首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Objective To establish the culture system of rat dopaminergic neurons. and to determine whether Paraquat and Dieldrin selectively destroy cultured rat dopaminergic neurons respectively. Methods The cultured rat dopaminergic neurons were treated for 24h with Paraquat and Dieldrin(0.001 to 100 μ mol/L) respectively, Data were expressed as percentage of surviving TH-positive(TH+) cells and other cells per culture dish. Results Paraquat was not effective in selectively destroying TH+ neurons. Dieldrin (1 μ mol/L) selectively decreased the number of TH+ neurons without affecting other cells. The EC50 of Dieldrin on TH+ neurons was 27.6 l mol/L. Conclusion: Paraquat can not selectively destroy dopaminergic neurons in culture. Dieldrin (1 μ mol/L) can selectively destroy the dopaminergic neurons in culture, which make it a potential etiological agent for PD. The possible parkinsonogenic effect of Dieldrin is deserved for further investigation.  相似文献   

2.
Luo XG  Wang H  Zhou J  Yan R  Wu Z  Zhang CD  Wang QS 《神经科学通报》2006,22(4):221-226
Objective The microglias is the representative of immune cells in the brain. It plays dual roles of both repairing and damaging in injured nervous system, and works as an inevitable component of the circumstance of injured neurons. This study was aiming at the effects of the microglias on the biological activities of mesenchymal stem cells (MSCs) in the circumstance of injured neurons. Methods MSCs were obtained by primary culture. We adopted PC12 cells (PC12) and BV2 cells (BV2) to substitute for neurons and microglias, respectively. PC12 were injured by aged Aβ1-40 and the supernatant of the injured PC12 was used to set up the circumstance of injured neurons. Transwells were used for co-culture of BV2 and MSCs, which allowed the independent detection of cells after co-culture. Immunofluorescence was used to identify MSCs and neuron-differentiating cells with CD44 and neuron specific enolase (NSE) staining, respectively. MTT assay was adopted to measure the proliferation. Results In the circumstance of both BV2 presence and injured PC 12 supernatant incubation, either the proliferation or the differentiation of MSCs reached the highest, which seemed to be contradictory, but we gave our explanations. With the BV2 co-culture, the proliferation of MSCs tend to be higher, but the neuron-differentiating MSCs were similar to those incubated without BV2 co-culture either in normal or injured in PC12 supernatant. With the incubation of injured PC12 supernatant, the neuron-differentiating cells were significantly higher than that of control (P 〈 0.05). Conclusion In the circumstance of injured neurons, microlgias tend to promote the MSCs proliferation. Although not helpful in neuron-differentiating, microglias did not exert any negative effect either.  相似文献   

3.
BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome.
OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage.
DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006.
MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China).
METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days.
MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure.
RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles.
CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices.  相似文献   

4.
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 10 6 ) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.  相似文献   

5.
Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method.The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fibroblast growth factor.Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone.However,neuronal morphology was visible,and microtubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor.Hb9 and choline acetyltransferase expression was high following inductive with heparin combined with basic fibroblast growth factor.Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious.Heparin combined with basic fibroblast growth factor noticeably promoted the differentiation of umbilical cord mesenchymal stem cells into motor neuron-like cells.Simultaneously,umbilical cord mesenchymal stem cells could secrete acetylcholine.  相似文献   

6.
7.
High-grade glioma is the most common malignant primary brain tumor in adults.The poor prognosis of glioma,combined with a resistance to currently available treatments,necessitates the development of more effective tumor-selective therapies.Stem cell-based therapies are emerging as novel cell-based delivery vehicle for therapeutic agents.In the present study,we successfully isolated human umbilical cord mesenchymal stem cells by explant culture.The human umbilical cord mesenchymal stem cells were adherent to plastic surfaces,expressed specific surface phenotypes of mesenchymal stem cells as demonstrated by flow cytometry,and possessed multi-differentiation potentials in permissive induction media in vitro.Furthermore,human umbilical cord mesenchymal stem cells demonstrated excellent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo.The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cells indicate that they may serve as a novel cellular vehicle for delivering therapeutic molecules in glioma therapy.  相似文献   

8.
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tuj1, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.  相似文献   

9.
Human umbilical mesenchymal stem cells from Wharton’s jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.  相似文献   

10.
目的 研究BDNF基因转染小鼠脊髓源性NSCs向神经元分化情况.方法 选取体外培养E14小鼠胚胎脊髓来源NSCs,构建整合有BDNF基因的逆转录病毒载体,感染体外培养的NSCs,诱导其向神经元分化.采用免疫细胞化学方法鉴定,确定NSCs的分化比例.结果 转染后诱导分化24 h后可见部分细胞贴壁分化,48 h后转染细胞大部分贴壁.BDNF转染NSCs分化为神经元比例较未转染NSCs明显增高,差异有统计学意义(P<0.05).结论 逆转录病毒载体介导BDNF基因转染NSCs可促进细胞分化,且分化多为神经元方向.
Abstract:
Objective To study the differentiation potential of mouse spinal cord derived neural stem cells (NSCs) into neurons after being transfected with BDNF gene in vitro. Methods Spinal cord derived NSCs from the E14 fetus mouse were isolated and cultured in vitro; the retrovirus containing pLXSN-BDNF gene was established and transfected into thc above NSCs, and thea, spinal cord derived NSCs were induced to be differentiated into neuron-like cells. Immunohistochemistry was employed to detect and calculate the ratio of differentiation of NSCs into neurons. Results The NSCs cultured in vitro partly adhered to the wall and differentiated within 24 h of transfection with BDNF gene, and most of the NSCs adhered to the wall differentiated within 48 h of transfection. The level of neurons from spinal cord derived NSCs modified by BDNF gene was markedly increased as compared with that that from normal spinal cord derived NSCs (P<0.05). Conclusion NSCs transfected by retroviral pLXSN-BDNF can promote the cell differentiation. BDNF gene can increase greatly the percentage of neurons in the course of inducing the differentiation of mouse NSCs.  相似文献   

11.
目的探讨人脐带间充质干细胞(MSCs)的体外分离、纯化、扩增和向神经元样细胞的定向诱导分化,以期为脐带MSCs的神经移植提供理论依据。方法无菌条件下收集剖宫产新生儿脐带,酶消化法获取MSCs,进行培养。用流式细胞仪检测MSCs的表面标志。取扩增3,5,10代的MSCs分别向神经元样细胞诱导,用免疫组化和RT-PCR法检测神经元样细胞特异性标志。结果脐带富含MSCs,且脐带MSCs(UCMSCs)强表达CD13、29、CD44、CD105,弱表达CD106,不表达CD34、CD11a、CD14、CD33、CD45。神经条件培养基诱导后的细胞平均有70%左右呈现典型的神经元样表型。免疫组化法检测发现不同代数的MSCs经诱导后均表达nestin,NSE,NeuN,NF-M,弱表达GFAP。RT-PCR显示诱导后NSEmRNA表达增加。结论MSCs存在于人脐带中,并且在体外有较强的增殖能力,特定条件下能够分化为神经元样细胞。  相似文献   

12.
目的探讨碱性成纤维细胞生长因子(bFGF)预诱导对骨髓基质干细胞(MSCs)向多巴胺(DA)能神经元分化的影响。方法取雄性Wistar大鼠股骨和胫骨骨髓,进行MSCs的体外培养、传代扩增及纯化。bFGF预诱导24h后,依据加入的神经营养因子不同分为单唾液酸四己糖神经节苷脂(GMl)组、胶质源性神经营养因子(GDNF)组和GDNF+GMl组,以及对照组。倒置显微镜下观察细胞形态变化,分别在预诱导第3d、7d进行神经元特异性烯醇化酶(NSE)、神经胶质酸性蛋白(GFAP)、酪氨酸羟化酶(TH)免疫细胞化学检测。计数NSE和TH阳性细胞数,并计算阳性细胞百分比。结果对照组见少量NSE阳性细胞。实验组于诱导第3d、7d见较多数量的NSE、TH阳性细胞,GFAP阴性。bFGF预诱导各组中GDNF+GMl组NSE、TH阳性细胞率最高,GDNF组次之,GMl组最低,组间比较差异有统计学意义(均P〈0.01)。结论bF—GF预诱导不仅可明显促进GDNF、GMl诱导MSCs向神经元样细胞分化,表达神经元细胞标志物——NSE;还可促进MSCs向DA能神经元分化,表达DA能神经元标志物——TH。  相似文献   

13.
目的应用GDNF和GM1体外联合诱导MSCs转化为多巴胺能(DA)神经元。探索体外诱导MSCs定向分化为DA能神经元的最佳条件。方法取雄性Wistar大鼠股骨和胫骨骨髓,密度梯度离心法分离获取单个核细胞。进行MSCs的体外培养和传代扩增。采用贴壁培养法使MSCs得到纯化。依据加入的神经营养因子不同分为对照组及实验组(GM1组、GDNF组、GDNF GM1组)。诱导过程中在倒置显微镜下观察细胞形态变化,分别在诱导第3天、第7天进行NSE、GFAP、TH免疫细胞化学检测。计数NSE和TH阳性细胞数,并计算阳性细胞百分比。采用SPSS10.0软件进行统计学处理。结果对照组可见少量NSE阳性细胞。各实验组比较发现,GDNF GM1组NSE阳性细胞率最高,GDNF组次之,GM1组最低。单独应用GDNF和GM1不能诱导MSCs表达TH,联合应用GDNF和GM1可诱导MSCs表达TH。随着诱导时间的延长,TH阳性表达增加。结论GDNF能够单独诱导MSCs向神经元样细胞分化,GM1不能单独诱导MSCs分化为神经元样细胞,但与GDNF联合,不仅可明显促进MSCs向神经元样细胞分化,而且部分细胞能够表达TH。  相似文献   

14.
目的探讨音速波状蛋白(Shh)促进人骨髓间充质干细胞(MSCs)体外定向分化为多巴胺能神经元样细胞的作用。方法体外分离、扩增和鉴定人骨髓MSCs。采用不同诱导方案诱导MSCs向神经元和多巴胺能神经元样细胞定向转化后,进行抗神经巢蛋白(Nestin)、神经元特异烯醇化酶(NSE)、神经胶质纤维酸性蛋白(GFAP)、酪氨酸羟化酶(TH)和多巴胺转运体(DAT)等免疫细胞化学染色,并计算阳性细胞百分率。结果实验组诱导后MSCs能分化为具有典型神经元形态的细胞,可见NSE、Nestin、GFAP、TH和DAT等神经细胞标志表达;对照组MSCs细胞形态无明显变化,上述特异性标志物表达均为阴性。实验2组(诱导方案含Shh)与1组(诱导方案不含Shh)的NSE、Nestin、GFAP阳性细胞百分率的差异无统计学意义,但实验2组TH和DAT阳性细胞百分率明显高于实验1组,差异具有统计学意义(P〈0.05)。结论Shh可促进MSCs分化为多巴胺能神经元样细胞。  相似文献   

15.
目的 探究人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSC)向神经样细胞的分化,并对其分化的神经样细胞的趋化作用进行研究.方法 检测hUC-MSC细胞表面的标记;无血清的诱导培养基[含2%二甲基亚砜(DMSO)和200μ xmol/L 丁羟基茴香...  相似文献   

16.
目的:观察人脐带间充质干细胞体外长期培养的生物学特性,探讨其向肝样细胞分化的可能性。 方法:脐带来源于天津市第三中心医院住院的健康足月产妇,采用酶消化法分离培养人脐带间充质干细胞,待细胞生长至80%~90%融合时传代。取传至第9代细胞接种于12孔板内,调整细胞浓度为5×1010 L-1,加入含肝细胞生长因子、成纤维生长因子4、抑瘤素的DMEM培养基,诱导28 d。MTT法测定细胞生长活性,流式细胞仪检测细胞周期,免疫细胞化学及流式细胞仪鉴定细胞表型;免疫细胞化学染色鉴定诱导后肝细胞特异表面标志物的表达,以及糖原染色结果。 结果:从人脐带中分离得到的间充质干细胞贴壁生长,形态类似于成纤维细胞,80%以上处于G0/G1期,具有良好的生长活性,可在体外稳定传代20次以上;CD29,CD90,CD105,Vimentin呈阳性表达,基本不表达造血细胞标志CD34和内皮细胞标志CD31。随诱导时间的延长,圆形细胞逐渐增多,形态似肝细胞;诱导1周时细胞开始表达肝细胞表面标志物甲胎蛋白、细胞胶蛋白18、细胞胶蛋白19;诱导3周时开始表达成熟肝细胞标志白蛋白;诱导4周时白蛋白表达增强,且诱导细胞糖原染色呈阳性。 结论:从人脐带中可成功分离出间充质干细胞,实现体外长期培养,并可诱导分化为肝样细胞。  相似文献   

17.
背景:关于大鼠骨髓来源的间充质干细胞用于移植免疫耐受及进行组织修复的研究很多,但尚无脐带来源间充质干细胞的相关研究。 目的:建立从大鼠脐带分离间充质干细胞的方法,并观察其生物学性状。 方法:大鼠脐带经酶消化和组织块培养两种方法进行分离培养,于DMEM-LG培养基中培养,倒置显微镜观察细胞形态,细胞计数绘制生长曲线,流式细胞仪测定细胞周期及细胞表型,免疫组织化学染色检测其体外诱导成脂肪和成骨分化的能力。 结果与结论:两种方法均能成功地从大鼠脐带中获得大量的间充质干细胞:原代培养显示,胶原酶消化法比组织块培养法的效率更高,大约10 d就可以进行传代,而组织块培养法要14 d才能传代;传代扩增两者之间没有差别。免疫表型分析显示,大鼠脐带源细胞表达黏附分子和基质细胞标记CD90、CD106,不表达造血细胞标记CD34、CD45。体外诱导实验证实,大鼠脐带间充质干细胞具有成脂肪和成骨分化的能力。  相似文献   

18.
目的应用周围神经细胞悬液、中脑条件培养基与细胞因子联合诱导骨髓基质干细胞(MSCs)转化为多巴胺(DA)能神经元。探索体外诱导MSCs定向分化为DA能神经元的最佳条件。方法取雄性SD大鼠股骨和胫骨骨髓,进行MSCs的体外培养和传代扩增。碱性成纤维细胞生长因子预诱导后,依据处理因素不同分为对照组及实验组(周围神经细胞悬液组、周围神经细胞悬液 中脑条件培养基组)。倒置显微镜下观察细胞形态变化,在诱导第7天进行神经元特异烯醇化酶(NSE),酪氨酸羟化酶(TH)免疫细胞化学检测。计数NSE和TH阳性细胞数,并计算阳性细胞百分比。结果对照组及实验各组7d NSE阳性细胞数分别为2.304±0.767,37.411±2.89.37.836±2.836(细胞数/每视野)。各组以周围神经细胞悬液 中脑条件培养基组NSE阳性细胞率最高,差异有统计学意义(P<0.01)。对照组及实验各组7d TH阳性细胞数分别为0,10.44±0.511,16.671±0.544(细胞数/每视野)。以周围神经细胞悬液 中脑条件培养基组TH阳性细胞数量较多,差异非常显著(P<0.01)。结论周围神经细胞悬液、中脑条件培养基与细胞因子联合可明显促进MSCs向神经元样细胞分化,并促进细胞表达TH。  相似文献   

19.
背景:间充质干细胞由于具有自我更新能力且在适宜微环境下具有多向分化潜能,近年来已成为细胞领域的研究热点。 目的:对比观察脐带血与骨髓来源的间充质干细胞其体外分离、纯化及培养条件,并对其进行生物学特性比较。 设计:体外细胞学对比观察。 材料:新鲜脐带血在征得产妇同意后采集。骨髓由健康的成年志愿者捐赠。 方法:取脐带血和成人骨髓分离、培养并纯化间充质干细胞,对获得的间充质干细胞进行形态学观察。 主要观察指标:两种来源间充质干细胞的形态和生长特性;流式细胞仪检测脐带血间充质干细胞表面抗原的表达情况;对脐带血间充质干细胞多向分化的能力进行鉴定。 结果:两种来源的单个核细胞经体外培养贴壁后均出现间充质样细胞,原代骨髓间充质干细胞的贴壁时间和培养时间均短于脐带血间充质干细胞,两种细胞传代生长呈共同特性:传代培养潜伏期为24~36 h,传代培养对数增殖期为接种后3~7 d,接种后八九天,生长进入平台期;脐带血来源的间充质干细胞表达相关抗原CD29、CD44、CD105;但不表达造血细胞抗原CD34、CD45;脐带血间充质干细胞可诱导分化为脂肪细胞、成骨细胞。 结论:人脐带血和骨髓来源间充质干细胞均可在体外分离培养、扩增;脐带血的间充质干细胞原代贴壁时间、形成细胞克隆的时间、集落交错融合的时间均较骨髓间充质干细胞晚,传代培养的细胞形态,生长速度均无明显差异;两种来源的间充质干细胞具有相同的表面标志物;脐带血间充质干细胞有多项分化潜能,可诱导为脂肪细胞、成骨细胞。  相似文献   

20.
We isolated and expanded fibroblast-like cells from the Wharton's jelly of human umbilical cord successfully. Immunocytochemistry showed that they were positive for several markers of mesenchymal stem cells (CD73, CD90, and CD105) and integrin markers (CD29 and CD44), but negative for a hematopoietic cell maker (CD45) and an endothelial cell marker (CD31). Their differentiation into osteocytes and adipocytes under specific conditions indicated that they had multi-lineage differentiation potential. Therefore these results proved that the cells we obtained from Wharton's jelly were human umbilical cord mensenchymal stem cells (hUCMSCs). Using immunocytochemistry and Western blotting analysis, we found that after treatment with neuronal induction medium [NIM; consisting of brain-derived neurotrophic factor (BDNF) and low-serum media] for 14 days, hUCMSCs expressed a neuronal specific marker, microtubule associated protein 2 (MAP2), and extended neurite-like processes. After treatment with NIM, supplemented with hippocampal cholinergic neurostimulating peptide (HCNP) or rat denervated hippocampal extract [rDHE; derived from rat fimbria fornix (FF) transected hippocampus], hUCMSCs expressed choline acetytransferase (ChAT) and this action could be enhanced when cells were cultured with NIM, supplemented with HCNP and rDHE in combination. ELISA showed that these ChAT-positive cells could secrete acetylcholine (ACh). These findings indicate that hUCMSCs possess the potential of differentiation into functional ChAT-positive cells in vitro and provide a new candidate of cells for the cell transplantation to treat Alzheimer's disease (AD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号