首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we determined whether spinal cholecystokinin (CCK) or the cholecystokinin receptor is involved in below-level neuropathic pain of spinal cord injury (SCI). The effect of the CCKB receptor antagonist, CI-988 on mechanical allodynia and the expression level of CCK and CCKB receptor were investigated. Spinal hemisection was done at the T13 level in rats under enflurane anesthesia. CI-988 was administered intraperitoneally and intrathecally and behavioral tests were conducted. After systemic injection, mechanical allodynia was reduced by higher doses of CI-988 (10 and 20 mg/kg). Intrathecal CI-988 (100, 200 and 500 μg) dose-dependently increased the paw withdrawal threshold in both paws. Following spinal hemisection, CCK mRNA expression increased on the ipsilateral side at the spinal segments caudal to the injury and both sides of the spinal L4-5 segments without any significant changes in CCKB receptor mRNA levels. These results suggest that up-regulation of spinal CCK may contribute to maintenance of mechanical allodynia following SCI and that clinical application of CI-988 or similar drugs may be useful therapeutic agents for management of central neuropathic pain.  相似文献   

2.

Purpose

Lamotrigine, a novel anticonvulsant, is a sodium channel blocker that is efficacious in certain forms of neuropathic pain. Recently, microglial and astrocytic activation has been implicated in the development of nerve injury-induced neuropathic pain. We have assessed the effects of continuous intrathecal administration of lamotrigine on the development of neuropathic pain and glial activation induced by L5/6 spinal-nerve ligation in rats.

Materials and Methods

Following left L5/6 spinal nerve ligation (SNL), Sprague-Dawley male rats were intrathecally administered lamotrigine (24, 72, or 240 µg/day) or saline continuously for 7 days. Mechanical allodynia of the left hind paw to von Frey filament stimuli was determined before surgery (baseline) and once daily for 7 days postoperatively. On day 7, spinal activation of microglia and astrocytes was evaluated immunohistochemically, using antibodies to the microglial marker OX-42 and the astrocyte marker glial fibrillary acidic protein (GFAP).

Results

Spinal-nerve ligation induced mechanical allodynia in saline-treated rats, with OX-42 and GFAP immunoreactivity being significantly increased on the ipsilateral side of the spinal cord. Continuously administered intrathecal lamotrigine (240 µg/day) prevented the development of mechanical allodynia, and lower dose of lamotrigine (72 µg/day) ameliorated allodynia. Intrathecal lamotrigine (72 and 240 µg/day) inhibited nerve ligation-induced microglial and astrocytic activation, as evidenced by reduced numbers of cells positive for OX-42 and GFAP.

Conclusion

Continuously administered intrathecal lamotrigine blocked the development of mechanical allodynia induced by SNL with suppression of microglial and astrocytic activation. Continuous intrathecal administration of lamotrigine may be a promising therapeutic intervention to prevent neuropathy.  相似文献   

3.
We used the Bennett and Xie (1988) model of chronic neuropathic pain to study the effect of age on thermal and tactile sensitivity and on astrocytic activation in the dorsal horn of the spinal cord after nerve injury. Fischer 344 FBNF1 hybrid rats in three age groups, 4-6, 14-16, and 24-26 months, were studied. Rats were either unligated (day 0, control) or the left sciatic nerve was loosely ligated to cause a chronic constriction injury (CCI). CCI causes a neuropathic pain condition characterized by tactile allodynia and thermal hyperalgesia. Rats were behaviorally assessed for tactile and thermal sensitivity of their ligated and unligated hind paws up to 35 days postligation. Rats were sacrificed before or at various days postligation, and activated astrocytes were identified at the L4-L5 levels of their spinal cords by use of an antibody to glial fibrillary acid protein (GFAP). The number of GFAP-ir astrocytes in the dorsal horn of the spinal cord in the control, uninjured condition decreased with age (P < or = 0.001) but increased after CCI in all three age groups. After CCI, astrocytic activation in the cord was less robust in aged rats than in younger ones (P < or = 0.01). Not all the CCI rats displayed hyperalgesia to touch and to heat. Rats with an increased sensitivity to heat had increased levels of GFAP-ir in their cords; however, rats with decreased thermal sensitivity also displayed increased GFAP-ir. Thus the presence of activated astrocytes was not correlated with a single behavioral manifestation of neuropathic pain.  相似文献   

4.
The activation of glial cells in the CNS has been suggested to be involved in abnormal pain sensation after peripheral nerve injury. Previous studies demonstrated phosphorylation of p38 mitogen-activated protein kinase (MAPK) in spinal cord glial cells after peripheral nerve injury, and such phosphorylation has been suggested to be involved in the development of neuropathic pain. The aim of this study was to examine the dorsal column nuclei for phosphorylation of p38 MAPK following peripheral nerve injury and to explore a possibility of its contribution to neuropathic pain. Immunohistochemical labeling for phosphorylated p38 (p-p38) MAPK was performed in histological sections of the rat spinal cord and medulla oblongata after the fifth lumbar (L5) spinal nerve ligation (SNL). The number of p-p38 MAPK-immunoreactive (IR) cells was significantly increased in the L5 dorsal horn and the gracile nucleus ipsilateral to the injury at days 3-21 after SNL. Double immunofluorescence labeling with cell-specific markers revealed that p-p38 MAPK-IR cells co-expressed OX-42, suggesting their microglial identity. Increased immunofluorescence labeling for OX-42 indicated that microglial cells were activated by SNL in the L5 dorsal horn and the gracile nucleus ipsilateral to the injury. Continuous infusion of a p38 MAPK inhibitor into the cisterna magna for 14 days beginning on the day of SNL suppressed the development of tactile allodynia, but not thermal hyperalgesia induced by nerve injury. These results demonstrate that SNL activates p38 MAPK pathway in microglia in the gracile nucleus as well as in the spinal cord dorsal horn. Activation of p38 MAPK in medullary microglia may contribute to the pathogenesis of neuropathic pain.  相似文献   

5.
Kim J  Back SK  Yoon YW  Hong SK  Na HS 《Neuroscience letters》2005,379(3):218-222
The dorsal column-medial lemniscal (DC-ML) system is known to be a route of ascending input signals for mechanical allodynia following peripheral nerve injury. We examined whether the pain signals after spinal hemisection were transmitted via the DC-ML system in the induction and maintenance phases of the neuropathic pain. Under enflurane anesthesia, rats were subjected to spinal hemisection at T13 level and bilateral DC lesion was made at T8 level 1 day or 3 weeks after the hemisection. The DC lesion 1 day after the hemisection significantly reduced the mechanical, but not cold, allodynia, whereas the DC lesion 3 weeks after the hemisection did not change both mechanical and cold allodynia. These results suggest that the signals for mechanical allodynia following spinal hemisection should be transmitted via the DC-ML system in the induction, but not maintenance, phase.  相似文献   

6.
Background: Neuropathic pain is characterized by hyperalgesia, allodynia and spontaneous pain. It often occurs as a result of injury to peripheral nerves, dorsal root ganglions (DRG), spinal cord, or brain. Recent studies have suggested that Toll-like receptor 4 (TLR4) might play a role in neuropathic pain. Methodology/Principal Findings: In this study, we investigated the role of TLR4 in a rat chronic constriction injury (CCI) model and explored the feasibility of treating neuropathic pain by inhibiting TLR4. Our results demonstrated that intrathecal siRNA-mediated suppression of TLR4 attenuated CCI-induced mechanical allodynia and thermal hyperalgesia through inhibiting the activation of NF-κB p65 and production of proinflammatory cytokines (e.g., TNF-α and IL-1β). Conclusions/Significance: These findings suggest that suppression of TLR4 mediated by intrathecally administered siRNA may be a new strategy for the treatment of neuropathic pain.  相似文献   

7.
Sweitzer S  Martin D  DeLeo JA 《Neuroscience》2001,103(2):529-539
The expression of interleukin-1beta and tumor necrosis factor has previously been shown to be up-regulated in the spinal cord of several rat mononeuropathy models. This present study was undertaken to determine whether blocking the action of central interleukin-1beta and tumor necrosis factor attenuates mechanical allodynia in a gender-specific manner in a rodent L5 spinal nerve transection model of neuropathic pain, and whether this inhibition occurs via down-regulation of the central cytokine cascade or blockade of glial activation. Interleukin-1 receptor antagonist or soluble tumor necrosis factor receptor was administered intrathecally via lumbar puncture to male Holtzman rats in a preventative pain strategy, in which therapy was initiated 1h prior to surgery. Administration of soluble tumor necrosis factor receptor attenuated mechanical allodynia, while interleukin-1 receptor antagonist alone was unable to decrease allodynia. Interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor, administered to both male and female rats in a preventative pain strategy, significantly reduced mechanical allodynia in a dose-dependent manner (P<0.01). The magnitude of attenuation in allodynia was similar in both males and females. Immunohistochemistry on L5 spinal cord revealed similar astrocytic and microglial activation regardless of treatment. At days 3 and 7 post-transection, animals receiving daily interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibited significantly less interleukin-6, but not interleukin-1beta, in the L5 spinal cord compared to vehicle-treated animals. In an existing pain paradigm, in which treatment was initiated on day 7 post-transection, interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor attenuated mechanical allodynia (P<0.05) in male rats. These findings further support a role for central interleukin-1beta and tumor necrosis factor in the development and maintenance of neuropathic pain through induction of a proinflammatory cytokine cascade.  相似文献   

8.
Hemisection of the rat spinal cord at thoracic level 13 provides a model of spinal cord injury that is characterized by chronic pain attributable to hyperexcitability of dorsal horn neurons. Presuming that this hyperexcitability can be explained in part by interruption of descending inhibitory modulation by serotonin, we hypothesized that intrathecal transplantation of RN46A-B14 serotonergic precursor cells, which secrete serotonin and brain-derived neurotrophic factor, would reduce this hyperexcitability by normalizing the responses of low-threshold mechanoreceptive, nociceptive-specific, and multireceptive dorsal horn neurons. Three groups (n=45 total) of 30-day-old male Sprague-Dawley rats underwent thoracic level 13 spinal hemisection, after which four weeks were allowed for development of allodynia and hyperalgesia. The three groups of animals received transplants of no cells, 10(6) RN46A-V1 (vector-only) or 10(6) RN46A-B14 cells at lumbar segments 2-3. Electrophysiological experiments were done two weeks later. Low-threshold mechanoreceptive, nociceptive-specific, and multireceptive cells (n=394 total) were isolated at depths of 1-300 and 301-1000 micro in the lumbar enlargement. Responses to innocuous and noxious peripheral stimuli were characterized, and analyses of population responses were performed. Compared with normal animals, dorsal horn neurons of all types in hemisected animals showed increased responsiveness to peripheral stimuli. This was true for neurons on both sides of the spinal cord. After hemisection, the proportion of neurons classified as multireceptive cells increased, and interspike intervals of spontaneous discharges became less uniform after hemisection. Transplantation of RN46A-B14 cells restored evoked responses to near-control levels, normalized background activity, and returned the proportion of multireceptive cells to the control level. Restoration of normal activity was reversed with methysergide.These electrophysiological results corroborate anatomical and behavioral studies showing the effectiveness of serotonergic neural precursors in correcting phenomena associated with chronic central pain following spinal cord injury, and provide mechanistic insights regarding mode of action.  相似文献   

9.
We investigated the involvement of spinal macrophage inflammatory protein-1α (MIP-1α), an inflammatory chemokine, in partial sciatic nerve ligation (PSL)-induced neuropathic pain in mice. PSL increased MIP-1α mRNA levels as well as levels of the MIP-1α receptor, CCR1, but not CCR5 in the spinal dorsal horn. PSL-induced tactile allodynia and thermal hyperalgesia were prevented by intrathecal (i.t.) injection of a neutralizing antibody of MIP-1α (2 ng). Recombinant MIP-1α (10 pmol, i.t.) elicited long-lasting tactile allodynia and thermal hyperalgesia in naïve mice. These results suggest that peripheral nerve injury elicits the up-regulation of spinal MIP-1α and CCR1 to participate in neuropathic pain.  相似文献   

10.
Diabetes‐induced neuropathic pain (DNP) substantially influences people's life qualities. Hyperglycemia‐induced excess free radicals have been considered as the most critical mechanisms underlying DNP. As an unsaturated aldehyde and a reactive product of lipid peroxidation, acrolein plays critical roles in diabetic nephropathy and inflammatory pain. We sought to determine whether acrolein is involved in DNP in this study. Diabetes was induced by a single intraperitoneal (i.p.) injection of 60 mg/kg streptozotocin (STZ). An acrolein scavenger hydralazine (5 mg/kg) was administered through a daily injection for 4 weeks, starting immediately within 30 min after STZ injection. Western blot showed that hydralazine could effectively inhibit STZ‐induced upregulation of acrolein in the spinal dorsal horn on day 7–28 after STZ injection. Behavioral tests showed that STZ injection induced significant mechanical allodynia and thermal hyperalgesia, which could be alleviated by hydralazine. Immunofluorescent histochemistry and Western blot showed that STZ induced significant microglial activation. ELISA data indicated upregulation of inflammatory cytokines IL‐1β and TNF‐α expression in the spinal dorsal horn. Furthermore, hydralazine effectively attenuated microglial activation and expression of inflammatory mediators. Our data indicate that acrolein might be involved in the development of neuroinflammation and behavioral consequences of DNP. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1858–1864, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
O'Rielly DD  Loomis CW 《Neuroscience》2008,155(3):902-913
This study investigated the effect of 5th and 6th lumbar nerve (L5/L6) spinal nerve ligation (SNL) on activated nuclear factor kappaB (NFkBa) in nuclear extracts from the lumbar dorsal horn of the rat, and its relationship to prostaglandin (PG)-dependent spinal hyperexcitability and allodynia 3 days later. Male Sprague-Dawley rats, fitted with intrathecal (i.t.) catheters, underwent SNL- or sham-surgery. Paw withdrawal threshold (PWT), electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used. Both allodynia (PWT 相似文献   

12.
In addition to its involvement in the transmission of neuropathic pain, the dorsal column system has been shown to have analgesic effects when electrically stimulated. The segmental or supraspinal origin of the analgesia, however, has not been clearly delineated. The aim of this study is to demonstrate the contribution of supraspinal mechanisms to the inhibition of allodynia and hyperalgesia in two different rat models of mononeuropathy.Mononeuropathy was induced, under deep anesthesia, in several groups of rats (n=7 each) following either the chronic constriction injury or the spared nerve injury model. Mechanical and cold allodynia were assessed by the Von Frey monofilaments and by the acetone drop test, respectively. Thermal hyperalgesia was assessed by the paw withdrawal and hot plate tests. Bipolar electrodes for dorsal column stimulation were implanted chronically in all rats on the dorsal aspect of the medulla at the level of the obex. Selective dorsal column bilateral lesions were performed at the upper cervical level in some groups of rats. Dorsal column nuclear stimulation, rostral to selective dorsal spinal lesions, produced strong inhibitory effects on the allodynia and hyperalgesia observed in both models of mononeuropathy. These effects were comparable to those observed following similar stimulations in rats with an intact spinal cord.Our results demonstrate strong inhibitory effects of dorsal column stimulation on neuropathic pain. This inhibition can be attributed to the activation of brainstem pain-modulating centers via rostral projections of the dorsal column nuclei.  相似文献   

13.
Gabapentin decreases the level of glutamate and elevates that of alpha-amino-butyric acid in the central nervous system. Gabapentin was shown to have antinociceptive effects in several facilitated pain models. Intrathecal gabapentin was also known to be effective in reducing mechanical allodynia in animals with neuropathic pain. In this study, we investigated to see whether intrathecal gabapentin produces antihyperalgesic effects on thermal and mechanical hyperalgesia in neuropathic rats and whether its effects are associated with motor impairment. To induce neuropathic pain in Sprague-Dawley rats, left L5 and L6 spinal nerves were ligated. After a week, lumbar catheterization into subarachnoid space was performed. Then, paw withdrawal times to thermal stimuli and vocalization thresholds to paw pressure were determined before and up to 2 hr after intrathecal injection of gabapentin. Also, motor functions including performance times on rota-rod were determined. Intrathecal gabapentin attenuated significantly thermal and mechanical hyperalgesia in neuropathic rats, but did not block thermal and mechanical nociception in sham-operated rats. Intrathecal gabapentin of antihyperalgesic doses inhibited motor coordination performance without evident ambulatory dysfunction. This study demonstrates that intrathecal gabapentin is effective against thermal and mechanical hyperalgesia, in spite of moderate impairment of motor coordination.  相似文献   

14.
Activation of glutamate receptors and glial cells in the spinal dorsal horn are two fundamental processes involved in the pathogenesis of various pain conditions, including neuropathic pain induced by injury to the peripheral or central nervous systems. Numerous studies have demonstrated that minocycline treatment attenuates allodynic and hyperalgesic behaviors induced by tissue inflammation or nerve injury. However, the synaptic mechanisms by which minocycline prevents hyperalgesia are not fully understood. We recently reported that deficient glutamate uptake by glial glutamate transporters (GTs) is key for the enhanced activation of N-methyl-d-aspartate (NMDA) receptors in the spinal sensory synapses of rats receiving partial sciatic nerve ligation (pSNL). In this study, we investigated how minocycline affects activation of NMDA receptors in the spinal sensory synapses in rats with pSNL by whole cell recordings of NMDA currents in spinal laminea I and II neurons from spinal slices. The effects of minocycline treatments on the dorsal horn expression of glial GTs and astrocyte marker glial fibrillary acidic protein (GFAP) were analyzed by immunohistochemistry. We demonstrated that normalized activation of NMDA receptors in synapses activated by both weak and strong peripheral input in the spinal dorsal horn is temporally associated with attenuated mechanical allodynia in rats with pSNL receiving intraperitoneal injection of minocycline. Minocycline ameliorated both the downregulation of glial GT expression and the activation of astrocytes induced by pSNL in the spinal dorsal horn. We further revealed that preventing deficient glial glutamate uptake at the synapse is crucial for preserving the normalized activation of NMDA receptors in the spinal sensory synapses in pSNL rats treated with minocycline. Our studies suggest that glial GTs may be a potential target for the development of analgesics.  相似文献   

15.
In the present study, we have examined whether spinal hemisection injury induces changes in the electrophysiological properties of thalamic ventral posteriorlateral (VPL) neurons in rats. Male Sprague–Dawley rats were subjected to unilateral spinal cord injury by transverse hemisection at the T13 spinal segment. Four weeks after the T13 spinal hemisection, the injured rats displayed robust allodynic behaviors on both sides of hindpaws compared to sham controls (P < 0.05). Extracellular recordings taken 4 weeks after the hemisection revealed that wide dynamic range (WDR) neurons had significantly increased spontaneous and brush-, pressure-, and pinch-evoked activities, respectively, on both sides of the thalamic VPL regions (P < 0.05). In contrast, low threshold (LT) neurons showed only an increase in the brush-evoked activity compared to sham controls (P < 0.05). However, afterdischarge activity in both types of neurons showed no changes. In addition, both sides of the thalamic VPL regions showed higher incidences of WDR neurons. In conclusion, our data demonstrate that spinal unilateral injury induces bilaterally increased evoked activity in thalamic VPL neurons.  相似文献   

16.
Liu W  Liu Z  Liu L  Xiao Z  Cao X  Cao Z  Xue L  Miao L  He X  Li W 《Neuroscience letters》2008,432(1):13-18
Neuropathic pain is a long-lasting clinical problem that is often refractory to medical management. Gene transfer of specific genes for therapeutic benefit offers a novel approach to the treatment of neuropathic pain. In this study, we tested whether the transfer of the glutamic acid decarboxylase (GAD) gene to dorsal root ganglion (DRG) cells would attenuate below-injury level central neuropathic pain after spinal cord injury (SCI) by using a novel human foamy virus (HFV) vector to achieve release of gamma-aminobutyric acid (GABA). Subcutaneous inoculation of a replication-defective HFV vector, which expresses GAD (vector rdvGAD67) for 7days after T13 spinal cord hemisection, reversed mechanical allodynia and thermal hyperalgesia evoked by SCI. The antiallodynic effect lasted 6 weeks and was reestablished by reinoculation. We also found that subcutaneous inoculation of rdvGAD67 resulted in enhanced production of GAD and tonical GABA release from transduced DRG neurons. These results suggest that HFV-mediated gene transfer to DRG could be employed to treat below-injury level central neuropathic pain after incomplete SCI.  相似文献   

17.
A number of rat neuropathy models have been developed to simulate human neuropathic pain conditions, such as spontaneous pain, hyperalgesia, and allodynia. In the present study, to determine the relative importance of injury site (proximal or distal to the primary afferent neurons) and injury type (motor or sensory), we examined pain-related behaviors and changes of brain-derived neurotrophic factor expression in the dorsal root ganglion in sham-operated rats, and in the L5 dorsal rhizotomy, L5 ventral rhizotomy, L5 dorsal rhizotomy+ventral rhizotomy, and L5 spinal nerve transection models. L5 ventral rhizotomy and spinal nerve transection produced not only mechanical and heat hypersensitivity, but also an increase in brain-derived neurotrophic factor mRNA/protein in the L5 dorsal root ganglion at 7 days after surgery. In contrast, rats in the L5 dorsal rhizotomy and dorsal rhizotomy+ventral rhizotomy groups did not show both pain behaviors at 7 days after surgery, despite brain-derived neurotrophic factor upregulation in medium- and large-size neurons in the L5 dorsal root ganglion. On the other hand, L5 spinal nerve transection, but not dorsal rhizotomy, dorsal rhizotomy+ventral rhizotomy or ventral rhizotomy, increased the expression of brain-derived neurotrophic factor in the L4 dorsal root ganglion at 7 days after surgery. Taken together, these findings suggest that the upregulation of brain-derived neurotrophic factor expression in the L4 and L5 dorsal root ganglion neurons may be, at least in part, involved in the pathophysiological mechanisms of neuropathic pain and that the selective nerve root injury models may be useful for studying the underlying mechanisms of chronic pain after nerve injury.  相似文献   

18.
Progressive changes in the muscle tone and stretch reflex after spinal cord injury (SCI) provide insight into the time-course development of spasticity. This study quantified the time-course changes of hypertonia for rats following SCI of T8 hemisection. A miniature manual stretching device measured the reactive torque via a pair of pressure sensing balloons; the angular displacement was measured via an optoelectronic device. Various stretching frequencies were tested, specifically 1/3, 1/2, 1, 3/2 and 2 Hz. The reactive torque and angular displacement were used to derive the viscous and elastic components representing the viscosity and stiffness of the rat's ankle joint. The enhanced velocity-dependent properties of spasticity were observed in the SCI hemisection rats (n=9) but not in the controls (n=9). Time-course measurements from pre-surgery to 56 days following SCI showed that the muscle tone of the hemisection rats dropped immediately after spinal shock and then gradually increased to reach a peak around 21 days postinjury (P<0.01). The muscle tone remained at least 75% of the peak value up to the end of an 8 week observation period (P<0.05). The changes of muscle tone can also be verified from the electrophysiological evaluations of electromyography (EMG) (P<0.05). In addition to conventional BBB motor behavior score, our results provided time-course quantification of the biomechanical and electrophysiological properties of muscle tone from the onset of SCI. Such data are useful for investigating progressive recovery of spinal damage in animal model and for future objective assessment of improved treatment for SCI human subjects.  相似文献   

19.
Pathological pain associated either with peripheral tissue damage and inflammation (inflammatory pain) or peripheral nerve injury (neuropathic pain) is characterized by persistent pain hypersensitivity. This hypersensitivity is believed to be mediated by sensitization of nociceptors and spinal dorsal horn neurons leading to hyperalgesia and allodynia. Changes of protein expression and/or phosphorylation are known to contribute to the development of this hyperexcitability of the nociceptive system. In the present study we analyzed protein patterns in the spinal cord following paw inflammation or sciatic nerve injury using two-dimensional (2D) gel electrophoresis combined with MALDI-TOF mass spectrometry. 2D-PAGE revealed nine and five regulated proteins following paw inflammation and sciatic nerve damage, respectively. These regulated proteins had not been identified previously with other methods. There was no overlap of regulated proteins between models except for the small heat shock protein alpha-crystallin, which was decreased in both models. In conclusion, this study illustrates that employment of the proteomic 2D-PAGE approach allows for identification of novel regulated proteins that may be involved in the central sensitization and possibly manifestation of chronic pain.  相似文献   

20.
Despite tremendous research effort in the field, our current understanding of the molecular mechanisms underlying neuropathic pain is still incomplete. In the present study, our objective was to elucidate the involvement of the Wnt/β-catenin signaling pathway in the development of neuropathic pain. We showed that Wnt/β-catenin signaling is activated in the spinal cord dorsal horn after partial sciatic nerve ligation (PSL). Expression of Wnt3a, a prototypic Wnt ligand that activates the Wnt/β-catenin pathway, was also upregulated in the dorsal horn. We then tested the effect of intrathecal administration of XAV939, a Wnt/β-catenin signaling inhibitor, and found that this treatment effectively attenuated the induction of neuropathic pain. Conversely, intrathecal administration of Wnt3a to the lumbar spinal cord of naïve animals triggered the development of allodynia. These results suggest a critical involvement of the Wnt/β-catenin pathway in the development of neuropathic pain. Moreover, we also found that PSL-induced microglial activation was significantly suppressed by intrathecal administration of XAV939 treatment. Because it was revealed that Wnt3a treatment triggered brain-derived neurotrophic factor (BDNF) release from microglial cells in vitro, it is possible that Wnt3a upregulation in the dorsal horn leads to the activation of microglial cells, then triggers BDNF secretion that is responsible for the establishment of neuropathic pain. Further studies will be needed for the comprehensive understanding of the roles of Wnt/β-catenin signaling in the development of neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号