1A2 (∼15  μm ) were almost identical with those of the expressed CYP2D6 (∼22  μm ) and human liver microsomes.
Conclusions Mexiletine is a substrate of CYP1A2. The data obtained in this study suggest that the interaction of mexiletine with theophylline might be due to competitive inhibition of CYP1A2.  相似文献   

4.
Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 μM, 12.6 μM, and 1.33 μM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.  相似文献   

5.
  1. Human cytochrome P4502B6 (CYP2B6) is predominantly expressed in the liver and it plays a major role in the metabolism of several therapeutically important drugs and environmental toxicants.

  2. The objective was twofold: (1) to determine the role of genetic, physiological, and environmental factors in predicting hepatic CYP2B6 protein expression; and (2) to investigate the role of CYP2B6 in nicotine C-oxidation.

  3. Human livers (n?=?40) were assessed for CYP2B6 protein and genotype.

  4. Linear regression analyses indicated that CYP2B6 genotype (10%), gender (14%), and exposure to inducers (21%), but not age, were predictors of CYP2B6 protein amounts. Livers with at least one CYP2B6*5 or *6 allele were associated with lower CYP2B6. Female livers and livers exposed to inducers (phenobarbital and/or dexamethasone) were associated with higher CYP2B6.

  5. A weak correlation between CYP2B6 and nicotine C-oxidation activity was observed, which was abrogated when controlling for CYP2A6 protein levels. CYP2B6*6 was not associated with different nicotine kinetics.

  6. In summary, CYP2B6 protein expression was associated with genotype, gender, and exposure to inducers, but not with nicotine C-oxidation activity.

  相似文献   

6.
Objective: Metabolic interactions at the level of drug-metabolising enzymes are important for drug therapy. We investigated potential interactions of losartan, irbesartan, valsartan, eprosartan and candesartan with cytochrome P 450 (CYP) enzymes in human liver microsomes. Methods: In incubations with human liver microsomes in vitro, the inhibitory potency of angiotensin-II receptor antagonists (sartans) on CYP-specific model activities were compared by measuring the IC50 and, with respect to more potent inhibition, K i values. Results: None of the five sartans inhibited CYP2A6-, CYP2D6- or CYP2E1-associated activities (coumarin 7-hydroxylation, dextromethorphan O-demethylation and chlorzoxazone 6-hydroxylation, respectively) to any significant extent. Losartan and irbesartan inhibited the CYP2C9-associated tolbutamide methylhydroxylation more potently (K i values 4.1 μM and 24.5 μM), than valsartan, candesartan or eprosartan (K i values 135 μM, 155 μM and >1000 μM, respectively). Losartan and irbesartan inhibited CYP1A2- and CYP3A4-associated activities (ethoxyresorufin O-deethylation and testosterone 6β-hydroxylation) with relatively weak affinities (IC50 values between 200 μM and 500 μM). CYP2C19-associated S-mephenytoin 4′-hydroxylation activity was inhibited by losartan (IC50 value 138 μM) and much less or not at all by the other sartans tested. Conclusion: All sartans except eprosartan have at least some affinity for CYP2C9, but only losartan has an affinity for CYP2C19. Losartan and irbesartan have modest affinity for CYP1A2 and CYP3A4. This would suggest that the theoretical potential for drug interactions is likely to be quite low, with the possible exceptions of losartan and irbesartan for CYP2C9. Based on these findings, further studies on the interaction potential of losartan and irbesartan are warranted. Received: 27 October 1999 / Accepted in revised form: 10 February 2000  相似文献   

7.
  1. Cytochromes P450 (P450) involved in letrozole metabolism were investigated. Among 13 recombinant P450 forms examined, only P450 2A6 and 3A4 showed activities in transforming letrozole to its carbinol metabolite with small Km and high Vmax values yielding apparent Vmax/Km values of 0.48 and 0.24 nl min?1 nmol?1 P450, respectively.

  2. The metabolic activities of individual human liver microsomes showed a significant correlation with coumarin 7-hydroxylase activities (P450 2A6 marker) at a letrozole concentration of 0.5 μM, while a good correlation was also seen with testosterone 6β-hydroxylase activities (P450 3A4 marker) at 5 μM substrate concentration with different inhibition by 8-methoxypsolaren.

  3. Significantly low carbinol-forming activities were seen in human liver microsomes from individuals possessing CYP2A6*4/*4 (whole CYP2A6 gene deletion) at a letrozole concentration of 0.5 μM. A Vmax/Km value measured for CYP2A6.7 (amino acid substitution type) in human liver microsomes, in the presence of anti-P450 3A4 antibodies, was approximately seven-fold smaller than that for CYP2A6.1 (wild-type).

  4. These results demonstrate that P450 2A6 and 3A4 catalyse the conversion of letrozole to its carbinol metabolite in vitro at low and high concentrations of letrozole. Polymorphic variation of CYP2A6 is considered to be relevant to inter-subject variation in therapeutic exposure of letrozole.

  相似文献   

8.
  1. The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes.

  2. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2′-hydroxy-, 4′-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5.

  3. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2′-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities.

  4. Molecular docking analysis showed that the C2′-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2′ and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively.

  5. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.

  相似文献   

9.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

10.
Metabolism of carteolol by cDNA-expressed human cytochrome P450   总被引:2,自引:0,他引:2  
Objectives: To determine human cytochrome P450 isoform(s) (CYPs) involved in the metabolism of carteolol, the biotransformation of the compound was investigated in vitro using ten isoforms of human cytochrome P450 expressed in human AHH-1 TK ± cell lines. In addition, the inhibitory effects of carteolol on the activities of important CYP isoforms, namely, CYP1A2, 2C9, 2C19, 2E1, and 3A4, were examined. Results: Carteolol was metabolised to 8-hydroxycarteolol by CYP 2D6 with KM and Vmax values of 183 μmoles · l−1 and 26.09 pmol · min−1 · pmol−1 P450, respectively. CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4 were not involved in the metabolism of the compound. CYP2D6-mediated carteolol 8-hydroxylase activity was inhibited by quinidine, propranolol, nortriptyline, dextromethorphan, sparteine, bufuralol, and biperiden. Biperiden competitively inhibited the catalytic reaction with a Ki value of 0.45 μmoles · l−1. Carteolol did not affect the following catalytic reactions:␣CYP1A2-mediated (R)-warfarin 6-hydroxylation, CYP2C9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated (S)-mephenytoin 4-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6β-hydroxylation. Conclusion: 8-Hydroxylation is the only cytochrome P450-catalyzed metabolic reaction of carteolol by its expressed microsomes, and CYP2D6 is the principal isoform of the enzyme involved in the catalytic reaction. Carteolol has neither stimulative nor inhibitory effects on CYP1A2, 2C9, 2C19, 2E1, and 3A4 activities. Received: 17 December 1996 / Accepted in revised form: 11 March 1997  相似文献   

11.
Objective: The affinity of (+)-, (−)- and (±)-fluvastatin, a new synthetic HMG-CoA reductase inhibitor developed as a racemate, for specific human P450 monooxygenases in liver microsomes was compared with that of the pharmacologically active acidic forms of lovastatin, pravastatin and simvastatin. Methods: Affinity was determined as the inhibitory potency for prototype reactions for 3 major drug metabolising enzymes: diclofenac 4′-hydroxylation (CYP2C9), dextromethorphan O-demethylation (CYP2D6), and midazolam 1′-hydroxylation (CYP3A4). Results: Lovastatin acid, pravastatin and simvastatin acid displayed moderate affinity for all three P450 isozymes (estimated Ki > 50 μmol⋅l−1). Racemic and (+)- and (−)-fluvastatin showed moderate affinity (estimated Ki > 50 μmol⋅l−1) for CYP2D6 and CYP3A4, whereas their affinity for CYP2C9 was high (estimated Ki < 1 μmol⋅l−1). Diclofenac 4′-hydroxylation was competitively and stereoselectively inhibited, with measured Ki’s of 0.06 and 0.28 μmol⋅l−1 for (+)- and (−)-fluvastatin, respectively. Conclusion: Fluvastatin selectively inhibits a major drug metabolising enzyme (CYP2C9), the (+)-isomer (pharmacologically more active) showing 4–5 fold higher affinity. As already reported for lovastatin and simvastatin, in vivo drug interactions by inhibition of liver oxidation of CYP2C9 substrates (e.g. hypoglyceamic sulphonylureas and oral anticoagulants) may be expected. Received: 9 June 1995/Accepted in revised form: 7 November 1995  相似文献   

12.
目的:本实验旨在研究CYP2C19基因型人肝微粒体中氟西汀N-去甲基代谢的酶促动力学特点并鉴定参与此代谢途径的细胞色素P-450酶。方法:测定基因型CYP2C19肝微粒体中去甲氟西汀形成的酶促动力学。鉴定氟西汀N-去甲基酶活性与细胞色素P-450 2C9,2C19,1A2和2D6酶活性的相关性,同时应用各种细胞色素P-450酶的选择性抑制剂和化学探针进行抑制实验,从而确定参与氟西汀N-去甲基代谢的细胞色素P-450酶。结果:去甲氟西汀生成的酶促动力学数据符合单酶模型,并具有Michaelis-Menten动力学特征。当底物浓度为氟西汀25μmol/L和100μmol/L时,去甲氟西汀(N-FLU)的生成率分别与甲磺丁脲3-羟化酶活性显著相关(r_1=0.821,P_1=0.001;r_2=0.668,P_2=0.013),当底物浓度为氟西汀100μmol/L时,N-FLU的生成率与S-美芬妥因4’-羟化酶活性显著相关(r=0.717,P=0.006)。PM肝微粒中磺胺苯吡唑和醋竹桃霉素对氟西汀N-去甲基代谢的抑制作用显著大于EM(73%vs 45%,P<0.01)。结论:在生理底物浓度下,CYP2C9是催化人肝微粒体中氟西汀N-去甲基代谢的主要CYP-450酶;而高底物浓度时,以CYP2C19的作用为主。  相似文献   

13.
Objective To determine whether the cytochrome P4502B6(CYP2B6)is involved in the oxidation of propofol by human liver microsomes.Methods The change of propofol concentration in an incubation mixture with human liver microsomes was monitored by the high performance liquid chromatography(HPLC),in order to calculate the rate constants of metabolism of propofol.The correlation between the rate constants and the rate of metabolism of CYP2B6 selective substrate bupropion,and the effect of two different CYP2B6 specific inhibitors on the propofol metabolism were examined.Results The mean rate constant of propofol metabolism by liver microsomes obtained from twelve individuals was 3.9(95% confidence intervals 3.3,4.5)nmol·min-1·mg-1 protein.The rate constants of propofol metabolism by liver microsomes were significantly correlated with bupropion hydroxylation(r=0.888,P<0.001).Both selective chemical inhibitors of CYP2B6,orphenadrine and N,N',N″-triethylenethiophosphoramide(thioTEPA),reduced the rate constants of propofol metabolism by 37.5%(P<0.001)and 42.7%(P<0.001)in liver microsomes,respectively.Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes.  相似文献   

14.
Objective: To investigate in vitro which CYP isoforms (CYP1A2, CYP2D6 and CYP3A4) are involved in the biotransformation of haloperidol (HAL) and reduced haloperidol (RHAL). Methods: The biotransformation of HAL and RHAL is evaluated by measuring HAL and RHAL remaining after incubation with human liver microsomes and with supersomes from human baculovirus-infected cells expressing human P 450 isoforms. The influence of chemical- and immuno-inhibition of specific isoforms on the disappearance of HAL and RHAL was also studied. Results: After 60-min incubation of 2 μM and 20 μM HAL or RHAL with human liver microsomes, for HAL, 58% and 64%, respectively, remained in the incubation mixture, for RHAL, 53% and 66%, respectively. Ketoconazole had the most pronounced inhibitory effect on the biotransformation of both substrates, while for quinidine and furafylline there was only a weak or no influence. Anti-CYP3A4 antibodies inhibited strongly the biotransformation of HAL and RHAL, while the influence of anti-CYP2D6 antibodies was much less pronounced. After incubation with supersomes of recombinant CYP3A4, HAL and RHAL disappeared rapidly; disappearance was slow after incubation with CYP2D6 supersomes, and negligible with CYP1A2 supersomes. Conclusion: The results show that CYP3A4 is the most important CYP isoenzyme involved in the biotransformation of HAL and RHAL, and that the metabolism by CYP2D6 is only a minor pathway; CYP1A2 has no or only a negligible influence. Received: 12 April 1999 / Accepted in revised form: 2 August 1999  相似文献   

15.
Benzene, a ubiquitous environmental pollutant, is haematotoxic and myelotoxic. As has been shown earlier, cytochrome P450 2E1 (CYP2E1)-dependent metabolism is a prerequisite for the cytotoxic and genotoxic effects of benzene, but which of the benzene metabolites produces toxicity is still unknown. The observed differences between the toxicity of benzene and that of phenol, a major metabolite of benzene, could be explained by alternative hypotheses. That is, whether (1) toxic benzene effects are caused by metabolites not derived from phenol (e.g. benzene epoxide, muconaldehyde), which are formed in the liver and are able to reach the target organ(s); or (2) benzene penetrates into the bone marrow, where local metabolism takes place, whereas phenol does not reach the target tissue because of its polarity. To further investigate hypothesis 2, we used various strains of mice (AKR, B6C3F1, CBA/Ca, CD-1 and C57Bl/6), for which different toxic responses have been reported in the haematopoietic system after chronic benzene exposure. In these strains, CYP2E1 expression in bone marrow was investigated and compared with CYP2E1 expression in liver by means of two independent methods. Quantification of CYP2E1-dependent hydroxylation of chlorzoxazone (CLX) by high-performance liquid chromatography (HPLC; functional analysis) was used to characterize specific enzymatic activities. Protein identification was performed by Western blotting using CYP2E1-specific antibodies. In liver microsomes of all strains investigated, considerable amounts of CYP2E1-specific protein and correspondingly high CYP2E1 hydroxylase activities could be detected. No significant differences in CYP2E1-dependent enzyme activities were found between the five strains (range of medians, 4.6–12.0 nmol 6-OH-CLX/[mg protein × min]) in hepatic tissue. In the bone marrow, CYP2E1 could also be detected in all strains investigated. However, chlorzoxazone hydroxylase activities were considerably lower (range of medians, 0.2–0.8 × 10−3 nmol 6-OH-CLX/[mg protein × min]) compared with those obtained from liver microsomes. No significant (P > 0.05) interstrain differences in CYP2E1 expression in liver and/or bone marrow could be observed in the mouse strains investigated. The data obtained thus far from our investigations suggest that strain-specific differences in the tumour response of the haematopoietic system of mice chronically exposed to benzene cannot be explained by differences in either hepatic or in myeloid CYP2E1-dependent metabolism of benzene. Received: 7 September 1998 / Accepted: 13 April 1999  相似文献   

16.
Aim  The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency syndrome. Method  The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19 (mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype. Results  In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for other Asian populations. CYP2C19 genotypes were associated to the S-4′-OH-mephenytoin/S-mephenytoin ratio quantified in plasma 4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the α-OH-metroprolol/metoprolol ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes. Conclusions  The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner.  相似文献   

17.
Objective: Interindividual variations in immunoreactivity and function of three major human drug metabolising P450 monooxygenases has been investigated in liver microsomes from 42 Caucasians (kidney donors or liver biopsies). Methods: Diclofenac 4′-hydroxylation, dextromethorphan O-demethylation and midazolam 1′-hydroxylation, measured by HPLC in incubates, were used as probes to determine CYP2C9, CYP2D6 and CYP3A4 function kinetics, respectively. Immunoquantification of the three isoforms was achieved by Western blotting, using rabbit polyclonal antibodies raised against human CYP2C9 and human CYP3A4, and mouse monoclonal antibody raised against human CYP2D6. Results: Diclofenac 4′-hydroxylation exhibited Michaelis-Menten kinetics with kM= 3.4 μmol ⋅l−1 and Vmax = 45 nmole ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2C9 was correlated with Vmax and CLint. Dextromethorphan O-demethylation in EM (extensive metabolisers) liver microsomes also showed Michaelis-Menten kinetics, with kM = 4.4 μmol ⋅l−1 and Vmax = 5.0 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2D6 was correlated with Vmax and CLint. Midazolam 1′-hydroxylation also exhibited Michaelis-Menten kinetics with kM = 3.3 μmol ⋅l−1 and Vmax = 35 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP3A4 was correlated with Vmax and CLint. Immunoreactivity and function were correlated for each isozyme, but there was no cross correlation between isozymes. Conclusion: The velocity of metabolite formation (Vmax) by the three major human drug metabolising P450 monooxygenases is correlated with their immunoreactivity in liver microsomes. Interindividual variation was much larger for Vmax than kM. Interindividual variability was more pronounced for CYP2D6, probably due to the presence of several different functional alleles in the population of extensive metabolisers. Received: 27 December 1995/Accepted in revised form: 29 March 1996  相似文献   

18.
Objective: Biotransformation of triazolam to its α-hydroxy and 4-hydroxy metabolites by human liver microsomes in vitro was used as an index of human cytochrome P 450 3A (CYP3A) activity. Results: The reaction was strongly inhibited by co-incubation with the viral protease inhibitors ritonavir (IC50=0.14 μM) and amprenavir (IC50=2.5–2.9 μM), and by the azole derivative ketoconazole (IC50 = 0.07 μM). Pre-incubation of microsomes with ritonavir or amprenavir increased inhibitory potency (IC50 reduced to 0.07 μM and 1.4 μM, respectively). This was not the case with ketoconazole. Conclusions: Thus, ritonavir and amprenavir are highly potent mechanism-based inhibitors of human CYP3A isoforms. Received: 11 January 2000 / Accepted in revised form: 9 March 2000  相似文献   

19.
AIMS: To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. METHODS: The formation of Z-4-hydroxy-tamoxifen from 10 microm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. RESULTS: Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (r(s)=0.256, P<0.05) and CYP2D6 expression (r(s)=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg(-1) protein min(-1), P=0.046, 5.1 vs 9.9 pmol mg(-1) protein min(-1), P=0.053, and 6.8 vs 9.4 pmol mg(-1) protein min(-1), P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. CONCLUSIONS: CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction.  相似文献   

20.
Ketamine is metabolized by cytochrome P450 (CYP) leading to production of pharmacologically active products and contributing to drug excretion. We identified the CYP enzymes involved in the N-demethylation of ketamine enantiomers using pooled human liver microsomes and microsomes from human B-lymphoblastoid cells that expressed CYP enzymes. The kinetic data in human liver microsomes for the (R)- and (S)-ketamine N-demethylase activities could be analyzed as two-enzyme systems. The K(m) values were 31 and 496 microM for (R)-ketamine, and 24 and 444 microM for (S)-ketamine. Among the 12 cDNA-expressed CYP enzymes examined, CYP2B6, CYP2C9, and CYP3A4 showed high activities for the N-demethylation of both enantiomers at the substrate concentration of 1 mM. CYP2B6 had the lowest K(m) value for the N-demethylation of (R)- and (S)-ketamine (74 and 44 microM, respectively). Also, the intrinsic clearance (CL(int): V(max)/K(m)) of CYP2B6 for the N-demethylation of both enantiomers were 7 to 13 times higher than those of CYP2C9 and CYP3A4. Orphenadrine (CYP2B6 inhibitor, 500 microM) and sulfaphenazole (CYP2C9 inhibitor, 100 microM) inhibited the N-demethylase activities for both enantiomers (5 microM) in human liver microsomes by 60 to 70%, whereas cyclosporin A (CYP3A4 inhibitor, 100 microM) failed to inhibit these activities. In addition, the anti-CYP2B6 antibody inhibited these activities in human liver microsomes by 80%, whereas anti-CYP2C antibody and anti-CYP3A4 antibody failed to inhibit these activities. These results suggest that the high affinity/low capacity enzyme in human liver microsomes is mediated by CYP2B6, and the low affinity/high capacity enzyme is mediated by CYP2C9 and CYP3A4. CYP2B6 mainly mediates the N-demethylation of (R)- and (S)-ketamine in human liver microsomes at therapeutic concentrations (5 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号