首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate “a” nucleus, with other labelled somata found in the lateral geniculate “b” nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.  相似文献   

2.
We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate “a” nucleus, with other labelled somata found in the lateral geniculate “b” nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.  相似文献   

3.
Westhoff G  Roth G  Straka H 《Neuroscience》2004,124(3):669-683
In the isolated brain of the fire-bellied toad, Bombina orientalis, the spatial distribution of vestibular and somatosensory responses in thalamic nuclei was studied following electrical activation of the Vth nerve, the ramus anterior of the VIIIth nerve and of the dorsal roots of spinal nerves 3 and 8. Responses were systematically mapped in frontal planes through the diencephalon at four rostro-caudal levels. The calculated activity maps were superimposed on the outlines of diencephalic nuclei, and those nuclei that received particularly large inputs from the stimulated sensory nerve roots were indicated. Maximal response amplitudes coincided with ventral, central, and posterior thalamic areas and exhibited a topography that differed for each sensory nerve root. Maximal responses evoked from the Vth nerve were largely separated from those from spinal dorsal roots 3 and 8, whereas maximal vestibular responses partly overlapped with those from the other somatosensory nerve roots. Our findings indicate that within the amphibian thalamus sensory signals originating from different nerve roots are largely represented in separate areas as is the case in the thalamus of amniotes. However, the anterior dorsal thalamus which is the only origin of ascending pathways to the medial and dorsal pallium (assumed homologues of the mammalian hippocampus and neocortex, respectively) receives only minor vestibular and somatosensory input. This corroborates the view that amphibians lack a direct sensory thalamo-cortical, or "lemnothalamic," pathway typical of mammals and birds.  相似文献   

4.
In order to understand better the organisation of the ventral lateral geniculate nucleus of the ventral thalamus, this paper has examined the patterns of connections that this nucleus has with various nuclei of the dorsal thalamus in rats. Injections of biotinylated dextran or cholera toxin subunit B were made into the parafascicular, central lateral, posterior thalamic, medial dorsal, lateral dorsal, lateral posterior, dorsal lateral geniculate, anterior, ventral lateral, ventrobasal and medial geniculate nuclei of Sprague-Dawley rats and their brains were processed using standard tracer detection methods. Three general patterns of ventral lateral geniculate connectivity were seen. First, the parafascicular, central lateral, medial dorsal, posterior thalamic and lateral dorsal nuclei had heavy connections with the parvocellular (internal) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown previously to receive heavy inputs from many functionally diverse brainstem nuclei. Second, the visually related dorsal lateral geniculate and lateral posterior nuclei had heavy connections with the magnocellular (external) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown by previous studies to receive heavy inputs from the visual cortex and the retina. Finally, the anterior, ventral lateral, ventrobasal and medial geniculate nuclei had very sparse, if any, connections with the ventral lateral geniculate nucleus. Overall, our results strengthen the notion that one can package the ventral lateral geniculate nucleus into distinct visual (magnocellular) and non-visual (parvocellular) components.  相似文献   

5.
1. Responses evoked by stimulation of the cerebellar and thalamic nuclei were recorded by microelectrodes introduced at various depths in the cerebral cortex of monkeys (Macaca mulatta) under light Nembutal anaesthesia. 2. Stimulation of the medial (fastigial) cerebellar nucleus produced, at a latency of 4-5 msec, deep thalamo-cortical (T-C) responses (surface positive-deep negative potentials) mainly in the medial part of the precentral gyrus (area 4, "motor area for hindlimb") and in the superior parietal gyrus (area 5) on both contralateral and ipsilateral sides to the nucleus stimulated. 3. Stimulation of the lateral (dentate) cerebellar nucleus elicited, at a latency of about 3 msec, superficial T-C responses (surface negative-deep positive potentials) predominately in the lateral part of the precentral gyrus (area 4, "motor area for forelimb and face") and in the rostromedial part of the gyrus (area 6, premotor area) on the contralateral side. 4. Stimulation of the interpositus cerebellar nucleus set up superficial T-C responses chiefly in the motor area between those influenced by the medial and the lateral cerebellar nucleus stimulation and also in the premotor area on the contralateral side. 5. The respective areas responsive to the medial, interpositus and lateral nucleus stimulation overlapped considerably each other in the motor cortex. 6. Comparison of the responses in the cortex induced by stimulation of the cerebellar and thalamic nuclei indicated different relay portions in and around the VA-VL region of the thalamus for the superficial and the deep T-C responses respectively. 7. Functional implications of the results were discussed in referring to the cerebellocerebral projections in cats.  相似文献   

6.
This study examined the effects of whisker trimming on the functional organization of the adult somatosensory thalamus. In vivo extracellular unit recordings were made on ventral posterior medial (VPM) thalamic neurons in urethane anaesthetised adult rats. Neuronal response properties to controlled whisker deflection were recorded in untrimmed control animals and in animals where one row of whiskers had been trimmed for a median of 18 days. Trimming significantly increased short-latency responses to stimulation of the centre receptive field whisker (mean increase of 36%, p<.001). Longer latency responses to surround receptive field whiskers were unaffected. Spontaneous firing was significantly decreased in trimmed animals. A condition-test paradigm indicated that thalamic inhibition was reduced following whisker trimming, although this effect failed to reach statistical significance. These results demonstrate a capacity of the adult somatosensory thalamus to undergo functional reorganization in response to non-traumatic and innocuous whisker trimming.  相似文献   

7.
Microelectrode-guided stereotactic operations performed in 29 parkinsonian patients allowed the recording of 86 cells located in the globus pallidus and 563 in thalamic nuclei. In the globus pallidus, the average firing rate was significantly higher in the internal (91+/-52 Hz) than in the external (60+/-21 Hz) subdivision. This difference was further accentuated when the average firing rate in the external subdivision was compared with that of the internal part of the internal subdivision (114+/-30 Hz). A rhythmic modulation in globus pallidus activities was observed in 19.7% of the cells, and this only during rest tremor episodes. In these cases, modulation frequency of unit activities was not statistically different from the rest tremor frequency (average: 4.6+/-0.5 vs 4. 4+/-0.4 Hz, respectively). In the medial thalamus, four types of unit activities could be defined. A sporadic type was mainly found in the parvocellular division of the mediodorsal nucleus (96.8% of the cells recorded) and in the centre median-parafascicular complex (74.2%). Two other types of activities characterized by random or rhythmic bursts fulfilling the extracellular criteria of low-threshold calcium spike bursts were concentrated in the central lateral nucleus (62.3%) and the paralamellar division of the mediodorsal nucleus (34.1%). These activities could be recorded independently of the presence of a rest tremor. When a tremor episode occurred, the rhythmic low-threshold calcium spike bursts had an interburst frequency similar to rest tremor frequency, although they were not synchronized with it. The fourth type, the so-called tremor locked, was also characterized by rhythmic bursts which, however, did not display low-threshold calcium spike burst properties. These bursts occurred only when a rest tremor was present and was in-phase with the electromyographic bursts. All tremor-locked cells were located in the centre median-parafascicular complex. In the lateral thalamus, cells exhibiting random or rhythmic low-threshold calcium spike bursts were found preponderantly in the ventral anterior nucleus (53.4%) and in the ventral lateral anterior nucleus (52.7%). Tremor-locked units were confined to the ventral division of the ventral lateral posterior nucleus (35.4%). None of the random or rhythmic low-threshold calcium spike bursting units responded to somatosensory stimuli or voluntary movements, either in the medial or in the lateral thalamus. The presence of low-threshold calcium spike bursts at the thalamic level, together with the paucity (8%) of responses to voluntary movements compared to what is found in normal non-human primates, demonstrate a pathological state of inhibition due to the overactivity of the internal subdivision of the globus pallidus units. Activities of the thalamic cells producing low-threshold calcium spike bursts are not synchronized with each other or with the tremor. However, this does not exclude a causal role of these activities in the generation of tremor. Indeed, it has been demonstrated that even random electrical stimulations of the rolandic cortex in parkinsonian patients induce tremor episodes, probably due to the triggering of rhythmic, low-threshold calcium spike-dependent, thalamocortical activities. Similarly, low-threshold calcium spike bursts could be at the origin of rigidity and dystonia through an activation of the supplementary motor area and of akinesia when reaching the pre-supplementary motor area.We conclude that the intrinsic oscillatory properties of individual neurons, combined with the dynamic properties of the thalamocortical circuitry, are responsible for the three cardinal parkinsonian symptoms.  相似文献   

8.
Van Horn SC  Sherman SM 《Neuroscience》2007,146(1):463-470
We used electron microscopy to determine the relative numbers of the three synaptic terminal types, RL (round vesicle, large terminal), RS (round vesicles, small terminal), and F (flattened vesicles), found in several representative thalamic nuclei in cats chosen as representative examples of first and higher order thalamic nuclei, where the first order nuclei relay subcortical information mainly to primary sensory cortex, and the higher order nuclei largely relay information from one cortical area to another. The nuclei sampled were the first order ventral posterior nucleus (somatosensory) and the ventral portion of the medial geniculate nucleus (auditory), and the higher order posterior nucleus (somatosensory) and the medial portion of the medial geniculate nucleus (auditory). We found that the relative percentage of synapses from RL terminals varied significantly among these nuclei, these values being higher for first order nuclei (12.6% for the ventral posterior nucleus and 8.2% for the ventral portion of the medial geniculate nucleus) than for the higher order nuclei (5.4% for the posterior nucleus, and 3.5% for the medial portion of the medial geniculate nucleus). This is consistent with a similar analysis of first and higher order nuclei for the visual system (the lateral geniculate nucleus and pulvinar, respectively). Since synapses from RL terminals represent the main information to be relayed, whereas synapses from F and RS terminals are modulatory in function, we conclude that there is relatively more modulation of the thalamic relay in the cortico-thalamo-cortical higher order pathway than in first order relays.  相似文献   

9.
Summary Recently it has been demonstrated that the monoclonal antibody Cat-301 is capable of identifying functionally related neurons in the mammalian visual thalamus. We have examined the possibility that this antibody might display a similar capacity in nonvisual thalamic areas. We demonstrate that in the cat's somatosensory thalamus the distribution of Cat-301-positive cells and neuropil is restricted to a subset of nuclei. These include the ventroposterior medial, ventroposterior lateral, and ventroposterior inferior nuclei. Staining with Cat-301 provides a clear visualisation of the entire somatotopic map within these nuclei. The somatosensory sector of the thalamic reticular nucleus and the perireticular nucleus, which may have a somatosensory sector, are also Cat-301-positive. In contrast, cells that do not express the Cat-301 antigen are located in the ventroposterior oralis nucleus, the ventroposterior shell region, the medial and lateral divisions of the posterior nuclear group, and the inner small cell region adjacent to the thalamic reticular nucleus. In comparison with previous physiological studies, cells that express the Cat-301 antigen most likely represent subpopulations in only a few of the somatic submodality-specific groups. These include cells in the small-field and Pacinian cutaneous-responsive groups, excluding cells in the wide-field cutaneous-, muscle-, joint-, and noxious-responsive groups. Taken together these findings indicate that monoclonal antibody Cat-301 is capable of selectively identifying neurons with distinct functional properties in the mammalian somatosensory thalamus.  相似文献   

10.
Fang PC  Stepniewska I  Kaas JH 《Neuroscience》2006,143(4):987-1020
Connections of motor areas in the frontal cortex of prosimian galagos (Otolemur garnetti) were determined by injecting tracers into sites identified by microstimulation in the primary motor area (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), frontal eye field (FEF), and granular frontal cortex. Retrogradely labeled neurons for each injection were related to architectonically defined thalamic nuclei. Nissl, acetylcholinesterase, cytochrome oxidase, myelin, parvalbumin, calbindin, and Cat 301 preparations allowed the ventral anterior and ventral lateral thalamic regions, parvocellular and magnocellular subdivisions of ventral anterior nucleus, and anterior and posterior subdivisions of ventral lateral nucleus of monkeys to be identified. The results indicate that each cortical area receives inputs from several thalamic nuclei, but the proportions differ. M1 receives major inputs from the posterior subdivision of ventral lateral nucleus while premotor areas receive major inputs from anterior parts of ventral lateral nucleus (the anterior subdivision of ventral lateral nucleus and the anterior portion of posterior subdivision of ventral lateral nucleus). PMD and SMA have connections with more dorsal parts of the ventral lateral nucleus than PMV. The results suggest that galagos share many subdivisions of the motor thalamus and thalamocortical connection patterns with simian primates, while having less clearly differentiated subdivisions of the motor thalamus.  相似文献   

11.
In the last years progress has been made regarding the involvement of the thalamus during the course of the currently known polyglutamine diseases. Although recent studies have shown that the thalamus consistently undergoes neurodegeneration in Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2) it is still unclear whether it is also a consistent target of the pathological process of spinocerebellar ataxia type 3 (SCA3). Accordingly we studied the thalamic pathoanatomy and distribution pattern of ataxin-3 immunopositive neuronal intranuclear inclusions (NI) in nine clinically diagnosed and genetically confirmed SCA3 patients and carried out a detailed statistical analysis of our findings. During our pathoanatomical study we disclosed (i) a consistent degeneration of the ventral anterior, ventral lateral and reticular thalamic nuclei; (ii) a degeneration of the ventral posterior lateral nucleus and inferior and lateral subnuclei of the pulvinar in the majority of these SCA3 patients; and (iii) a degeneration of the ventral posterior medial and lateral posterior thalamic nuclei, the lateral geniculate body and some of the limbic thalamic nuclei in some of them. Upon immunocytochemical analysis we detected NI in all of the thalamic nuclei of all of our SCA3 patients. According to our statistical analysis (i) thalamic neurodegeneration and the occurrence of ataxin-3 immunopositive thalamic NI was not associated with the individual length of the CAG-repeats in the mutated SCA3 allele, the patients age at disease onset and the duration of SCA3 and (ii) thalamic neurodegeneration was not correlated with the occurrence of ataxin-3 immunopositive thalamic NI. This lack of correlation may suggest that ataxin-3 immunopositive NI are not immediately decisive for the fate of affected nerve cells but rather represent unspecific and pathognomonic morphological markers of SCA3.  相似文献   

12.
Efferent connections to midbrain and thalamus from portions of the cerebellar fastigial nucleus were investigated using autoradiographic techniques. Bipolar stimulating electrodes were placed in the fastigial nucleus of anesthetized beagles and the area which produced maximal increases in blood pressure and heart rate was localized in each dog. A mixture of [3H]leucine and [3H]proline (4:1) was injected into that area and autoradiograms were prepared. Injections filled the rostral and various parts of the caudal fastigial nucleus. The rostral-caudal extent of injection sites were mapped in the horizontal plane from sequential coronal, thionin-stained sections and "primary" and "secondary" injection zones were defined according to specific criteria. Labeled axons reached the mesencephalon via the contralateral uncinate fasiculus. Ascending fibers assembled in a diffuse contingent at the prerubral level adjacent to the ventrolateral periaqueductal gray. The heaviest projections were contralateral to the injection site, but ipsilateral terminals were observed as well. In the midbrain, axons entered the contralateral and ipsilateral superior colliculus to branch repeatedly and terminate in the deep and intermediate layers. Additional terminals were observed bilaterally in the nuclei of the posterior commissure and pretectal areas at the midbrain-diencephalic junction. In the thalamus, labeled axons formed into three groups which terminated in: the contralateral paraventricular complex and medial dorsal nucleus; the contralateral central medial, paracentral, parafasicular and central lateral nuclei, and the contralateral ventral medial and ventral lateral nuclei. There was a sparse projection to the ipsilateral ventral lateral nucleus. The contralateral projection to the ventral medial and ventral lateral nuclei was marked by dense clusters of label ventral to the internal medullary lamina extending, in the dorsal ventral lateral nucleus, to its rostral pole. Projections to specific somesthetic thalamus or the hypothalamus were not observed. These ascending projections in the canine brain generally conform to those described in other nonprimate mammals. The fastigial nucleus presumably provides information concerning equilibrium and body proprioception to the superior colliculus and to thalamic nuclei including both specific motor relay and "nonspecific" midline and intralaminar nuclei, much the same as reported in the cat. The projection to the ventral medial and ventral lateral thalamic nuclei terminate in areas known to participate in the control of axial and proximal limb muscle activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In the present study, we compared the distribution of thalamocortical afferents of cortical area 4 to that of cortical area 6 in the dog, using fluorescent tracers. Multiple injections of combinations of two dyes (diamidino yellow dihydrochloride, Evans blue, fast blue, granular blue) were made into either the anterior and posterior sigmoid gyri or into the medial and lateral regions of the anterior sigmoid gyrus in the anesthetized dog. We found that the thalamic afferents of areas 4 and 6 arise from topographically organized bands of cells that traverse several thalamic nuclei and extend throughout the rostrocaudal extent of the thalamus. The most medial band included area 6-projecting neurons in the anterior nuclei, the rhomboid nucleus, the ventral anterior nucleus (VA), ventromedial nucleus (VM) and mediodorsal nucleus (MD). Within this band, cells projecting to medial area 6a tended to be more numerous in the anterior nuclei, anterior parts of VA and VM and anterior and caudal parts of MD. Fewer cells in MD but more cells in caudal parts of VA and VM projected to lateral area 6 a. Lateral bands of cells in central through lateral parts of VA and VL projected topographically to lateral area 4 on the anterior sigmoid gyrus and lateral through medial parts of postcruciate area 4. The most lateral band of cells in VL continued ventrally into the zona incerta. Area 4 also received input from VM and the central lateral (CL) and centrum medianum (CM) nuclei. Within regions of VA, VL and VM, cells from one band interspersed with cells from another, but there were very few double-labeled cells projecting to two cortical sites. When the present results are compared with our previous findings on the distribution of subcortical afferents to the motor thalamus, it appears that separate motor cortical areas may receive predominantly separate but also partially over-lapping pathways in the dog.Abbreviations AV Anterior ventral nucleus - AM anterior medial nucleus - Cb cerebellar nuclei - CeM central medial nucleus - CL central lateral nucleus - CM centrum medianum nucleus - EN entopeduncular nucleus - Hb habenula - LD lateral dorsal nucleus - MD mediodorsal nucleus - mt mammillothalamic tract - MV medioventral nucleus - Pf parafascicular nucleus - R reticular thalamic nucleus - rf retroflex fasciculus - Rh rhomboid nucleus - SN substantia nigra - VA ventral anterior nucleus - VL ventral lateral nucleus, principal division - VLd ventral lateral nucleus, dorsal division - VM ventral medial nucleus - VPL ventral posterior lateral nucleus - ZI zona incerta  相似文献   

14.
In rats, horseradish peroxidase crystals were injected in motor cortical foci functionally identified by means of the motor effects evoked by electrical stimulations. The location in the thalamus of the neurons linked to different motor cortical foci was studied. Thalamic neurons were retrogradely labeled in both "motor" (ventralis lateralis and ventralis medialis) and "non-motor" nuclei: centralis lateralis, lateralis posterior, mediodorsalis and posterior thalamic nuclear group, as well as the ventrobasal complex. The ventrobasal complex was labeled after horseradish peroxidase injections in hindlimb and trunk motor areas. The ascending projections toward the motor cortex from both "motor" and "non-motor" thalamic nuclei are organized more precisely and more elaborately than previously reported. The motor cortical afferents from the nucleus ventralis lateralis are organized in three planes, rostrocaudally, dorsoventrally and mediolaterally. An inverted relation exists in the rostrocaudal plane between the nucleus ventralis lateralis and the motor cortex: the caudal motor cortex region (hindlimb) receives fiber inputs from the rostral region of the nucleus ventralis lateralis, whereas the caudal zone of the nucleus ventralis lateralis projects to the rostral motor cortex region (forelimb and vibrissae). A dorsoventral organization has also been observed in the rostral region of the nucleus ventralis lateralis: the ventral aspect is the source of fibers directed to the distal hindlimb region, whereas fibers originating from the dorsal aspect are directed to the proximal hindlimb area. A mediolateral relationship exists between medial and lateral sides of the nucleus ventralis lateralis and, respectively, proximal and distal forelimb cortical areas. There is some overlap between the various nuclear regions thus delineated. Four functional zones were found in the lateral half of the nucleus ventralis medialis and were classified according to their projection to the motor cortex; these are involved in motor control of the proximal and distal forelimb, vibrissae and ocular movements. The projection is topographically organized according to both an inverted rostrocaudal and a direct dorsoventral-mediolateral arrangement. Caudally, dorsal and ventral nuclear parts project to rostromedial (vibrissae) and rostrolateral (distal forelimb) regions of the motor cortex, respectively. More rostral nuclear zones project to more caudal (proximal forelimb, eye) cortical regions. There is little overlap between these four nuclear subdivisions. The nucleus centralis lateralis projects to vibrissae and proximal, as well as distal, forelimb areas.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We used a juvenile mouse thalamocortical slice preparation with whole cell recording to investigate synaptic properties of corticothalamic inputs from somatosensory cortex to the ventral posterior medial and posterior medial nuclei (98 cells). We compared these data to those obtained from activating retinal and cortical inputs to the lateral geniculate nucleus (8 cells), the former representing a prototypical driver input and the latter, a typical modulator. Retinogeniculate activation evoked large, all-or-none excitatory postsynaptic potentials (EPSPs) that showed paired-pulse depression antagonized by N-methyl-d-aspartate (NMDA) and AMPA receptor blockers but with no sign of a metabotropic glutamate receptor (mGluR) component. Corticogeniculate activation evoked small, graded EPSPs showing paired-pulse facilitation, and the EPSPs showed both NMDA and AMPA receptor component plus an mGluR1 component. In the somatosensory thalamic relays, cortical stimulation elicited glutamatergic EPSPs in all thalamic cells, and these EPSPs fell into two groups. One, elicited from cortical layer 6 to cells of both nuclei, involved small, graded EPSPs with paired-pulse facilitation, and most also showed an mGluR1 component. The other, elicited from layer 5 to cells only of the posterior medial nucleus, involved large, all-or-none EPSPs with paired-pulse depression, and none showed an mGluR component. By analogy with results from the lateral geniculate nucleus, we conclude that the input from layer 6 to both nuclei acts as a modulator but that the layer 5 input to the posterior medial nucleus serves as a driver. Our data extend a common organizing principle from first-order nuclei to higher-order thalamic relays and further implicate the latter in corticocortical communication.  相似文献   

16.
This study reports the effect of external stimuli on spindle oscillations in the somatosensory thalamus of barbiturate anesthetized rats. Multi-unit responses to somatosensory stimuli were measured from the contralateral thalamic ventral posterior lateral (VPL) nucleus at different stimulus strengths and periods. Spindle oscillations could be entrained by the somatosensory stimuli at periods between 2 and 5 s. A resonance phenomenon described as a quiescent pre-stimulus period followed by entrained post-stimulus oscillations, was observed for somatosensory stimuli above the threshold for eliciting cortical evoked potentials and a stimulus period between 2 and 5 s. This study demonstrates an ascending pathway for localized modulation of spindle oscillations.  相似文献   

17.
Summary Potentially convergent inputs to cerebellar-receiving and basal ganglia-receiving areas of the thalamus were identified using horseradish peroxidase (HRP) retrograde tracing techniques. HRP was deposited iontophoretically into the ventroanterior (VA), ventromedial (VM), and ventrolateral (VL) thalamic nuclei in the cat. The relative numbers of labeled neurons in the basal ganglia and the cerebellar nuclei were used to assess the extent to which the injection was in cerebellar-receiving or basal ganglia-receiving portions of thalamus. The rostral pole of VA showed reciprocal connections with prefrontal portions of the cerebral cortex. Only the basal ganglia and the hypothalamus provided non-thalamic input to modulate these cortico-thalamo-cortical loops. In VM, there were reciprocal connections with prefrontal, premotor, and insular areas of the cerebral cortex. The basal ganglia (especially the substantia nigra), and to a lesser extent, the posterior and ventral portions of the deep cerebellar nuclei, provided input to VM and may modulate these corticothalamo-cortical loops. The premotor cortical areas connected to VM include those associated with eye movements, and afferents from the superior colliculus, a region of documented importance in oculomotor control, also were labeled by injections into VM. The dorsolateral portion of the VA-VL complex primarily showed reciprocal connections with the medial premotor (area 6) cortex. Basal ganglia and cerebellar afferents both may modulate this cortico-thalamo-cortical loop, although they do not necessarily converge on the same thalamic neurons. The cerebellar input to dorsolateral VA-VL was from posterior and ventral portions of the cerebellar nuclei, and the major potential brainstem afferents to this region of thalamus were from the pretectum. Mid- and caudo-lateral portions of VL had reciprocal connections with primary motor cortex (area 4). The dorsal and anterior portions of the cerebellar nuclei had a dominant input to this corticothalamo-cortical loop. Potentially converging brainstem afferents to this portion of VL were from the pretectum, especially pretectal areas to which somatosensory afferents project.List of Abbreviations AC central amygdaloid nucleus - AL lateral amygdaloid nucleus - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BC brachium conjunctivum - BIC brachium of the inferior colliculus - Cd caudate nucleus - CL centrolateral thalamic nucleus - CM centre median nucleus - CP cerebral peduncle - CUN cuneate nucleus - DBC decussation of the brachium conjunctivum - DR dorsal raphe nuclei - EC external cuneate nucleus - ENTO entopeduncular nucleus - FN fastigial nucleus - FX fornix - GP globus pallidus - GR gracile nucleus - IC internal capsule - ICP inferior cerebellar peduncle - IP interpeduncular nucleus - IVN inferior vestibular nucleus - LD lateral dorsal thalamic nucleus - LGN lateral geniculate nucleus - LH lateral hypothalamus - LP lateral posterior thalamic complex - LRN lateral reticular nucleus - LVN lateral vestibular nucleus - MB mammillary body - MD mediodorsal thalamic nucleus - MG medial geniculate nucleus - ML medial lemniscus - MLF medial lengitudinal fasciculus - MT mammillothalamic tract - MVN medial vestibular nucleus - NDBB nucleus of the diagonal band of Broca - NIA anterior nucleus interpositus - NIP posterior nucleus interpositus - OD optic decussation - OT optic tract - PAC paracentral thalamic nucleus - PPN pedunculopontine region - PRO gyrus proreus - PRT pretectal region - PT pyramidal tract - PTA anterior pretectal region - PTM medial pretectal region - PTO olivary pretectal nucleus - PTP poterior pretectal region - Pul pulvinar nucleus - Put putamen - RF reticular formation - RN red nucleus - Rt reticular complex of the thalamus - S solitary tract - SCi superior colliculus, intermediate gray - SN substantia nigra - ST subthalamic nucleus - VA ventroanterior thalamic nucleus - VB ventrobasal complex - VL ventrolateral thalamic nucleus - VM ventromedial thalamic nucleus - III oculomotor nucleus - IIIn oculomotor nerve - 5S spinal trigeminal nucleus - 5T spinal trigeminal tract - VII facial nucleus  相似文献   

18.
Summary Modulation of sensory transmission in the lemniscal system was investigated in 2 monkeys trained to perform a simple elbow flexion in response to an auditory cue. Evoked responses to peripheral stimulation were recorded in the medial lemniscus, sensory thalamus (ventral posterior lateral nucleus, caudal division, VPLc) and somatosensory cortex. Simultaneous recordings were made from the cortex and either the medial lemniscus or VPLc. At all recording sites, evoked responses to natural (air puff) or electrical, percutaneous stimulation were depressed prior to and during active movement. The time course of the depression was similar at all three levels; the magnitude of the decrease during movement was most pronounced at the cortical level. Cortical evoked responses to central stimulation of effective sites in either the medial lemniscus or VPLc were decreased during, but not before, the onset of movement. The decrease was less than that seen for peripheral evoked potentials. Passive movement of the forearm significantly decreased all but the lemniscal evoked potential. The results indicate that there is a centrally mediated suppression of somatosensory transmission prior to, and during movement, occurring at the level of the first relay, the dorsal column nuclei. During movement, reafferent signals from the moving arm decrease transmission at the thalamocortical level.  相似文献   

19.
The Fink-Heimer silver impregnation and the autoradiographic methods were used to study the fiber projections of the cingulate cortex in the squirrel monkey. It was found that this cortex provides inputs to the straitum, thalamus and several areas of isocortex. Evidence was found for a number of fiber projections (1) Fibers from the anterior limbic area were traced to the central part of the head of the caudate nucleus, putamen, septum, dorsomedial nucleus of the thalamus, anterior hypothalamus and lateral basal nucleus of the amygdala. (2) Projections from the cingulate area were traced to the lateral part of the head of the caudate nucleus, putamen, and to the centromedian, anterior, lateral dorsal, and lateral ventral thalamic nuclei and to medial nuclei of the base of the pons. (3) There were porjections from the retrosplenial area of the anterior, lateral dorsal, dorsomedial, and posterior thalamic nuclei and lateral nuclei of the pons. These results indicate that most of the cingulate gyrus is an intermediate structure between the thalamus and overlying cortex. The anterior limbic area forms a bridge between the thalamus and other areas of the cingulate gyrus and the frontal cortex. (4) the retrosplenial area and the posterior part of the cingulate area bridge the adjacent visual snesory association cortex and pelvic areas of the snesory motor cortex, respectively. These areas of the cingulate gyrus project directly to the striatum as well as to the thalamus, structurally providing limbic system input to subcortical motor structures.  相似文献   

20.
The Fink-Heimer silver impregnation and the autoradiographic methods were used to study the fiber projections of the cingulate cortex in the squirrel monkey. It was found that this cortex provides inputs to the striatum, thalamus and several areas of isocortex. Evidence was found for a number of fiber projections (1) Fibers from the anterior limbic area were traced to the central part of the head of the caudate nucleus, putamen, septum, dorsomedial nucleus of the thalamus, anterior hypothalamus and lateral basal nucleus of the amygdala. (2) Projections from the cingulate area were traced to the lateral part of the head of the caudate nucleus, putamen, and to the centromedian, anterior, lateral dorsal, and lateral ventral thalamic nuclei and to medial nuclei of the base of the pons. (3) There were projections from the retrosplenial area of the anterior, lateral dorsal, dorsomedial, and posterior thalamic nuclei and lateral nuclei of the pons. These results indicate that most of the cingulate gyrus is an intermediate structure between the thalamus and overlying cortex. The anterior limbic area forms a bridge between the thalamus and other areas of the cingulate gyrus and the frontal cortex. (4) The retrosplenial area and the posterior part of the cingulate area bridge the adjacent visual sensory association cortex and pelvic areas of the sensory motor cortex, respectively. These areas of the cingulate gyrus project directly to the striatum as well as to the thalamus, structurally providing limbic system input to subcortical motor structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号