首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling in cancer is implicated in various survival pathways including regulation of recombinase (RAD51). In this study, we evaluated PI3K and RAD51 as targets in Barrett's adenocarcinoma (BAC) cells both in vitro and in vivo. BAC cell lines (OE19, OE33, and FLO-1) were cultured in the presence of PI3K inhibitor (wortmannin) and the impact on growth and expression of AKT, phosphorylated-AKT (P-AKT), and RAD51 was determined. Wortmannin induced growth arrest and apoptosis in two BAC cell lines (OE33 and OE19), which had relatively higher expression of AKT. FLO-1 cells, with lower AKT expression, were less sensitive to treatment and investigated further. In FLO-1 cells, wortmannin suppressed ataxia telangiectasia and Rad3-related protein (ATR)-checkpoint kinase 1 (CHK1)-mediated checkpoint and multiple DNA repair genes, whereas RAD51 and CHK2 were not affected. Western blotting confirmed that RAD51 was suppressed by wortmannin in OE33 and OE19 cells, but not in FLO-1 cells. Suppression of RAD51 in FLO-1 cells down-regulated the expression of CHK2 and CHK1, and reduced the proliferative potential. Finally, the suppression of RAD51 in FLO-1 cells, significantly increased the anticancer activity of wortmannin in these cells, both in vitro and in vivo. We show that PI3K signaling and hsRAD51, through distinct roles in DNA damage response and repair pathways, provide survival advantage to BAC cells. In cells with inherent low expression of AKT, RAD51 is unaffected by PI3K suppression and provides an additional survival pathway. Simultaneous suppression of PI3K and RAD51, especially in cells with lower AKT expression, can significantly reduce their proliferative potential.  相似文献   

2.
PURPOSE: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary cancer in the liver, and its incidence is increasing in developed countries. EXPERIMENTAL DESIGN: To discover novel molecular targets for the diagnosis and treatment of ICCs, we earlier analyzed expression profiles of 25 ICCs using a cDNA microarray containing 27,648 genes. In this study, we focused on the RAD51 associating protein-1 (RAD51AP1) gene because its expression was frequently elevated in our microarray data. RESULTS: Quantitative PCR confirmed that RAD51AP1 expression was elevated in the great majority of the ICCs examined. Immunohistochemical analysis with anti-RAD51AP1 antibody further corroborated its accumulation in 14 of 23 ICC tissues (61%). Notably, suppression of RAD51AP1 by short interfering RNA resulted in growth suppression of cholangiocarcinoma cells, suggesting its involvement in the development and/or progression of ICC. Because RAD51AP1 interacts with RAD51, a molecule involved in DNA repair, we investigated whether RAD51AP1 is implicated in DNA strand breaks using gamma-irradiation. As a result, gamma-irradiation augmented RAD51AP1 protein expression and brought a focus formation in the nuclei, where accumulated RAD51AP1 colocalized with phosphorylated histone 2AX (gamma-H2AX) and RAD51. These data suggest that RAD51AP1 may play a role in cell proliferation as well as DNA repair. CONCLUSION: Our findings may contribute to the better understanding of cholangiocarcinogenesis and open a new avenue to the development of novel therapeutic and/or diagnostic approach to this type of tumor.  相似文献   

3.
Wray J  Liu J  Nickoloff JA  Shen Z 《Cancer research》2008,68(8):2699-2707
RAD51 has critical roles in homologous recombination (HR) repair of DNA double-strand breaks (DSB) and restarting stalled or collapsed replication forks. In yeast, Rad51 function is facilitated by Rad52 and other "mediators." Mammalian cells express RAD52, but BRCA2 may have supplanted RAD52 in mediating RAD51 loading onto ssDNA. BCCIP interacts with BRCA2, and both proteins are important for RAD51 focus formation after ionizing radiation and HR repair of DSBs. Nonetheless, mammalian RAD52 shares biochemical activities with yeast Rad52, including RAD51 binding and single-strand annealing, suggesting a conserved role in HR. Because RAD52 and RAD51 associate, and RAD51 and BCCIP associate, we investigated the colocalization of RAD51 with BCCIP and RAD52 in human cells. We found that RAD51 colocalizes with BCCIP early after ionizing radiation, with RAD52 later, and there was little colocalization of BCCIP and RAD52. RAD52 foci are induced to a greater extent by hydroxyurea, which stalls replication forks, than by ionizing radiation. Using fluorescence recovery after photo bleaching, we show that RAD52 mobility is reduced to a greater extent by hydroxyurea than ionizing radiation. However, BCCIP showed no changes in mobility after hydroxyurea or ionizing radiation. We propose that BCCIP-dependent repair of DSBs by HR is an early RAD51 response to ionizing radiation-induced DNA damage, and that RAD52-dependent HR occurs later to restart a subset of blocked or collapsed replication forks. RAD52 and BRCA2 seem to act in parallel pathways, suggesting that targeting RAD52 in BRCA2-deficient tumors may be effective in treating these tumors.  相似文献   

4.
Faithful replication and DNA repair are vital for maintenance of genome integrity. RAD51 is a central protein in homologous recombination repair and during replication, when it protects and restarts stalled replication forks. Aberrant RAD51 expression occurs in glioma, and high expression has been shown to correlate with prolonged survival. Furthermore, genes involved in DNA damage response (DDR) are mutated or deleted in human glioblastomas, corroborating the importance of proper DNA repair to suppress gliomagenesis. We have analyzed DDR and genomic instability in PDGF-B-induced gliomas and investigated the role of RAD51 in glioma development. We show that PDGF-B-induced gliomas display genomic instability and that co-expression of RAD51 can suppress PDGF-B-induced tumorigenesis and prolong survival. Expression of RAD51 inhibited proliferation and genomic instability of tumor cells independent of Arf status. Our results demonstrate that the RAD51 pathway can prevent glioma initiation and maintain genome integrity of induced tumors, suggesting reactivation of the RAD51 pathway as a potential therapeutic avenue.  相似文献   

5.
6.
The breast cancer susceptibility gene BRCA1 encodes a large protein thought to contribute to a variety of cellular processes, although the critical determinants of BRCA1-deficient tumorigenesis remain unclear. Given that BRCA1 is required for cell proliferation, suppressor mutations are believed to modify BRCA1 phenotypes and contribute to the etiology of BRCA1-deficient tumors. Here, we show that overexpression of the homologous recombinase RAD51 in a DT40 BRCA1Delta/Delta mutant rescues defects in proliferation, DNA damage survival, and homologous recombination (HR). In addition, epistasis analysis with BRCA1 and the DNA end-joining factor KU70 indicates that these factors operate independently of one another to repair double-strand breaks. Consistent with this genetic finding, cell synchronization studies show that the ability of BRCA1 to promote radioresistance is restricted to the late S and G2 phases of the cell cycle, as predicted for genes whose function is specific to homology-mediated repair rather than nonhomologous end-joining. Notably, retrospective analyses of microarray expression data reveal elevated expression of RAD51 and two of its late-acting cofactors, RAD54 and RAD51AP1, in BRCA1-deficient versus sporadic breast tumors. Taken together, our results indicate that up-regulation of HR provides a permissive genetic context for cells lacking BRCA1 function by circumventing its requirement in RAD51 subnuclear assembly. Furthermore, the data support a model in which enhanced HR activity contributes to the etiology of BRCA1-deficient tumors.  相似文献   

7.
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.  相似文献   

8.
RAD51 is the central protein in the homologous recombination pathway and is therefore of great relevance in terms of both therapy resistance as well as genomic stability. By using a tissue microarray analysis of 1,213 biopsies taken from colorectal adenocarcinomas (CRCs), we investigated whether RAD51 expression can be used as a prognostic marker as well as potential associations between this and the expression of other proteins known to be related to CRC. Strong RAD51 expression was observed in 1% of CRC, moderate in 11%, weak in 34% and no expression in 44%. No correlation was found between RAD51 expression and clinicopathological parameters. RAD51 expression correlated significantly (p = 0.001) with overall survival, with a median survival of 11 months for patients with strong, 46 with moderate, 76 with weak and 68 with negative expression. Multivariate analyses revealed that in addition to tumor stage (p < 0.0001) and nodal status (p < 0.0001), RAD51 expression is also an independent prognostic parameter (p = 0.011). Strong RAD51 expression was found to be associated with the loss of the two DNA mismatch repair proteins MSH (p = 0.0003), MLH (p = 0.002) and β‐catenin (p = 0.012) as well as with elevated p21 (p = 0.003) and EGFR expression (p = 0.0001). However, a correlation with overall survival could only be found for EGFR expression (p = 0.008), although no added benefit in risk stratification could be determined when evaluated together with RAD51. Overexpression of RAD51 is a predictor of poor outcome in CRC. This finding indicated the promise of future studies using RAD51 as a prognostic marker and therapeutic target.  相似文献   

9.
Bertrand P  Lambert S  Joubert C  Lopez BS 《Oncogene》2003,22(48):7587-7592
Rad51 protein plays a pivotal role in homologous recombination (HR), which is involved in double-strand break repair and in genome maintenance. Despite interactions with tumor suppressor proteins, the role of mammalian Rad51 and more generally of HR in tumor prevention is not clearly established. Indeed, both high and low frequencies of HR as well as high and low levels of RAD51 expression have been reported in tumors and in precancerous conditions. To address the question of the impact of HR on tumorigenesis, we used Chinese hamster ovary (CHO) p53-defective cell lines overexpressing the mouse MmRAD51, which stimulates HR (we name these lines: Hyper-rec lines). In parallel, we used CHO cell lines expressing a RAD51 dominant-negative form that specifically inhibits gene conversion without affecting cell viability (Hypo-rec lines). These different lines were injected into nude mice to measure their tumorigenicity. Hypo-rec lines generated a higher frequency of tumors, which also exhibited faster growth, compared to control and Hyper-rec lines. Consistent with tumorigenicity, Hypo-rec cells exhibit spontaneous centrosome duplication defects and aneuploidy. These results are the first direct evidence of involvement of RAD51 in tumor repression.  相似文献   

10.

Background and purpose

RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR.

Materials and methods

Protein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay.

Results

Amuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells.

Conclusions

Amuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.  相似文献   

11.
K Schlacher  H Wu  M Jasin 《Cancer cell》2012,22(1):106-116
Genes mutated in patients with Fanconi anemia (FA) interact with the DNA repair genes BRCA1 and BRCA2/FANCD1 to suppress tumorigenesis, but the molecular functions ascribed to them cannot fully explain all of their cellular roles. Here, we show a repair-independent requirement for FA genes, including FANCD2, and BRCA1 in protecting stalled replication forks from degradation. Fork protection is surprisingly rescued in FANCD2-deficient cells by elevated RAD51 levels or stabilized RAD51 filaments. Moreover, FANCD2-mediated fork protection is epistatic with RAD51 functions, revealing an unanticipated fork protection pathway that connects FA genes to RAD51 and the BRCA1/2 breast cancer suppressors. Collective results imply a unified molecular mechanism for repair-independent functions of FA, RAD51, and BRCA1/2 proteins in preventing genomic instability and suppressing tumorigenesis.  相似文献   

12.
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.  相似文献   

13.
Acute and chronic hypoxia exists within the three-dimensional microenvironment of solid tumors and drives therapy resistance, genetic instability, and metastasis. Replicating cells exposed to either severe acute hypoxia (16 hours with 0.02% O(2)) followed by reoxygenation or moderate chronic hypoxia (72 hours with 0.2% O(2)) treatments have decreased homologous recombination (HR) protein expression and function. As HR defects are synthetically lethal with poly(ADP-ribose) polymerase 1 (PARP1) inhibition, we evaluated the sensitivity of repair-defective hypoxic cells to PARP inhibition. Although PARP inhibition itself did not affect HR expression or function, we observed increased clonogenic killing in HR-deficient hypoxic cells following chemical inhibition of PARP1. This effect was partially reversible by RAD51 overexpression. PARP1(-/-) murine embryonic fibroblasts (MEF) showed a proliferative disadvantage under hypoxic gassing when compared with PARP1(+/+) MEFs. PARP-inhibited hypoxic cells accumulated γH2AX and 53BP1 foci as a consequence of altered DNA replication firing during S phase-specific cell killing. In support of this proposed mode of action, PARP inhibitor-treated xenografts displayed increased γH2AX and cleaved caspase-3 expression in RAD51-deficient hypoxic subregions in vivo, which was associated with decreased ex vivo clonogenic survival following experimental radiotherapy. This is the first report of selective cell killing of HR-defective hypoxic cells in vivo as a consequence of microenvironment-mediated "contextual synthetic lethality." As all solid tumors contain aggressive hypoxic cells, this may broaden the clinical utility of PARP and DNA repair inhibition, either alone or in combination with radiotherapy and chemotherapy, even in tumor cells lacking synthetically lethal, genetic mutations.  相似文献   

14.
15.
Inhibition of type 1 IGF receptor (IGF‐1R) sensitizes to DNA‐damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non‐homologous end‐joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF‐1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF‐1R‐inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time‐dependent accumulation of γH2AX foci in IGF‐1R ‐inhibited or ‐depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild‐type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2?/? colorectal cancer cells, compared with isogenic BRCA2+/? cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO‐3306, which impairs HR by inhibiting CDK1‐mediated BRCA1 phosphorylation. R0‐3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF‐1R inhibition, with 2.4‐fold reduction in AZ12253801 GI50 and 13‐fold reduction in GI80. These data suggest that responses to IGF‐1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild‐type, BRCA mutant) that may be intrinsically sensitive to IGF‐1R inhibitory drugs.  相似文献   

16.

Background and purpose

In muscle-invasive bladder cancer there is an urgent need to identify relatively non-toxic radiosensitising agents for use in elderly patients. Histone deacetylase inhibitors radiosensitise tumour cells but not normal cells in vitro and variously downregulate DNA damage signalling, homologous recombination (HR) and non-homologous end-joining (NHEJ) repair proteins. We investigated panobinostat (PAN) as a potential radiosensitiser in bladder cancer cells.

Materials and methods

Clonogenic assays were performed in RT112 bladder cancer cells, and RT112 cells stably knocked down for RAD51 or Ku80 by shRNAi. Resolution of γH2AX foci was determined by immunofluorescence confocal microscopy, cell cycle progression by FACS analysis and protein expression by western blotting.

Results

PAN had a greater radiosensitising effect in Ku80KD than RT112 or RAD51KD cells; enhancement ratios 1.35 for Ku80KD at 10 nM (IC20 for Ku80KD) and 1.31 for RT112 and RAD51KD at 25 nM (IC40 for both). PAN downregulated MRE11, NBS1 and RAD51, but not Ku70 and Ku80, increased γH2AX foci formation in a dose-dependent manner and delayed γH2AX foci repair after ionising radiation.

Conclusions

PAN acts as a radiosensitiser in bladder cancer cell lines, and appears to target HR rather than NHEJ. As muscle-invasive bladder tumours have reduced Ku-DNA binding, PAN could be particularly useful as a radiosensitiser in bladder cancer.  相似文献   

17.
Kumari A  Schultz N  Helleday T 《Oncogene》2004,23(13):2324-2329
Genetic instability caused by mutations in the p53 gene is generally thought to be due to a loss of the DNA damage response that controls checkpoint functions and apoptosis. Cells with mutant p53 exhibit high levels of homologous recombination (HR). This could be an indirect consequence of the loss of DNA damage response or p53 could have a direct role in HR. Here, we report that p53-/- mouse embryonic fibroblasts (MEFs) exhibit higher levels of the RAD51 protein and increased level of spontaneous RAD51 foci Agents that stall replication forks, for example, hydroxyurea (HU), potently induce HR repair and RAD51 foci. To test if the increase in RAD51 foci in p53-/- MEFs was due to an increased level of damage during replication, we measured the formation of DNA double-strand breaks (DSBs) in p53+/+ and p53-/- MEFs following treatments with HU. We found that HU induced DSBs only in p53-/- MEFs, indicating that p53 is involved in a pathway to protect stalled replication forks from being collapsed into a substrate for HR. Also, p53 is upregulated in response to agents that inhibit DNA replication, which supports our hypothesis. Finally, we observed that the DSBs produced in p53-/- MEFs did not result in a permanent arrest of replication and that they were repaired. Altogether, we suggest that the effect of p53 on HR and RAD51 levels and foci can be explained by the idea that p53 suppresses formation of recombinogenic lesions.  相似文献   

18.
Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher's exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11-35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.  相似文献   

19.
Extensive chromosomal instability in Rad51d-deficient mouse cells   总被引:8,自引:0,他引:8  
Homologous recombination is a double-strand break repair pathway required for resistance to DNA damage and maintaining genomic integrity. In mitotically dividing vertebrate cells, the primary proteins involved in homologous recombination repair are RAD51 and the five RAD51 paralogs, RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3. In the absence of Rad51d, human and mouse cells fail to proliferate, and mice defective for Rad51d die before birth, likely as a result of genomic instability and p53 activation. Here, we report that a p53 deletion is sufficient to extend the life span of Rad51d-deficient embryos by up to 6 days and rescue the cell lethal phenotype. The Rad51d-/- Trp53-/- mouse embryo-derived fibroblasts were sensitive to DNA-damaging agents, particularly interstrand cross-links, and exhibited extensive chromosome instability including aneuploidy, chromosome fragments, deletions, and complex rearrangements. Additionally, loss of Rad51d resulted in increased centrosome fragmentation and reduced levels of radiation-induced RAD51-focus formation. Spontaneous frequencies of sister chromatid exchange were not affected by the absence of Rad51d, but sister chromatid exchange frequencies did fail to be induced upon challenge with the DNA cross-linking agent mitomycin C. These findings support a crucial role for mammalian RAD51D in normal development, recombination, and maintaining mammalian genome stability.  相似文献   

20.
Bloom protein (BLM) is a 3'-5' helicase, mutated in Bloom syndrome, which plays an important role in response to DNA double-strand breaks and stalled replication forks. Here, we show that BCR/ABL tyrosine kinase, which also modulates DNA repair capacity, is associated with elevated expression of BLM. Downregulation of BLM by antisense cDNA or dominant-negative mutant inhibits homologous recombination repair (HRR) and increases sensitivity to cisplatin in BCR/ABL-positive cells. Bone marrow cells from mice heterozygous for BLM mutation, BLM(Cin/+), transfected with BCR/ABL display increased sensitivity to cisplatin compared to those obtained from the wild-type littermates. BCR/ABL promotes interactions of BLM with RAD51, while simultaneous overexpression of BLM and RAD51 in normal cells increases drug resistance. These data suggest that BLM collaborates with RAD51 to facilitate HRR and promotes the resistance of BCR/ABL-positive leukemia cells to DNA-damaging agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号