首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signalling of sphingosine-1-phosphate (S1P) via G-protein-coupled receptors of the Endothelial Differentiation Gene family differentially regulates cellular processes such as migration, proliferation and morphogenesis in a variety of cell types. Proliferation and migration of retinal Müller glial cells are involved in pathological events such as proliferative vitreoretinopathy and proliferative diabetic retinopathy. Investigation of possible functional roles of S1P receptors might thus open new insights into Müller cell pathophysiology. Here we show that cultured Müller cells from the guinea pig retina respond to application of S1P with an increase in the intracellular calcium content in a concentration-dependent manner (EC50 11 nM). This calcium increase consists of two components; an initial fast peak and a slow plateau component. The initial transient is caused by a release of calcium from intracellular stores and is suppressed by U-73122, a selective phospholipase C inhibitor. The slow plateau component is caused by a calcium influx. These results suggest that the S1P-induced calcium response in Müller cells partially involves signalling via G-protein-coupled receptors. Moreover, S1P slightly induced Müller cell migration but no proliferation. Thus, the data indicate that Müller cells might be involved in S1P signalling in the retina.  相似文献   

2.
Prevention of osmotic swelling of retinal glial (Müller) cells is required to avoid detrimental decreases in the extracellular space volume during intense neuronal activity. Here, we show that glial cells in slices of the wildtype mouse retina maintain the volume of their somata constant up to ∼4 min of perfusion with a hypoosmolar solution. However, calcium chelation with BAPTA/AM induced a rapid swelling of glial cell bodies. In glial cells of retinas from inositol-1,4,5-trisphosphate-receptor type 2-deficient (IP3R2−/−) mice, hypotonic conditions caused swelling of the cell bodies without delay. Exogenous ATP (acting at P2Y1 receptors) prevented the swelling of glial cells in retinal slices from wildtype but not from IP3R2−/− mice. Müller cells from IP3R2−/− mice displayed a strongly reduced amplitude of the ATP-evoked calcium responses as compared to cells from wildtype mice. It is concluded that endogenous calcium signaling mediated by IP3R2 is required for the osmotic volume regulation of retinal glial cells.  相似文献   

3.
The bio-active peptide, angiotensin II (Ang II), has been suggested to exert a neuromodulatory effect on inner retinal neurons. In this study, we examined the distribution of angiotensin receptors (ATRs) in the developing and mature rat retina and optic nerve using immunofluorescence immunocytochemistry. Double-labeling experiments were performed with established markers to identify different retinal cell populations. In adult retinae, ATRs were observed on neurons involved in “ON” pathways of neurotransmission. Angiotensin II type 1 receptors (AT1Rs) were expressed by a sub-population of “ON” cone bipolar cells that also labeled for Gα0 and islet-1. Extra-neuronal expression of AT1Rs was evident on retinal astrocytes, Müller cells and blood vessels. Immunoreactivity for the angiotensin II type 2 receptor (AT2R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT2R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine cells expressing protein kinase C-alpha were also AT2R-positive; a further subset of amacrine cells expressing AT2Rs and stratifying in sublamina “b” of the inner plexiform layer (IPL) was identified. Developmental expression of AT1Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT1R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT2Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina.  相似文献   

4.
5.
Summary Radial glial (Müller) cells of the rabbit retina were studied by various techniques including Golgi impregnation, scanning electron microscopy, horseradish peroxidase application, and staining of enzymatically isolated cells. This combination of methods produced detailed information on the specialized morphology of the Müller cells within the different topographical regions of the retina, and of the Müller cell processes within the various retinal layers. As a general rule, the retinal periphery contains short thick Müller cells with big endfeet, whereas the thick central retina is occupied by long slender cells with small endfeet. Independent of their location within the retina, Müller cell processes were found to be adapted to the structure of the surrounding retinal layers. Within the outer and inner nuclear layers, Müller cell processes (and somata) extend thin cytoplasmic bubbles ensheathing the neuronal somata, as do the velate astrocytes in the brain. In the plexiform layers, Müller cells extend many fine side branches between the neuropil, comparable to the protoplasmic astrocytes of the brain. In the thick myelinated nerve fibre layer of the central retina the Müller cell processes are rather smooth, similar to those of fibrous astrocytes. It is concluded that the neuronal microenvironment determines the morphology of a given glial process, or even of a part of a glial process running through a specialized neuronal compartment.  相似文献   

6.
Summary Müller cells are the major type of glial cell in the vertebrate retina, and appear to participate in important structural and metabolic functions. Although the morphological features of Müller cells have been extensively studied, their topographic distribution across the retina has not been previously reported. We have used a Müller cell-specific monoclonal antibody, 19–33, to study the distribution of Müller cells in turtle retina. The antibody was obtained during a search for cell type-specific monoclonal antibodies in the rat retina. Immunoblotting studies show that 19–33 reacts with a 58 KDa protein that is present in Müller cells. Immunocytochemical studies withen face sections of turtle retina show that the density of Müller cells is fairly uniform across the retina although there are small regional differences. We estimate that the mean Müller cell density is about 1600 cells mm–2 of turtle retina and that each turtle retina contains about 54 000 Müller cells.  相似文献   

7.
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.  相似文献   

8.
Retinal Müller glial cells are involved in K+ ion homeostasis of the tissue. Inwardly rectifying K+ (Kir) channels play a decisive role in the process of spatial K+ buffering. It has been demonstrated that Kir-mediated currents of Müller cells are downregulated in various cases of retinal neurodegeneration. However, this has not yet been verified for any murine animal model. The aim of the present study was to investigate Müller cells after transient retinal ischemia in mice. High intraocular pressure was applied for 1 h; the retina was analysed 1 week later. We studied protein expression in the tissue by immunohistochemistry, and membrane currents of isolated cells by patch-clamp experiments. We found the typical indicators of reactive gliosis such as upregulation of glial fibrillary acidic protein. Moreover, the membrane capacitance of isolated Müller cells was increased and the amplitudes of Kir-mediated currents were slightly, but significantly decreased. This murine high intraocular pressure model of transient retinal ischemia is proposed as a versatile tool for further studies on Müller cell functions in retinal degeneration.  相似文献   

9.
Summary Measures of rabbit eyes and retinal whole-mounts were used to evaluate the development of retinal area and shape. The retina is shown to have a horizontal axis about a third longer than the vertical axis just before birth, and to adopt an almost symmetrical shape during postnatal development to adulthood. In general, retinal thickness is shown to decrease after birth, but differently in particular retinal regions: the reduction is marked in the periphery, and less pronounced in the visual streak. As an exception, the myelinated region — after it becomes really myelinated, from 9 days p.p. — even increases in thickness. In all regions of the retina, the absolute and relative thickness of the nuclear layers decreases, whereas the relative thickness of plexiform and fibrous layers increases. Proliferation of cells within the rabbit retina was studied during the first three postnatal weeks. 3H-thymidine incorporation was used to demonstrate DNA synthesis autoradiographically in histological sections as well as in enzymatically isolated retinal cells. A first proliferation phase occurs in the neuroblastic cell layer and ceases shortly after birth in the retinal center, but lasts for about one week in the retinal periphery. We found, however, a few 3H-thymidine-labeled cells as late as in the third postnatal week.These late-labeled cells were found within the nerve fiber layer and in the inner plexiform layer. The latter cells were shown to express antigens detected by antibodies directed to the intermediate-sized filament protein vimentin, which are known to label Müller cells and neuroepithelial stem cells. This was confirmed in our preparation of enzymatically isolated cells; all cells with autoradiographically labeled nuclei revealed a characteristic elongated morphology typical for Müller radial glia (and also for early neuroepithelial stem cells). 3H-thymidine-labeled cells in the nerve fiber layer were most probably astrocytic. In analogy to the brain, we conclude that the mammalian retina undergoes a series of proliferation phases: first an early phase producing both neurons and glial cells, and then a late phase producing glial cells, e.g., in the nerve fiber layer. Most probably, the late phase within the inner nuclear layer is glial as well, i.e., consists of dividing Müller cells; it cannot be excluded, however, that there may remain some mitotically active stem cells.  相似文献   

10.
The ability of retinal Müller glial cells to perform phagocytosis in vivo is studied in a rabbit model of experimental retinal detachment where pigment epithelial cells are occasionally detached together with the neural retina. While macrophages and/or microglial cells phagocytoze most of the cellular debris at the sclerad surface of the detached retinae, some Müller cells accumulate melanin granules. The granules are virtually intact at the ultrastructural level, and are surrounded by a membrane. They are often located close to the sclerad end of the cells, but some are distributed throughout the outer stem process up to the soma. It is concluded that rabbit Müller cells in vivo are capable of phagocytosis and of transporting the phagocytozed material within their cytoplasm.  相似文献   

11.
Purinergic signaling is represented in both the peripheral and central nervous system (CNS), and in particular in the retina, which may be regarded as a part of the CNS. While purigenic signaling is relatively well studied in mammalian retinas, little is known about it in retinas of lower vertebrates. The aim of present study was to investigate, using immunocytochemistry, the distribution of purinoreceptors P2X in retinas of frog and turtle, which are appropriate models of the brain neuron-to-glia interactions. The results showed widespread expression of all seven ionotropic purinoreceptors (P2X1–P2X7) in both frog and turtle retinas. They were predominantly expressed in Müller cells, the principal glial cells in the retina. All structures typical of Müller cells: the outer and the inner limiting membranes, the cells bodies in the inner nuclear layer, the radial processes in the inner plexiform layer (IPL), and the so called endfeet (frog) or the orthogonal arrays of particles (turtle) in the ganglion cells layer were immunostained. Colocalizations between P2X1–P2X7 and the glial cell marker Vimentin proved that the immunostaining was in the Müller cells. In addition to the glial staining, neuronal staining was also seen as fine puncta in the inner plexiform layer and by small dots and patches in the outer plexiform layer. Some cell bodies of horizontal, amacrine and ganglion cells were also stained. The results obtained imply that the purinergic P2X receptors may significantly contribute to the neuron-to-glia signaling in retinas of the lower vertebrates.  相似文献   

12.
The vertebrate retina receives histaminergic input from the brain via retinopetal axons that originate from perikarya in the posterior hypothalamus. In the nervous system, histamine acts on three G-protein-coupled receptors, histamine receptor (HR) 1, HR2 and HR3. In order to look for potential cellular targets of histamine in the mouse retina, we have examined the retina for the expression of histamine and the presence of these three receptors. Consistent with studies of retina from other vertebrates, histamine was only found in retinopetal axons, which coursed extensively through the ganglion cell and inner plexiform layers. mRNA for all three receptors was expressed in the mouse retina, and immunohistochemical studies further localized HR1 and HR2. HR1 immunoreactivity was observed on dopaminergic amacrine cells, calretinin-positive ganglion cells and axon bundles in the ganglion cell layer. Furthermore, a distinct group of processes in the inner plexiform layer was labeled, which most likely represents the processes of cholinergic amacrine cells. HR2 immunoreactivity was observed on the processes and cell bodies of the primary glial cells of the mammalian retina, the Müller cells. This distribution of histamine and its receptors is consistent with a brain-derived source of histamine acting on diverse populations of cells in the retina, including both neurons and glia.  相似文献   

13.
There is ample evidence that retinal radial glial (Müller) cells play a crucial role in retinal ion homeostasis. Nevertheless, data on the particular types of ion channels mediating this function are very rare and incomplete; this holds especially for mammalian Müller cells. Thus, the whole-cell variation of the patch-clamp technique was used to study voltage-dependent currents in Müller cells from adult rabbit retinae. The membrane of Müller cells was almost exclusively permeable to K+ ions, as no significant currents could be evoked in K+-free internal and external solutions, external Ba2+ (1 mM) reversibly blocked most membrane currents, and external Cs+ ions (5 mM) blocked all inward currents. All cells expressed inwardly rectifying channels that showed inactivation at strong hyperpolarizing voltages ( –120 mV), and the conductance of which varied with the square root of extracellular K+ concentration ([K+]e). Most cells responded to depolarizing voltages ( –30 mV) with slowly activating outward currents through delayed rectifier channels. These currents were reversibly blocked by external application of 4-aminopyridine (4-AP, 0.5 mM) or tetraethylammonium (TEA, > 20 mM). Additionally, almost all cells showed rapidly inactivating currents in response to depolarizing ( –60 mV) voltage steps. The currents were blocked by Ba2+ (1 mM), and their amplitude increased with the [K+]e. Obviously, these currents belonged to the A-type family of K+ channels. Some of the observed types of K+ channels may contribute to retinal K+ clearance but at least some of them may also be involved in regulation of proliferative activity of the cells.  相似文献   

14.
Retinae of nocturnal rodents, such as mice and rats, are almost exclusively rod-dominated. The gerbil, in contrast, shows active periods during day and night and uses both rod- and cone-based vision. However, its retina has not been studied in detail, except for one developmental study analysing its prenatal period (Wikler et al. 1989). Here, the formation of the laminar structure of the gerbil retina was studied from birth until late adult stages. At birth, the retina consisted of a wide neuroblastic layer, with 30% of cells still dividing, a rate decreasing to nearly zero by P6. Shortly after birth, segregation of a ganglion cell layer began. All retinal layers reached their final size around P20, as determined from DAPI-stained cryosections. Müller glial cells developed their typical structure from P1 onwards, e.g. announcing an outer plexiform layer (OPL) at P5, as analysed by the Ret-G7 and glutamine synthetase antibodies. The analyses of the inner retina were performed by antibodies to calretinin (CR) and calbindin (CB). CR is expressed in ganglion cells followed by amacrine cells from P1 onwards; their processes formed four subbands in the inner plexiform layer (IPL) and appeared sequentially after P5 until P20. CB stained a subtype of horizontal cells with their processes into the OPL from P14 onwards. The rod-specific antibody rho4D2 announced photoreceptors at P4, showing signs of outer segments from P10 onwards. The study shows that the formation of all retinal layers in the gerbil occurs postnatally. This and the fact that the gerbil retina is not exclusively rod-dominated could render the gerbil a valuable model for in vitro studies of retinogenesis in rodents.  相似文献   

15.
Detachment of the neural retina from the pigment epithelium may be associated with tissue edema; however, the mechanisms of fluid accumulation are not understood. Because retinal detachment is usually not accompanied by vascular leakage, we investigated whether the osmotic swelling characteristics of retinal glial (Müller) cells are changed after experimental detachment of the porcine retina. Osmotic stress, induced by application of a hypotonic bath solution to retinal slices, caused swelling of Müller cell bodies in 7-day-detached retinas, but no swelling was inducible in slices of control retinas. Müller cell somata in slices of retinal areas that surround local detachment in situ also showed osmotic swelling, albeit at a smaller amplitude. The amplitude of osmotic Müller cell swelling correlated with the decrease in the K+ conductance, suggesting a causal relationship between both gliotic alterations. Further factors implicated in Müller cell swelling were inflammatory mediators and oxidative stress. We propose that a dysregulation of the ion and water transport through Müller cells may impair the fluid absorption from the retinal tissue, resulting in chronic fluid accumulation after detachment. This knowledge may lead to a better understanding of the mechanisms involved in retinal degeneration after detachment.  相似文献   

16.
Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina   总被引:4,自引:0,他引:4  
Summary The localization of the neural cell adhesion molecule (N-CAM) and its highly sialylated form, which is prevalent in young tissues and has therefore been called embryonic neural cell adhesion molecule, was studied in the developing and adult mouse optic nerve and retina immunohistologically and immunochemically. At embryonic and early postnatal ages, neuroblasts and young postmitotic neurons, Müller cells and astrocytes in the retina, and retinal ganglion cell axons and all glial cells in the optic nerve express highly sialylated neural cell adhesion molecule. Beginning with the third postnatal week, highly sialylated neural cell adhesion molecule disappears from retinal ganglion cell axons in the optic nerve and from neuronal cell bodies and processes in the retina. In addition, it is not detectable on oligodendrocytes in 3-week-old animals. However, highly sialylated neural cell adhesion molecule continues to be expressed in the adult optic nerve and retina by astrocytes and Müller cells. On these cells it is only absent from cell membranes contacting basal lamina. Weakly sialylated neural cell adhesion molecule, in contrast, is expressed by all cell types of retina and optic nerve during development and in the adult. The loss of highly sialylated neural cell adhesion molecule from neurons and oligodendrocytes must therefore be considered as a cell type-specific conversion of the so-called embryonic to the adult form of neural cell adhesion molecule and does not simply reflect the disappearance of neural cell adhesion molecule from these cells. Weakly sialylated neural cell adhesion molecule, however, is absent from outer segments of photoreceptor cells and, as is the case for the highly sialylated form, from glial cell surfaces contacting basal lamina. Thus, the expression of highly sialylated neural cell adhesion molecule by pre- and postmitotic neurons and by oligodendrocytes is restricted mainly to the period of histogenetic events in retina and optic nerve, i.e. cell division, cell migration, dendritic and axonal growth and synaptogenesis. In addition to the observation that this form of neural cell adhesion molecule is less adhesive than the weakly sialylated, adult form, it is likely that highly sialylated neural cell adhesion molecule plays an important role during dynamic morphogenetic events. Furthermore, the expression of highly sialylated neural cell adhesion molecule by astrocytes and Müller cells in adult optic nerves and retinae suggests some histogenetically plastic functions for these cells in the adult mouse visual system.  相似文献   

17.
Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via β1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of β1 integrins, which is essential for ligand binding. Furthermore, we found that β1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between β1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between β1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.  相似文献   

18.
Summary Morphometric parameters of Müller cells were evaluated by light microscopy both in whole retinae and in enzymatically isolated cells from adult pigmented rabbits. In spite of the marked decrease in cell densities from visual streak to far periphery, a constant glia-neuron ratio of about 115 was found in all regions. The volume of individual Müller cells was found to increase strongly when the cells become shorter, i.e. when the retinal centre was compared to the retinal periphery. The contribution of Müller cell volume to the total retinal volume, however, was shown to be constant at about 6%. Long Müller cells have a thin vitreal process and a small vitreal endfoot surface. The consequences of this rule for the proposed function of Müller cells in retinal K+ clearance are discussed with respect to general features of radial glia. It is suggested that foetal radial glial cells too long to perform sufficient K+ clearance are destined to be transformed into adult multipolar glia by mitotic cell division.  相似文献   

19.
20.
The expression of the glycine receptor (GlyR) alpha1, alpha2 and beta subunits and glycine transporter (GlyT) on Müller cells was studied in bullfrog retina using double immunofluorescence labeling and confocal scanning microscopy. Double labeling of glial fibrillary acidic protein (GFAP), a specific marker for Müller cells, and the GlyR subunits showed that almost all Müller cells moderately expressed GlyR alpha1 and weakly GlyR beta, whereas no immunoreactivity for GlyR alpha2 was observed. The labeling for GlyR alpha1 and GlyR beta appeared in somata, major processes, endfeet and branchlets of the Müller cells. Müller cells were also GlyT1-labeled. Consistent with previous electrophysiological results, these findings suggest that Müller cells may be involved in modulation of glycinergic transmission by reciprocal interactions with retinal neurons through GlyR and GlyT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号