首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the efficacy of synaptic transmission by activity-dependent processes has been implicated in learning and memory as well as in developmental processes. We previously described transient potentiation of excitatory synapses onto layer 2/3 pyramidal neurons in the visual cortex that is induced by coincident presynaptic stimulation and postsynaptic depolarization. In the adult visual cortex, activation of N-methyl-d-aspartate (NMDA) glutamate receptors is necessary to induce this plasticity. These receptors act as coincidence detectors, sensing presynaptic glutamate release and postsynaptic depolarization, and cause an influx of Ca(2+) that is necessary for the potentiation. In the neurons of the neonatal visual cortex, on the other hand, coincident presynaptic stimulation and postsynaptic depolarization induce stable long-term potentiation (LTP). In addition, reduced but significant LTP can be induced in many neurons in the presence of the NMDA receptor (NMDAR) antagonist, 2-amino-5-phosphonovaleric acid despite the Ca(2+) requirement. Therefore there must be an alternative postsynaptic Ca(2+) source and coincidence detection mechanism linked to the LTP induction mechanism in the neonatal cortex operating in addition to NMDARs. In this study, we find that in layer 2/3 pyramidal neurons, release of Ca(2+) from inositol trisphosphate (InsP(3)) receptor-mediated intracellular stores and influx through voltage-gated Ca(2+) channels (VGCCs) provide alternative postsynaptic Ca(2+) sources. We hypothesize that InsP(3)Rs are coincidence detectors, sensing presynaptic glutamate release through linkage with group I metabotropic glutamate receptors (mGluRs), and depolarization, through VGCCs. We also find that the downstream protein kinases, PKA and PKC, have a role in potentiation in layer 2/3 pyramidal neurons of the neonatal visual cortex.  相似文献   

2.
Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor-mediated synaptic responses decrease in duration after the peak of cortical plasticity in rodents. Accordingly, it is believed that shortening of the NMDA receptor-mediated current underlies the developmental reduction of ocular dominance plasticity. However, some previous evidence actually suggests that the duration of NMDA receptor currents decreases before the peak of plasticity. In the present study, we have examined the time course of NMDA receptor changes and how they correlate with the critical period of ocular dominance plasticity in the visual cortex of a highly binocular animal, the ferret. The expression of NMDA receptor subunits NR1, NR2A, and NR2B was examined in animals ranging in age from postnatal day 16 to adult using Western blotting. Functional properties of NMDA receptors in layer IV cortical neurons were studied using whole cell patch-clamp techniques in an in vitro slice preparation of ferret primary visual cortex. We observed a remarkable increase in NR1 and NR2A, but not NR2B, expression after eye opening. The NMDA receptor-mediated synaptic currents showed an abrupt decrease in decay time concurrent with the increase in NR2A subunit expression. Importantly, these changes occurred in parallel with increased ocular dominance plasticity reported in the ferret. In conclusion, molecular changes leading to decreased duration of the NMDA receptor excitatory postsynaptic current may be a requirement for the onset, rather than the end, of the critical period of ocular dominance plasticity.  相似文献   

3.
Creation of AMPA-silent synapses in the neonatal hippocampus   总被引:10,自引:0,他引:10  
In the developing brain, many glutamate synapses have been found to transmit only NMDA receptor-mediated signaling, that is, they are AMPA-silent. This result has been taken to suggest that glutamate synapses are initially AMPA-silent when they are formed, and that AMPA signaling is acquired through activity-dependent synaptic plasticity. The present study on CA3-CA1 synapses in the hippocampus of the neonatal rat suggests that AMPA-silent synapses are created through a form of activity-dependent silencing of AMPA signaling. We found that AMPA signaling, but not NMDA signaling, could be very rapidly silenced by presynaptic electrical stimulation at frequencies commonly used to probe synaptic function (0.05-1 Hz). Although this AMPA silencing required a rise in postsynaptic Ca(2+), it did not require activation of NMDA receptors, metabotropic glutamate receptors or voltage-gated calcium channels. The AMPA silencing, possibly explained by a removal of postsynaptic AMPA receptors, could subsequently be reversed by paired presynaptic and postsynaptic activity.  相似文献   

4.
5.
We demonstrate a form of long-term depression (LTD) in the perirhinal cortex that relies on interaction between different glutamate receptors. Group II metabotropic glutamate (mGlu) receptors facilitated group I mGlu receptor-mediated increases in intracellular calcium. This facilitation plus NMDA receptor activation may be necessary for induction of LTD at resting membrane potentials. However, depolarization enhanced NMDA receptor function and removed the requirement of synergy between group I and group II mGlu receptors: under these conditions, activation of only NMDA and group I mGlu receptors was required for LTD. Such glutamate receptor interactions potentially provide new rules for synaptic plasticity. These forms of LTD occur in the perirhinal cortex, where long-term decreases in neuronal responsiveness may mediate recognition memory.  相似文献   

6.
Excitotoxicity in perinatal brain injury   总被引:7,自引:0,他引:7  
Excitotoxicity is an important mechanism involved in perinatal brain injuries. Glutamate is the major excitatory neurotransmitter, and most neurons as well as many oligodendrocytes and astrocytes possess receptors for glutamate. Perinatal insults such as hypoxia-ischemia, stroke, hypoglycemia, kernicterus, and trauma can disrupt synaptic function leading to accumulation of extracellular glutamate and excessive stimulation of these receptors. The activities of certain glutamate receptor/channel complexes are enhanced in the immature brain to promote activity-dependent plasticity. Excessive stimulation of glutamate receptor/ion channel complexes triggers calcium flooding and a cascade of intracellular events that results in apoptosis and/or necrosis. Recent research suggests that some of these intracellular pathways are sexually dimorphic. Age dependent expression of different glutamate receptor subtypes with varying abilities to flux calcium has been associated with special patterns of selective vulnerability at different gestational ages. For example, selective injury to the putamen, thalamus and cerebral cortex from near total asphyxia in term infants may be related to excessive activation of neuronal NMDA and AMPA type glutamate receptors, while brainstem injury may be related primarily to stimulation of neuronal AMPA/kainate receptors. In contrast, periventricular leukomalacia in premature infants has been linked to expression of AMPA/kainate receptors on immature oligodendrocytes. Insight into the molecular pathways that mediate perinatal brain injuries could lead to therapeutic interventions.  相似文献   

7.
In addition to its effects on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) plays an important role in modulating synaptic transmission and plasticity in many brain areas, most notably the neocortex and hippocampus. These effects may underlie a role for BDNF in learning and memory as well as developmental plasticity. Consistent with localization of the tropomyosin-related kinase B receptor to both sides of the synapse, BDNF appears to have pre- and postsynaptic effects, but the underlying cellular mechanisms are unclear and it is not known whether pre- and postsynaptic modulations by BDNF occur simultaneously. To address these issues, we recorded dual-component (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-D-aspartate [NMDA]) miniature excitatory postsynaptic currents (mEPSCs) from cortical and hippocampal pyramidal neurons and dentate gyrus granule cells from acute brain slices. BDNF had no effect on the fast component of mEPSC decay or on the peak amplitude, suggesting that BDNF did not modulate postsynaptic AMPA receptors, although BDNF rapidly modulated NMDA receptors, as seen by an enhancement of the slow component of mEPSC decay that was prevented by blocking postsynaptic NMDA receptors. At the same time, BDNF acted presynaptically to enhance mEPSC frequency. Surprisingly, the effect on frequency was also NMDA receptor dependent, but required activation of presynaptic, not postsynaptic, NMDA receptors. BDNF also enhanced action potential-dependent glutamate release via presynaptic NMDA receptors, an effect that was unmasked when voltage-gated calcium channels were partially inhibited. Our results indicate that BDNF acutely modulates presynaptic release and postsynaptic responsiveness through simultaneous effects on pre- and postsynaptic NMDA receptors.  相似文献   

8.
N-methyl-d-aspartate (NMDA) receptors play crucial roles in glutamate-mediated synaptic transmission and plasticity and are involved in a variety of brain functions. Specific single nucleotide polymorphisms (SNPs) in the genes encoding NMDA receptor subunits have been associated with some neuropsychiatric disorders involving altered glutamate transmission, but how these polymorphisms impact on synaptic function in humans is unknown. Here, the role of NMDA receptors in the control of cortical excitability and plasticity was explored by comparing the response to single, paired, and repetitive transcranial magnetic stimulations of the motor cortex in 77 healthy subjects carrying specific allelic variants of the NR1 subunit gene (GRIN1 rs4880213 and rs6293) or of the NR2B subunit gene (GRIN2B rs7301328, rs3764028, and rs1805247). Our results showed that individuals homozygous for the T allele in the rs4880213 GRIN1 SNP had reduced intracortical inhibition, as expected for enhanced glutamatergic excitation in these subjects. Furthermore, individuals carrying the G allele in the rs1805247 GRIN2B SNP show greater intracortical facilitation and greater long-term potentiation-like cortical plasticity after intermittent -burst stimulation. Our results provide novel insights into the function of NMDA receptors in the human brain and might contribute to the clarification of the synaptic bases of severe neuropsychiatric disorders associated with defective glutamate transmission.  相似文献   

9.
Activation of glutamate receptors is known to modulate K+ channel surface trafficking, phosphorylation, and function, and increasing evidence has implicated K+ channels in plastic changes in glutamatergic synapses. Kv4.2 channels control the amplitude of back-propagating action potentials and shape postsynaptic responses in hippocampus, and synaptic glutamate receptor activation leads to increased phosphorylation of Kv4.2 channels that is associated with enhanced synaptic plasticity. Thus, we investigated the possibility that activation of extrasynaptic NMDA-type glutamate receptors couples to Kv4.2 channel dephosphorylation. In hippocampal neurons, we found that selective activation of extrasynaptic NMDA receptors dephosphorylates Kv4.2 channels, and driving synaptic activity increases phosphorylation of Kv4.2. We also observed that Ca2+ entry through NMDA receptors is necessary for dephosphorylation of Kv4.2 channels. Consistent with a synaptic and extrasynaptic localization at hippocampal synapses, a fraction of Kv4.2 channel clusters was found to localize outside of pre- and postsynaptic markers. Excitatory amino acid transporters (EAATs) regulate ambient extracellular glutamate levels that active extrasynaptic NMDA receptors, and inhibition of glutamate uptake by blocking EAATs with the non-selective transporter inhibitor dl-threo-β-benzyloxyaspartic acid (TBOA) or the EAAT1/3 selective inhibitor l-serine O-sulfate (SOS) dephosphorylates Kv4.2 channels. These findings in conjunction with previous reports support the interesting possibility that synaptic and extrasynaptic NMDA receptors bi-directionally regulate phosphorylation levels of Kv4.2 channels in hippocampus. Moreover, we observed that EAAT activity controls extrasynaptic NMDA receptor modulation of Kv4.2 channel dephosphorylation.  相似文献   

10.
BDNF modulation of NMDA receptors is activity dependent   总被引:1,自引:0,他引:1  
Brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic transmission, is known to influence associative synaptic plasticity and refinement of neural connectivity. We now show that BDNF modulation of glutamate currents in hippocampal neurons exhibits the additional property of use dependence, a postsynaptic mechanism resulting in selective modulation of active channels. We demonstrate selectivity by varying the repetition rate of iontophoretically applied glutamate pulses during BDNF exposure. During relatively high-frequency glutamate pulses (0.1 Hz), BDNF application elicited a doubling of the glutamate current. During low-frequency pulses (0.0033 Hz), however, BDNF evoked a dramatically diminished response. This effect was apparently mediated by calcium because manipulations that prevented elevation of intracellular calcium largely eliminated the action of BDNF on glutamate currents. To confirm N-methyl-D-aspartate (NMDA) receptor involvement and assess spatial requirements, we made cell-attached single-channel recordings from somatic NMDA receptors. Inclusion of calcium in the pipette was sufficient to produce enhancement of channel activity by BDNF. Substitution of EGTA for calcium prevented BDNF effects. We conclude that BDNF modulation of postsynaptic NMDA receptors requires concurrent neuronal activity potentially conferring synaptic specificity on the neurotrophin's actions.  相似文献   

11.
Activation of NR1/NR2B NMDA receptors   总被引:8,自引:0,他引:8  
N-methyl-D-aspartate (NMDA) receptors are highly expressed in the central nervous system and are involved in excitatory synaptic transmission as well as synaptic plasticity. Despite considerable structural and biophysical research, the mechanism behind activation of the NMDA receptor is still poorly understood. By analyzing patch clamp recordings of one channel activated by glutamate, we determined the burst structure and open probability for recombinant rat NR1/NR2B receptors. We used partial agonists at the glutamate and glycine binding sites to show that at least two kinetically distinct subunit-associated conformational changes link co-agonist binding to the opening of the NMDA receptor pore. These data suggest that NR1 and NR2B subunits, respectively, undergo a fast and slow agonist-dependent conformational change that precedes opening of the pore. We propose a new working model of receptor activation that can account for macroscopic as well as microscopic NMDA receptor properties.  相似文献   

12.
The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala.  相似文献   

13.
The synaptic plasticity that is addressed in this review follows neurodegeneration in the brain and thus has both structural as well as functional components. The model of neurodegeneration that has been selected is the kainic acid lesioned hippocampus. Degeneration of the CA3 pyramidal cells results in a loss of the Schaffer collateral afferents innervating the CA1 pyramidal cells. This is followed by a period of structural plasticity where new synapses are formed. These are associated with changes in the numbers and shapes of spines as well as changes in the morphometry of the dendrites. It is suggested that this synaptogenesis is responsible for an increase in the ratio of NMDA to AMPA receptors mediating excitatory synaptic transmission at these synapses. Changes in the temporal and spatial properties of these synapses resulted in an altered balance between LTP and LTD. These properties together with a reduction in the inhibitory drive increased the excitability of the surviving CA1 pyramidal cells which in turn triggered epileptiform bursting activity. In this review we discuss the insights that may be gained from studies of the underlying molecular machinery.

Developments in one of the collections of the cogs in this machinery has been summarized through recent studies characterizing the roles of neural recognition molecules in synaptic plasticity in the adult nervous systems of vertebrates and invertebrates. Such investigations of neural cell adhesion molecules, cadherins and amyloid precursor protein have shown the involvement of these molecules on the morphogenetic level of synaptic changes, on the one hand, and signal transduction effects, on the other. Further complex cogs are found in the forms of the low-density lipoprotein receptor (LDL-R) family of genes and their ligands play pivotal roles in the brain development and in regulating the growth and remodelling of neurones. Evidence is discussed for their role in the maintenance of cognitive function as well as Alzheimer's. The molecular mechanisms responsible for the clustering and maintenance of transmitter receptors at postsynaptic sites are the final cogs in the machinery that we have reviewed.

Postsynaptic densities (PSD) from excitatory synapses have yielded many cytoskeletal proteins including actin, spectrin, tubulin, microtubule-associated proteins and calcium/calmodulin-dependent protein kinase II. Isolated PSDs have also been shown to be enriched in AMPA, kainate and NMDA receptors. However, recently, a new family of proteins, the MAGUKs (for membrane-associated guanylate kinase) has emerged. The role of these proteins in clustering different NMDA receptor subunits is discussed. The MAGUK proteins are also thought to play a role in synaptic plasticity mediated by nitric oxide (NO). Both NMDA and non-NMDA receptors are highly clustered at excitatory postsynaptic sites in cortical and hippocampal neurones but have revealed differences in their choice of molecular components. Both GABAA and glycine (Gly) receptors mediate synaptic inhibition in the brain and spinal cord. Whilst little is known about how GABAA receptors are localized in the postsynaptic membrane, considerable progress has been made towards the elucidation of the molecular mechanisms underlying the formation of Gly receptors. It has been shown that the peripheral membrane protein gephyrin plays a pivotal role in the formation of Gly receptor clusters most likely by anchoring the receptor to the subsynaptic cytoskeleton. Evidence for the distribution as well as function of gephyrin and Gly receptors is discussed. Postsynaptic membrane specializations are complex molecular machinery subserving a multitude of functions in the proper communication between neurones. Despite the fact that only a few key players have been identified it will be a fascinating to watch the story as to how they contribute to structural and functional plasticity unfold.  相似文献   


14.
Formation of neural circuitry in the developing visual cortex is shaped by experience during the critical period. A number of mechanisms, including N-methyl-D-aspartate (NMDA) receptor activation and gamma-aminobutyric acid (GABA)-mediated inhibition, are crucial in determining onset and closure of the critical period for visual plasticity. Animal models have shown that a threshold level of tonic inhibition must be reached for critical period plasticity to occur and that NMDA receptors contribute to Hebbian synaptic plasticity in the developing visual cortex. There are a number of developmental changes in these glutamatergic and GABAergic mechanisms that have been linked to plasticity; however, those changes have been shown only in animal models, and their development in the human visual cortex is not known. We have addressed this question by studying the expression of the major glutamatergic receptors, GABA(A) receptors, and glutamic acid decarboxylase (GAD) isoforms during the first 6 years of postnatal development of human visual cortex. There are significant changes in the expression of these proteins during postnatal development of human visual cortex. The time course of the changes is quite prolonged and suggests that it may set the pace for the prolonged critical period in human visual development. The changes also affect the nature of spatial and temporal integration in visual cortical neurons and thereby contribute to the maturation of visual functions.  相似文献   

15.
Activity of neurons in the dorsal motor nucleus of the vagus nerve (DMV) is closely regulated by synaptic input, and regulation of that input by glutamate receptors on presynaptic terminals has been proposed. Presynaptic N-methyl-d-aspartic acid (NMDA) receptors have been identified in a number of brain regions and act to modulate neurotransmitter release, but functional presynaptic NMDA receptors have not been adequately studied in the DMV. This study identified the presence and physiological function of presynaptic NMDA receptors on synaptic input to DMV neurons. Whole-cell patch-clamp recordings from DMV neurons in acute slices from mice revealed prevalent miniature excitatory postsynaptic currents, which were significantly increased in frequency, but not amplitude, by application of NMDA. Antagonism of NMDA receptors with dl-2-amino-5-phosphonopentanoic acid (100 μM) resulted in a decrease in miniature excitatory postsynaptic current frequency and an increase in the paired pulse ratio of responses following afferent stimulation. No consistent effects of presynaptic NMDA receptor modulation were observed on GABAergic inputs. These results suggest that presynaptic NMDA receptors are present in the dorsal vagal complex and function to facilitate the release of glutamate, preferentially onto DMV neurons tonically, with little effect on GABA release. This type of presynaptic modulation represents a potentially novel form of glutamate regulation in the DMV, which may function to regulate glutamate-induced activity of central parasympathetic circuits.  相似文献   

16.
P2X receptors and synaptic plasticity   总被引:1,自引:0,他引:1  
Adenosine triphosphate (ATP) is released in many synapses in the CNS either together with other neurotransmitters, such as glutamate and GABA, or on its own. Postsynaptic action of ATP is mediated through metabotropic P2Y and ionotropic P2X receptors abundantly expressed in neural cells. Activation of P2X receptors induces fast excitatory postsynaptic currents in synapses located in various brain regions, including medial habenula, hippocampus and cortex. P2X receptors display relatively high Ca2+ permeability and can mediate substantial Ca2+ influx at resting membrane potential. P2X receptors can dynamically interact with other neurotransmitter receptors, including N-methyl-D-aspartate (NMDA) receptors, GABA(A) receptors and nicotinic acetylcholine (ACh) receptors. Activation of P2X receptors has multiple modulatory effects on synaptic plasticity, either inhibiting or facilitating the long-term changes of synaptic strength depending on physiological context. At the same time precise mechanisms of P2X-dependent regulation of synaptic plasticity remain elusive. Further understanding of the role of P2X receptors in regulation of synaptic transmission in the CNS requires dissection of P2X-mediated effects on pre-synaptic terminals, postsynaptic membrane and glial cells.  相似文献   

17.
In vitro long-term depression (LTD) is thought to be a model for the loss of cortical responsiveness to an eye deprived of vision during the critical period. Using whole cell recording, the present study investigates the mechanisms of LTD in vitro across layers in developing rat visual cortex. LTD was induced in layers II/III, V, and VI but not layer IV with 10-min 1-Hz stimulation paired with postsynaptic depolarization. LTD in layers II/III and V could be blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D-aminophosphonovaleric acid (D-AP5) but not by 100 microM (2S)-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), a metabotropic glutamate receptor inhibitor. In contrast, LTD in layer VI was blocked by 100 microM LY341495 and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) but not D-AP5 and partially blocked by application of guanosine 5'-O-(2-thiodiphosphate) thilothium salt (GDP-beta-S) in patch pipette, suggesting an involvement of postsynaptic group I metabotropic glutamate receptors (mGluRs). These results indicate that LTD in developing rat visual cortex varies with layer: LTD was absent in layer IV, suggesting a unique plasticity mechanism at geniculocortical synapses; LTD in layers II/III and V depends on NMDA receptors but not mGluRs, and LTD in layer VI requires mGluRs but not NMDA receptors.  相似文献   

18.
The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2-lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.  相似文献   

19.
At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber-stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein (GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 (PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+ permeability of synaptic receptors.  相似文献   

20.
AMPA and N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses expressed differential paired-pulse plasticity when examined in the same cell using intracellular or whole cell voltage-clamp recordings. Electrical stimulation of corticostriatal afferents in brain slices bathed in artificial cerebrospinal fluid containing bicuculline produces excitatory postsynaptic potentials and excitatory postsynaptic currents (EPSCs) mediated primarily by AMPA receptors. Cell-to-cell variation existed in AMPA receptor paired-pulse plasticity, but within-cell plasticity was stable over a range of stimulation intensities. Addition of 6-cyano-7-nitroquinoxalene-2,3-dione blocked most of the synaptic response leaving behind a small AP-5-sensitive component. Increasing the stimulation intensity produced large, long-lasting NMDA receptor-mediated responses. In contrast to AMPA receptor-mediated responses, NMDA receptor responses consistently showed an increase in paired-pulse potentiation with increasing stimulation intensity. This relationship was restricted to interstimulus intervals shorter than 100 ms. Paired-pulse potentiation of NMDA receptor responses was voltage-dependent and reduced by removal of extracellular Mg(2+). Block of postsynaptic L-type Ca(2+) channels with nifedipine produced a voltage-dependent reduction of NMDA receptor excitatory postsynaptic currents (EPSCs) and a voltage-dependent reduction of NMDA receptor paired-pulse potentiation. These data indicate depolarization during the first NMDA receptor response causes facilitation of the second by removing voltage-dependent block of NMDA receptors by Mg(2+) and by activating voltage-dependent Ca(2+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号