首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite extensive investigations of gliogenesis, the time of origin of ependymal cells in the spinal cord has not yet been fully elucidated. Using a single dose of 5-bromo-2-deoxyuridine combined with various survival times we monitored: mitotic activity (short survival time), the presence of newly formed cells in the ventricular zone (intermediate survival time) and the formation of ependymal cells (long survival time) during the late embryonic and early postnatal development in the ventricular zone of the spinal cord of rats. In the period of study it was found that the ependymal cells populated this region in two waves. Most of the ependymal cells originated around embryonic day 18 and then between postnatal days 8 and 15. In addition, it was observed that in the ventricular zone of the spinal cord, proliferation and production of ependymal cells continues at the slower rate at least until day 36 of postnatal development. Elucidation of the relationship between progenitors in the embryonic ventricular zone and the relative quiescent ependymal lining of the central canal in adulthood could be important in the search for the adult neural stem cell niche.  相似文献   

2.
3.
Phosphoserine phosphatase (PSP) metabolizes the conversion of l-phosphoserine to l-serine, classically known as an amino acid necessary for protein and nucleotide synthesis and more recently suggested to be involved in cell-to-cell signaling. Previously, we identified PSP as being enriched in proliferating neural progenitors and highly expressed by embryonic and hematopoietic stem cells, suggesting a general role in stem cells. Here we demonstrate that PSP is highly expressed in periventricular neural progenitors in the embryonic brain. In the adult brain, PSP expression was observed in slowly dividing or quiescent glial fibrillary acidic protein (GFAP)-positive cells and CD24-positive ependymal cells in the forebrain germinal zone adjacent to the lateral ventricle and within GFAP-positive cells of the hippocampal subgranular zone, consistent with expression in adult neural stem cells. In vitro, PSP overexpression promoted proliferation, whereas small interfering RNA-induced knockdown inhibited proliferation of neural stem cells derived from embryonic cortex and adult striatal subventricular zone. The effects of PSP knockdown were partially rescued by exogenous l-serine. These data support a role for PSP in neural stem cell proliferation and suggest that in the adult periventricular germinal zones, PSP may regulate signaling between neural stem cells and other cells within the stem cell niche. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

4.
The adult mammalian brain contains neural stem cells that are capable of generating new neurons and glia over the course of a lifetime. Neural stem cells reside in 2 germinal niches, the subventricular zone (SVZ) and the dentate gyrus subgranular zone. These primary progenitors have been identified in their niche in vivo; these cells have characteristics of astrocytes. Recent studies have shown that adult SVZ stem cells are derived from radial glia, the stem cells in the developing brain, which in turn are derived from the neuroepithelum, the earliest brain progenitors. Thus, SVZ stem cells are a continuum from neuroepithelium to radial glia to astrocytes, and are contained within what has been considered the lineage for astrocytes. However, it seems that only a small subset of the astrocytes present in the adult brain have stem cell properties. Recent findings have shown that SVZ stem cell astrocytes express a receptor for platelet-derived growth factor (PDGF), suggesting that the ability to respond to specific growth factor stimuli, such as PDGF, epidermal growth factor and others, may be unique to these stem cell astrocytes. Intriguingly, activation of these same signaling pathways is widely implicated in brain tumor formation. Since the adult brain has very few proliferating cells capable of accumulating the numerous mutations required for transformation, the adult neural stem and/or progenitor cells may be likely candidates for the brain tumor cell of origin. Indeed, activation of the PDGF or epidermal growth factor pathways in adult neural stem or progenitor cells confers tumor-like properties on these cells, lending support to this hypothesis.  相似文献   

5.
Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.  相似文献   

6.
Shc(s) family of adaptor molecules has been implicated in several physiological functions. In particular, our previous studies have shown major roles in the mechanisms that control the transition from proliferating neural stem cells (NSCs) to postmitotic neurons in the mammalian brain. In the adult brain, ShcA expression is mainly restricted to a subpopulation of cells in the subventricular zone (SVZ) neurogenic area, enlightening a potential role for this molecule in the establishment/maintenance of this adult NSC niche. In order to investigate this matter, here we took advantage of Cre/lox technology with the purpose of interfering with (or delete) ShcA function in nestin-expressing neural progenitors in vivo. Our analyses revealed signs of anatomical disorganization in the adult brain at the boundary between the striatum and the corpus callosum and reduced thickness both at the ventricular level and through the rostral migratory stream. Analysis of cell proliferation and cell death unveiled a prominent reduction of the former and no substantial alterations of the latter. Ultrastructural studies showed SVZ anatomical disarray and manifest variation in the SVZ cell type composition. In conclusion, these results provide evidence for a role of ShcA in the assembly and/or maintenance of the SVZ NSC niche in the adult brain.  相似文献   

7.
Mothe AJ  Tator CH 《Neuroscience》2005,131(1):177-187
Ependymal cells of the adult mammalian spinal cord exhibit stem/progenitor cell properties following injury. In the present study, we utilized intraventricular injection of 1,1'-dioctadecyl-6,6'-di(4-sulfophenyl)-3,3,3',3'-tetramethylindocarbocyanine (DiI) to label the ependyma lining the central canal to allow tracking of the migration of endogenous ependymal cells and their progeny after spinal cord injury (SCI). We developed a minimal injury model that preserved the integrity of the central canal and did not interfere with ependymal cell labeling. Three days following SCI, there was an 8.6-fold increase in the proliferative labeling index of the ependymal cells at the level of the needle track based on bromodeoxyuridine labeling, compared with 1 day post-injury. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells were not detected in the ependyma or surrounding gray matter, indicating that ependymal cells do not undergo apoptosis in response to minimal injury. Nestin was rapidly induced in the ependyma by 1 day and expression peaked by 7 days post-injury. We quantitated the number and distance of ependymal cell migration following minimal injury. The number of ependymal cells migrating from the region of the central canal increased by 3 days following minimal injury and DiI-labeled glial fibrillary acidic protein expressing cells were detected 14 days post-SCI, most of which migrated within 70 microm of the region of the central canal. These results show that a minimal SCI adjacent to the ependyma is sufficient to induce an endogenous ependymal cell response where ependymal stem/progenitor cells proliferate and migrate from the region of the central canal, differentiating primarily into astrocytes.  相似文献   

8.
The subventricular zone (SVZ) of the lateral ventricle of the mammalian forebrain is the major site in which neural progenitor cells (NPC) persist in the adult brain. The NPC are located beneath ventricular ependymal cells and have the capacity to self-renew and continuously produce neurons and glial cells. We have shown previously that neurospheres can be obtained from the brain of deceased adult rats and that neurosphere cells survive after transplantation into the spinal cord. In the present study, we investigated whether fresh NPC from living adult rats can survive and be integrated into host tissues after transplantation into the adult rat spinal cord of the same strain. We used rats expressing transgenic green fluorescent protein (GFP) as a donor to identify the transplanted NPCs. The SVZ tissues were obtained from the striatal wall of the lateral ventricle of adult GFP-rats and were grafted into lesions of the spinal cord at the cervical level. Two to 3 weeks after grafting, NPC migrated through the host tissue 0.5-1 mm away from the implantation site, and were integrated into the white matter of the host spinal cord. Surviving NPC exhibited immunohistochemical phenotypes of astrocytes (glial fibrillary acidic protein), but not for neurons (alpha-tubulin III) or oligodendrocytes (Rip; Hybridoma Bank, Iowa City, IA, USA). Thus, NPC from the SVZ of adult rats can survive and differentiate into at least astrocytes, which can then be integrated into host tissue after transplantation into spinal cord lesions in the adult rat.  相似文献   

9.
Ke Y  Chi L  Xu R  Luo C  Gozal D  Liu R 《Stem cells (Dayton, Ohio)》2006,24(4):1011-1019
Adult neural progenitor cells (NPCs) are an attractive source for functional replacement in neurodegenerative diseases and traumatic injury to the central nervous system (CNS). It has been shown that transplantation of neural stem cells or NPCs into the lesioned region partially restores CNS function. However, the capacity of endogenous NPCs in replacement of neuronal cell loss and functional recovery of spinal cord injury (SCI) is apparently poor. Furthermore, the temporal and spatial response of endogenous adult NPCs to SCI remains largely undefined. To this end, we have analyzed the early organization, distribution, and potential function of NPCs in response to SCI, using nestin enhancer (promoter) controlled LacZ reporter transgenic mice. We showed that there was an increase of NPC proliferation, migration, and neurogenesis in adult spinal cord after traumatic compression SCI. The proliferation of NPCs detected by 5-bromodeoxyuridine incorporation and LacZ staining was restricted to the ependymal zone (EZ) of the central canal. During acute SCI, NPCs in the EZ of the central canal migrated vigorously toward the dorsal direction, where the compression lesion is generated. The optimal NPC migration occurred in the adjacent region close to the epicenter. More significantly, there was an increased de novo neurogenesis from NPCs 24 hours after SCI. The enhanced proliferation, migration, and neurogenesis of (from) endogenous NPCs in the adult spinal cord in response to SCI suggest a potential role for NPCs in attempting to restore SCI-mediated neuronal dysfunction.  相似文献   

10.
Elements of a neural stem cell niche derived from embryonic stem cells   总被引:1,自引:0,他引:1  
Recent studies show that adult neural tissues can harbor stem cells within unique niches. In the mammalian central nervous system, neural stem cell (NSC) niches have been identified in the dentate gyrus and the subventricular zone (SVZ). Stem cells in the well-characterized SVZ exist in a microenvironment established by surrounding cells and tissue components, including transit-amplifying cells, neuroblasts, ependymal cells, blood vessels, and a basal lamina. Within this microenvironment, stem cell properties, including proliferation and differentiation, are maintained. Current NSC culture techniques often include the addition of molecular components found within the in vivo niche, such as mitogenic growth factors. Some protocols use bio-scaffolds to mimic the physical growth environment of living tissue. We describe a novel NSC culture system, derived from embryonic stem (ES) cells, that displays elements of an NSC niche in the absence of exogenously applied mitogens or complex physical scaffolding. Mouse ES cells were neuralized with retinoic acid and plated on an entactin-collagen-laminin-coated glass surface at high density (250,000 cells/cm(2)). Six to eight days after plating, complex multicellular structures consisting of heterogeneous cell types developed spontaneously. NSC and progenitor cell proliferation and differentiation continued within these structures. The identity of cellular and molecular components within the cultures was documented using RT-PCR, immunocytochemistry, and neurosphere-forming assays. We show that ES cells can be induced to form structures that exhibit key properties of a developing NSC niche. We believe this system can serve as a useful model for studies of neurogenesis and stem cell maintenance in the NSC niche as well as for applications in stem cell transplantation.  相似文献   

11.
目的 探讨人12周龄胚胎脑脉络丛上皮细胞是否具有神经干细胞的生物学特性.方法制备室管膜/室管膜下区和纹状体脑切片和脉络丛组织铺片,采用免疫荧光染色,在激光扫描共焦显微镜下观察结果,采集图像数据.结果人12周龄胚胎脑室脉络丛上皮细胞表达神经干细胞分子标志CD133、Nestin和Sox2.神经干细胞的分子标志在脉络丛上皮...  相似文献   

12.
Increasing evidence indicates that neural stem/progenitor cells (NSPCs) reside in many regions of the central nervous system (CNS), including the subventricular zone (SVZ) of the lateral ventricle, subgranular zone of the hippocampal dentate gyrus, cortex, striatum, and spinal cord. Using a murine model of cortical infarction, we recently demonstrated that the leptomeninges (pia mater), which cover the entire cortex, also exhibit NSPC activity in response to ischemia. Pial-ischemia-induced NSPCs expressed NSPC markers such as nestin, formed neurosphere-like cell clusters with self-renewal activity, and differentiated into neurons, astrocytes, and oligodendrocytes, although they were not identical to previously reported NSPCs, such as SVZ astrocytes, ependymal cells, oligodendrocyte precursor cells, and reactive astrocytes. In this study, we showed that leptomeningeal cells in the poststroke brain express the immature neuronal marker doublecortin as well as nestin. We also showed that these cells can migrate into the poststroke cortex. Thus, the leptomeninges may participate in CNS repair in response to brain injury.  相似文献   

13.
We report, for the first time, the light microscopical and ultrastructural appearance of ZnT3-immunoreactivities in the ependymal cells of the central canal of the mouse spinal cord. Light microscopy revealed the presence of ZnT3-immunoreactive (Ir) ependymal cells in 1 microm thick epon sections stained by the ABC method. The ZnT3-Ir cells were observed at all levels of the spinal cord, but were a little more numerous in lumbosacral segments than in cervicothoracic segments. The ZnT3-Ir cells had large, ovoid nuclei with abundant cytoplasm, and protruded into the lumen of the central canal. Our ultrastructural findings suggest that the ZnT3-Ir ependymal cells possess secretory activity directed towards the central canal. We propose that they may play a role in the trans-ependymal mechanism responsible for zinc homeostasis between cerebrospinal fluid and the central area of the gray matter.  相似文献   

14.
Vasoactive intestinal polypeptide (VIP) was demonstrated immunohistochemically in the entire ependymal and subependymal cells in all levels (cervical: C, thoracic: T, lumbar: L and sacral: S) of normal adult rat spinal cord. The VIP-immunoreactive basal processes from the apical ependymal cells coursed dorsally or ventrally along the median plane and reached the pia mater of the dorsal and ventral median septa. Many VIP-immunoreactive basal processes terminated on the blood vessels in the neuropil around the central canal. A few microvilli of the ependymal cells that project into the central canal also demonstrated intense VIP immunoreactivity. These observations suggest that ependymal cells may be involved in the modulation of VIP levels in the cerebrospinal fluid and regulation of vascular tone of the blood vessels in the spinal cord.  相似文献   

15.
The ependymal lining of the central canal of the filum terminale and spinal cord in the vicinity of the caudal neurosecretory system in P. sphenops was examined in this study. Two general cell types based on shape and location were observed in the ependymal lining: cuboidal ependyma located in dorsal aspects of the filum terminal and columnar to pseudostratified ependymal cells found in ventrolateral and ventral aspects of the filum terminale. Comparison of the ependymal lining was made in animals adapted to saltwater and freshwater. In animals adapted to saltwater there was an increase in the basal infoldings of the cell membrane of the dorsal cuboidal ependyma. Infolding of the basal cell membrane is a phenomenon shared by cells known to participate in transport of electrolytes. Since a possible functional relationship between the ependyma of the third ventricle and median eminence has been shown, in future studies on the osmoregulatory function of the caudal neurosecretory system the ependymal lining of the central canal in this region should be considered.  相似文献   

16.
Drosophila dachshund is involved in development of eye and limbs and in the development of mushroom bodies, a brain structure required for learning and memory in flies. Its mouse homologue mDach1 is expressed in various embryonic tissues, including limbs, the eye, the dorsal spinal cord and the forebrain. We have isolated a forebrain-specific 2.5-kb enhancer element termed D6 from the mouse mDach1 gene and created D6-LacZ and D6-green fluorescent protein (GFP) reporter gene mouse lines. In embryonic stages, the D6 enhancer activity is first detected at embryonic day 10.5 in scattered cells of the outbuldging cortical vesicles. By embryonic day 12.5, D6 activity expands throughout the developing neocortex and the hippocampus. In the adult mouse brain, D6 enhancer is active in neurons of the cortical plate, in the CA1 layer of the hippocampus and in cells of the subventricular zone and the ventricular ependymal zone. Adult mice also show D6 activity in the olfactory bulb and in the mamillary nucleus. Cultured D6-positive cells, which were derived from embryonic and postnatal brains, show characteristics of neural stem cells. They form primary and secondary neurospheres that differentiate into neurons and astrocytes as examined by cell-specific markers.Our results show that D6 enhancer exerts highly tissue-specific activity in the neurons of the neocortex and hippocampus and in neural stem cells. Moreover, the fluorescence cell sorting of D6-GFP cells from embryonic and postnatal stages allows specific selection of primary neural progenitors and their analysis.  相似文献   

17.
成年哺乳动物脑室下区(SVZ)富有神经干细胞、神经细胞祖细胞和胶质细胞祖细胞,它们能生成新的神经细胞、星状胶质细胞和少突胶质细胞。SVZ中的神经细胞祖细胞能形成切线形式的嘴侧迁移流(RMS)到嗅球,在嗅球分化成成熟的中间神经元。近年来证明成年动物实验性脑损伤和变性疾病都能引起SVZ细胞增生并能向非嗅球区迁移。本研究将成年大鼠一侧大脑皮层血管去除,15d和30d后取前脑作冠状及矢状连续切片,用BrdU和PCNA抗体显示前脑室下区正在分裂的细胞;用Tuj1抗体显示神经元祖细胞;用GFAP和vimentin抗体显示胶质细胞祖细胞。结果证明去除一侧皮层血管引起术侧及其对侧的背外侧脑室下区(dl-SVZ)的上述免疫反应阳性细胞明显增多,并向胼胝体迁移,在胼胝体内形成放射形式迁移路至损伤部位。本研究表明背外侧脑室下区的范围应包括背外侧角、外侧伸展和侧脑室上壁的SVZ,它们是切线形式和放射形式两种不同方向的迁移路祖细胞的共同源地。  相似文献   

18.
为研究位于成年哺乳动物侧脑室外侧壁脑室下带 ( SVZ)的整体结构特征 ,本研究采用光镜观察半薄切片 ( Nissl染色 )、扫描电镜观察并结合形态计量分析技术 ,研究了侧脑室外侧壁不同部位以及内侧壁、第四脑室底壁和脊髓中央管壁的组织结构并做了相互比较。结果表明 ,仅侧脑室外侧壁存在有 SVZ,主要由具有未成熟特征的细胞组成 ,此处血管丰富。 SVZ的吻侧段明显地厚于中间段和尾侧段 ,位于吻侧段 SVZ部位的室管膜室腔面纤毛数量明显多于其他部位。本研究结果提示 ,SVZ有其独特的组织学特征 ,这种特征可能与成年动物的神经生发有关  相似文献   

19.
The regional distribution of a neural endopeptidase ('substance-P-degrading enzyme', SPDE) within the rat spinal cord, as visualised by immunocytochemistry, closely paralleled the distribution of major substance P-containing nerve fibre systems. Thus, SPDE-immunoreactivity was present in laminae I and II of the dorsal horn, in large diameter neurones of the ventral horn and in the ependymal cells which line the central canal. The pattern of immunostaining, particularly in the dorsal horn, is consistent with the view that SPDE may function in the metabolism of substance P.  相似文献   

20.
During spinal cord development, progenitors in the neural tube are arranged within spatial domains that generate specific cell types. The ependyma of the postnatal spinal cord seems to retain cells with properties of the primitive neural stem cells, some of which are able to react to injury with active proliferation. However, the functional complexity and organization of this stem cell niche in mammals remains poorly understood. Here, we combined immunohistochemistry for cell-specific markers with patch-clamp recordings to test the hypothesis that the ependyma of the neonatal rat spinal cord contains progenitor-like cells functionally segregated within specific domains. Cells on the lateral aspects of the ependyma combined morphological and molecular traits of ependymocytes and radial glia (RG) expressing S100β and vimentin, displayed passive membrane properties and were electrically coupled via Cx43. Cells contacting the ventral and dorsal poles expressed the neural stem cell markers nestin and/or vimentin, had the typical morphology of RG, and appeared uncoupled displaying various combinations of K(+) and Ca(2+) voltage-gated currents. Although progenitor-like cells were mitotically active around the entire ependyma, the proliferative capacity seemed higher on lateral domains. Our findings represent the first evidence that the ependyma of the rat harbors progenitor-like cells with heterogeneous electrophysiological phenotypes organized in spatial domains. The manipulation of specific functional properties in the heterogeneous population of progenitor-like cells contacting the ependyma may in future help to regulate their behavior and lineage potential, providing the cell types required for the endogenous repair of the injured spinal cord. Stem Cells2012;30:2020-2031.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号