首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA).  相似文献   

6.
7.
Overlapping cloned cDNAs representing the entire sequence of the rat fatty acid synthase mRNA have been isolated from a cDNA library and sequenced. Authenticity of the cDNA clones was supported by hybridization to fatty acid synthase mRNA and by amino-terminal sequencing of 39 fatty acid synthase CNBr fragments. The full-length fatty acid synthase mRNA is 9156 nucleotides long and includes an 84-nucleotide 5' noncoding region, a 7515-nucleotide coding sequence, and a 1537-nucleotide 3' noncoding region; a second mRNA species containing a shortened 3' noncoding sequence is also transcribed in the rat. The encoded fatty acid synthase subunit contains 2505 amino acids and has a molecular weight of 272,340. Active sites and substrate binding sites were located within the sequence, thus establishing the order of domains on the multifunctional animal fatty acid synthase as condensing enzyme-transferase-dehydrase-enoyl reductase-ketoreductase-acyl carrier protein-thioesterase.  相似文献   

8.
Serotonin N‐acetyltransferase (SNAT) catalyzes conversion of serotonin into N‐acetylserotonin, which is a direct precursor for melatonin biosynthesis in all organisms. Molecular cloning of plant SNAT from rice led to a screening for SNAT homolog genes in other species. We identified a cyanobacterium SNAT‐like gene (cSNAT) that showed 56% amino acid homology with the rice SNAT. To confirm whether cSNAT encoded SNAT enzyme activity, we expressed cSNAT DNA in Escherichia coli and purified the cSNAT protein as a C‐terminal His‐tagged form. The purified cSNAT protein exhibited SNAT enzyme activities, transferring the acetyl group into either serotonin or tryptamine substrates. The optimum temperature was 55°C, but it was still highly active at 70°C, suggesting that cSNAT is a thermotolerant enzyme. The Km and Vmax were 823 μm and 1.6 nmol/min/mg protein, respectively. The cSNAT gene is highly conserved in all cyanobacterial taxa and seems to be an origin of SNAT in higher plants. The thermotolerance of cSNAT suggests that melatonin plays a role in the response to high‐temperature stress. Further analysis of this role of melatonin in higher plants is needed.  相似文献   

9.
By mediating the coupled movement of Na, K, and Cl ions across the plasma membrane of most animal cells, the bumetanide-sensitive Na-K-Cl cotransporter (NKCC) plays a vital role in the regulation of ionic balance and cell volume. The transporter is a central element in the process of vectorial salt transport in secretory and absorptive epithelia. A cDNA encoding a Na-K-Cl cotransport protein was isolated from a shark rectal gland library by screening with monoclonal antibodies to the native shark cotransporter. The 1191-residue protein predicted from the cDNA sequence has 12 putative transmembrane domains flanked by large cytoplasmic N and C termini. Regulatory phosphoacceptor residues in isolated peptides are identified as Thr-189 and Thr-1114 in the predicted sequence. Northern blot analysis identified a 7.4-kb mRNA in rectal gland and most other shark tissues; a 5.2-kb mRNA was restricted to shark kidney. Homology with an uncharacterized gene from Caenorhabditis elegans and with the thiazide-sensitive Na-Cl cotransporter of flounder urinary bladder was found over most of the coding region; shorter stretches of homology were found with a C. elegans cDNA and with an uncharacterized gene of cyanobacterium. Human HEK-293 cells have been stably transfected with the shark cDNA and shown to express Na-K-Cl cotransport activity with the bumetanide sensitivity of the shark protein. The expressed transporter is functionally quiescent in the host cells and can be activated by depleting the cells of chloride.  相似文献   

10.
We have isolated, cloned, and characterized two cDNAs from Zea mays (L.), denoted yptm1 and yptm2, encoding proteins related to the ypt protein family. Amino acid similarity scores with YPT1 from yeast and ypt from mouse are in the range of 70% for yptm1 and 74% for yptm2, respectively, whereas similarities with p21 ras and other ras-related proteins are less than 40%. Most amino acid residues showing identity are clustered in the GTP/GDP binding domain. In addition, two cysteine residues close to the C-terminal ends, known to be palmitoylated and necessary for membrane binding in all eukaryotic ras-related proteins that have been characterized so far, are conserved in the maize genes as well. Northern blot hybridization analysis of poly(A)+ mRNA from etiolated maize coleoptiles revealed single mRNA species of approximately the same size as the isolated cDNAs. The gene for yptm1 is expressed at very low levels in maize coleoptiles and tissue culture cells. The gene for yptm2 is expressed at higher levels and is differentially represented in RNAs isolated from various organs of maize plants, with its highest level in leaves and flowers. The structural similarity of the genes identified suggests that they could be involved in the control of secretory processes.  相似文献   

11.
Sequential polymerase chain reaction experiments were performed to amplify a unique sequence representing a guanine nucleotide-binding protein (G-protein)-coupled receptor from rat hypothalamic cDNA. Degenerate oligonucleotides corresponding to conserved amino acids from transmembrane domains III, V, and VI of known receptors [5-HT1A, 5-HT1C, and 5-HT2; 5-HT is serotonin (5-hydroxytryptamine)] were used as primers for the sequential reactions. The resulting product was subcloned and used to screen a rat genomic library to identify a full-length clone (MR77) containing an intronless open reading frame encoding a 366-amino acid seven-transmembrane domain protein. The human homolog was isolated, and its encoded protein had 93% overall amino acid identity with the rat sequence. Within the conserved transmembrane domains, the sequences exhibit approximately 52%, 59%, 65%, and 68% amino acid identity with the known rat 5-HT1A, rat 5-HT1B, rat 5-HT1D, and human 5-HT1E receptors, respectively. MR77 was subcloned into a eukaryotic expression vector system and expressed in CosM6 cells. Studies on broken cell preparations indicate that the expressed receptor exhibits 125I-labeled d-lysergic acid diethylamide (LSD) binding that can be displaced by serotonin but not by other biogenic amines. The specific binding is displaced by the selective 5-HT1D agonist sumatriptan but not by the mixed 5-HT1A/1D agonist 5-carboxyamidotryptamine. 125I-labeled LSD binding was competitively antagonized by the ergot alkaloids methysergide and ergotamine. HeLa cells transfected with the MR77 gene exhibited inhibition of adenylate cyclase in response to serotonin. MR77 is expressed at low levels throughout the brain, with the greatest expression in the cortex, hippocampus, and striatum. MR77 thus represents a 5-HT receptor of the 5-HT1 class, and we propose that, based on the pharmacological characterization, MR77 represents an additional 5-HT1E-like receptor.  相似文献   

12.
The PCR and conventional library screening were used to clone the brain-specific somatostatin receptor rSSTR-4 from a rat genomic library. The deduced amino acid sequence encodes a protein of 384 amino acids and displays structural and sequence homologies with members of the G protein-receptor superfamily. The amino acid sequence of rSSTR-4 is 60% and 48% identical to that of somatostatin receptors SSTR-1 and SSTR-2, respectively, two recently cloned subtypes. Competition curve analysis of the binding properties of the receptor transiently expressed in COS-1 cells revealed a higher apparent affinity for somatostatin 14 than for somatostatin 28. In contrast, the somatostatin analogs SMS 201-995, IM 4-28, and MK-678 failed to displace specific binding in transfected cells. These characteristics resemble the pharmacological binding properties of the previously described brain-specific somatostatin-receptor subtype. Examination of the tissue distribution of mRNA for rSSTR-4 revealed expression limited to various brain regions with highest levels in the cortex and hippocampus. Thus, based on the pharmacology and tissue localization of this receptor, we conclude that rSSTR-4 represents a brain-specific somatostatin receptor.  相似文献   

13.
14.
The L-1 penicillinase structural gene, blaS, from Pseudomonas maltophilia was cloned into the vector pACYC184. The pMON01 recombinant plasmid selected by ampicillin resistance carried a 2.6-kilobase (kb) Sau3A fragment of P. maltophilia DNA and was confirmed to express L-1 beta-lactamase by comparative isoelectric focusing. A detailed physical map was constructed, and the blaS structural gene was localized with a 17-mer oligonucleotide mixed probe encoding the L-1 NH2-terminal amino acid sequence. Induction studies confirmed constitutive expression. Isolation of a complete beta-lactamase operon was attempted by construction of a P. maltophilia genomic library into phage lambda 2001. A recombinant phage was selected by DNA hybridization; the 13.4-kb DNA insert was physically mapped and subcloned into the high-copy-number plasmid pACYC184 and into the low-copy-number vector pLG338. The expression of the cloned blaS L-1 structural gene and levels of beta-lactamase synthesis were studied in Escherichia coli. The protein synthesized was found to be similar to the L-1 beta-lactamase of the prototype P. maltophilia, although expression levels were gene dosage dependent for beta-lactamase synthesis.  相似文献   

15.
Double-stranded cDNA synthesized from delta-crystallin mRNA isolated from lens fiber cells of 15-day-old embryonic chicken was cloned in Escherichia coli chi 1776 in the Pst I site of the plasmid pBR322 by using the oligo(dC) . oligo(dG) joining procedure. Twelve Amps Tetr transformants contained sequences complementary to purified delta-crystallin [32P]cDNA. One of the recombinant clones (p delta Cr-2) had an insert of 1241 +/- 240 base pairs, as judged by R-looping analysis with purified delta-crystallin mRNA. The inserted cDNA represents at least 69% of the delta-crystallin coding sequences. p delta Cr-2 was further characterized by restriction analysis, protection of delta-crystallin [3H]cDNA from digestion by S1 nuclease, and hybrid-mediated arrest of delta-crystallin mRNA translation in vitro. p delta Cr-2 provides an invaluable probe for additional analysis of the primary structure, gene organization, and regulated synthesis of delta-crystallin, the principal protein synthesized during lens differentiation in the chicken embryo.  相似文献   

16.
17.
18.
A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene.  相似文献   

19.
Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are classified on the basis of their activation by different agonists. The agonists kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid define a class of glutamate receptors termed kainate receptors. We have isolated and sequenced a human glutamate receptor (GluHI) cDNA and determined the chromosomal localization of its gene. The DNA sequence of GluHI would encode a 907-amino acid protein that has a 97% identity to one of the rodent kainate receptor subunits. Many of the changes between the predicted amino acid sequence of GluHI and the most similar rodent kainate receptor (GluRI) occur in a region of the protein encoded in rodents by an alternatively spliced exon. The extreme conservation between the human and rat kainate receptor subunits suggests that a similar gene family will encode human kainate receptors. The GluHI mRNA is widely expressed in human brain. The human gene encoding the GluHI subunit is located at 5q33. While the GluHI gene is not located near a chromosomal region associated with any human neurogenetic disorders, the homologous region on mouse chromosome 11 contains the sites of five neurologic mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号