首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Erlotinib is highly effective in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. However, despite initial favorable responses, most patients rapidly develop resistance to erlotinib soon after the initial treatment. This study aims to identify new genes and pathways associated with erlotinib resistance mechanisms in order to develop novel therapeutic strategies. Here, we induced knockout (KO) mutations in erlotinib‐resistant human lung cancer cells (NCI‐H820) using a genome‐scale CRISPR‐Cas9 sgRNA library to screen for genes involved in erlotinib susceptibility. The spectrum of sgRNAs incorporated among erlotinib‐treated cells was substantially different to that of the untreated cells. Gene set analyses showed a significant depletion of ‘cell cycle process’ and ‘protein ubiquitination pathway’ genes among erlotinib‐treated cells. Chemical inhibitors targeting genes in these two pathways, such as nutlin‐3 and carfilzomib, increased cancer cell death when combined with erlotinib in both in vitro cell line and in vivo patient‐derived xenograft experiments. Therefore, we propose that targeting cell cycle processes or protein ubiquitination pathways are promising treatment strategies for overcoming resistance to EGFR inhibitors in lung cancer.

Abbreviations

ATCC
American Type Culture Collection
edgeR
bioconductor software package for examining differential expression of replicated count data
EGFR
epidermal growth factor receptor
GeCKO
genome‐scale CRISPR/Cas9 knockout
HGF
hepatocyte growth factor
MAGeCK‐VISPR algorithm
comprehensive quality control analysis and visualization pipeline for CRISPR/Cas9 screens based on MAGeCK VISPR
MOI
multiplicity of infection
NSCLC
non‐small‐cell lung cancer
SCLC
small cell lung cancer
sgRNA
single‐guide RNA
TKIs
tyrosine kinase inhibitors
  相似文献   

2.
3.
4.
Several platforms for noninvasive EGFR testing are currently used in the clinical setting with sensitivities ranging from 30% to 100%. Prospective studies evaluating agreement and sources for discordant results remain lacking. Herein, seven methodologies including two next‐generation sequencing (NGS)‐based methods, three high‐sensitivity PCR‐based platforms, and two FDA‐approved methods were compared using 72 plasma samples, from EGFR‐mutant non‐small‐cell lung cancer (NSCLC) patients progressing on a first‐line tyrosine kinase inhibitor (TKI). NGS platforms as well as high‐sensitivity PCR‐based methodologies showed excellent agreement for EGFR‐sensitizing mutations (K = 0.80–0.89) and substantial agreement for T790M testing (K = 0.77 and 0.68, respectively). Mutant allele frequencies (MAFs) obtained by different quantitative methods showed an excellent reproducibility (intraclass correlation coefficients 0.86–0.98). Among other technical factors, discordant calls mostly occurred at mutant allele frequencies (MAFs) ≤ 0.5%. Agreement significantly improved when discarding samples with MAF ≤ 0.5%. EGFR mutations were detected at significantly lower MAFs in patients with brain metastases, suggesting that these patients risk for a false‐positive result. Our results support the use of liquid biopsies for noninvasive EGFR testing and highlight the need to systematically report MAFs.

Abbreviations

BEAMing
beads, emulsion, amplification, and magnetics
cfDNA
circulating free DNA, cell‐free DNA
cobas
cobas® EGFR Mutation Test v2 (Roche Diagnostics)
ctDNA
circulating tumor DNA
CUSUM
cumulative sum
ddPCR
droplet digital polymerase chain reaction
dPCR
digital polymerase chain reaction
EGFR
epidermal growth factor receptor
FFPE
formalin‐fixed, paraffin‐embedded
ICC
intraclass correlation coefficient
MAF
mutant allele frequency
NGS platforms
Ion S5™ XL and GeneRead™
NGS
next‐generation sequencing
NSCLC
non‐small‐cell lung cancer
PNA‐Q‐PCR
peptic nucleic acid probe‐based real‐time polymerase chain reaction
Therascreen
Therascreen EGFR Plasma RGQ PCR Kit (QIAgen)
TKI
tyrosine kinase inhibitor
  相似文献   

5.
6.
《Molecular oncology》2021,15(5):1412
The cellular receptor Notch1 is a central regulator of T‐cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T‐cell acute lymphoblastic leukemia (T‐ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T‐ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti‐Notch therapies in T‐ALL models. In this work, we report that Notch1 upregulation in T‐ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1‐driven T‐ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1‐induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1‐driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1‐driven leukemia.

Abbreviations

7‐AAD
7‐Aminoactinomycin D
BPTES
bis‐2‐(5‐phenylacetamido‐1,2,4‐thiadiazol‐2‐yl)ethyl sulfide
DON
diazo‐5‐oxo‐L‐norleucine
ECAR
extracellular acidification rate
GDH
glutamate dehydrogenase
GLS
glutaminase
GS
glutamine synthetase
GSI
γ‐secretase inhibitor
MSO
L‐methionine sulfoximine
mTORC1
mammalian target of rapamycin complex 1
NICD
Notch intracellular domain
PI
propidium iodide
RAP
rapamycin
T‐ALL
T‐cell acute lymphoblastic leukemia
TCA
tricarboxylic acid
αKG
α‐ketoglutarate
  相似文献   

7.
8.
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.

Abbreviations

1D/WB
monodimensional western blotting
2D/WB
two‐dimensional western blotting
CDK
cyclin‐dependent kinase
CHX
cycloheximide
G9R‐p27
glycine9‐>arginine‐p27
IUPs
intrinsically unstructured proteins
mAbs
monoclonal antibodies
MEN
multiple endocrine neoplasia
MENX
multiple endocrine neoplasia X
PTMs
post‐translational modifications
rAbs
rabbit antibodies
TSG
tumor suppressor gene
wt‐p27
wild‐type p27
  相似文献   

9.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

10.
The WJOG8815L phase II clinical study involves patients with non‐small cell lung cancer (NSCLC) that harbored the EGFR T790M mutation, which confers resistance to EGFR tyrosine kinase inhibitors (TKIs). The purpose of this study was to assess the predictive value of monitoring EGFR genomic alterations in circulating tumor DNA (ctDNA) from patients with NSCLC that undergo treatment with the third‐generation EGFR‐TKI osimertinib. Plasma samples of 52 patients harboring the EGFR T790M mutation were obtained pretreatment (Pre), on day 1 of treatment cycle 4 (C4) or cycle 9 (C9), and at diagnosis of disease progression or treatment discontinuation (PD/stop). CtDNA was screened for EGFR‐TKI‐sensitizing mutations, the EGFR T790M mutation, and other genomic alterations using the cobas EGFR Mutation Test v2 (cobas), droplet digital PCR (ddPCR), and targeted deep sequencing. Analysis of the sensitizing—and T790M—EGFR mutant fractions (MFs) was used to determine tumor mutational burden. Both MFs were found to decrease during treatment, whereas rebound of the sensitizing EGFR MF was observed at PD/stop, suggesting that osimertinib targeted both T790M mutation‐positive tumors and tumors with sensitizing EGFR mutations. Significant differences in the response rates and progression‐free survival were observed between the sensitizing EGFR MF‐high and sensitizing EGFR MF‐low groups (cutoff: median) at C4. In conclusion, ctDNA monitoring for sensitizing EGFR mutations at C4 is suitable for predicting the treatment outcomes in NSCLC patients receiving osimertinib (Clinical Trial Registration No.: UMIN000022076).

Abbreviations

CIs
confidence intervals
ctDNA
circulating tumor DNA
ddPCR
droplet digital PCR
EGFR
epidermal growth factor receptor
MFs
mutant fractions
NGS
next‐generation sequencing
NSCLC
non‐small cell lung cancer
ORR
overall response rate
OS
overall survival
PD
progressive disease
PFS
progression‐free survival
PR
partial response
SD
stable disease
TKI
tyrosine kinase inhibitor
  相似文献   

11.
Dependence on glutamine and acceleration of fatty acid oxidation (FAO) are both metabolic characteristics of triple‐negative breast cancer (TNBC). With the rapid growth of tumors, accelerated glutamine catabolism depletes local glutamine, resulting in glutamine deficiency. Studies have shown that the use of alternative energy sources, such as fatty acids, enables tumor cells to continue to proliferate rapidly in a glutamine‐deficient microenvironment. However, the detailed mechanisms behind this metabolic change are still unclear. Herein, we identified HRD1 as a regulatory protein for FAO that specifically inhibits TNBC cell proliferation under glutamine‐deficient conditions. Furthermore, we observed that HRD1 expression is significantly downregulated under glutamine deprivation and HRD1 directly ubiquitinates and stabilizes CPT2 through K48‐linked ubiquitination. In addition, the inhibition of CPT2 expression dramatically suppresses TNBC cell proliferation mediated by HRD1 knockdown in vitro and in vivo. Finally, we found that the glutaminase inhibitor CB839 significantly inhibited TNBC cell tumor growth, but not in the HRD1 knock‐downed TNBC cells. These findings provide an invaluable insight into HRD1 as a regulator of lipid metabolism and have important implications for TNBC therapeutic targeting.

Abbreviations

CPT1A
carnitine palmitoyltransferase 1A
CPT2
carnitine palmitoyltransferase 2
FAO
fatty acid oxidation
GLS
glutaminase
HRD1
HMG‐CoA reductase degradation protein 1
LC‐MS
liquid chromatography mass spectrometry
TNBC
triple‐negative breast cancer
  相似文献   

12.
The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial‐to‐mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal‐type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal‐type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFβ signaling coordinated YAP‐dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFβ/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal‐type lung cancer.

Abbreviations

AUC
area under the curve
AXL
AXL receptor tyrosine kinase
BCL2
B‐cell lymphoma 2
CTD2
cancer target discovery and development
CTGF
connective tissue growth factor
DEG
differentially expressed genes
DOXO
doxorubicin
EMT
epithelial–mesenchymal transition
Eto
etoposide
FDA
Food and Drug Administration
ITGB3
integrin beta‐3
MAPK
mitogen‐activated protein kinase
MMP2
matrix metalloproteinase‐2
MMP9
matrix metalloproteinase‐9
mRNA
messenger RNA
NF‐κB
nuclear factor kappa‐light‐chain‐enhancer of activated B cells
SBE
SMAD binding element
SERPINE1
serpin family E member 1
siRNA
small interfering RNA
ssGSEA
single‐sample gene set enrichment analysis
TCGA
The Cancer Genome Atlas
TGFβ
transforming growth factor beta
YAP
Yes‐associated protein
YAP8SA
mutants of inhibitory phosphorylation site at eight serine to Alanine of YAP
ZEB1
zinc finger E‐box binding homeobox 1
ZEB2
zinc finger E‐box‐binding homeobox 2
  相似文献   

13.
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR‐326 and its host gene β‐arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro‐survival function. Our models revealed that miR‐326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation‐associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR‐326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR‐326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro‐apoptotic activity. Similar to miR‐326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR‐326/ARRB1 expression, limiting E2F1 pro‐proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.

Abbreviations

ARRB1
β‐arrestin1
BTC
bulk tumor cell
CSCs
cancer stem cells
EZH2
enhancer of zeste homolog 2
GCP
granule cell progenitors
MB
medulloblastoma
OFC
oncosphere‐forming cell
  相似文献   

14.
15.
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease‐specific survival, and disease‐free survival. Gain‐of‐function and loss‐of‐function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF‐κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin‐bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF‐κB signaling. Through activation of NF‐κB, LINC01578 further upregulated YY1 expression. Through activation of the NF‐κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF‐κB/YY1 formed a positive feedback loop. Blocking NF‐κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF‐κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.

Abbreviations

ChIP
chromatin immunoprecipitation
ChIRP
chromatin isolation by RNA purification
COAD
colon adenocarcinoma
CPAT
Coding‐Potential Assessment Tool
CPC
coding potential calculator
DFS
disease‐free survival
DSS
disease‐specific survival
EdU
5‐ethynyl‐2''‐deoxyuridine
H&E
hematoxylin and eosin
HR
hazard ratio
IHC
immunohistochemistry
IKK
IκB kinase
IκB
inhibitory κB
lncRNAs
long noncoding RNAs
NC
negative control
NCBI
National Center for Biotechnology Information
NF‐κB
nuclear factor kappa B
qRT‐PCR
quantitative real‐time polymerase chain reaction
RIP
RNA immunoprecipitation
RPISeq
RNA‐Protein Interaction Prediction
TCGA
The Cancer Genome Atlas
TNF
tumor necrosis factor
TUNEL
TdT‐mediated dUTP Nick‐End Labeling
YY1
Yin Yang 1
  相似文献   

16.
High‐risk neuroblastoma (NB) patients with 11q deletion frequently undergo late but consecutive relapse cycles with fatal outcome. To date, no actionable targets to improve current multimodal treatment have been identified. We analyzed immune microenvironment and genetic profiles of high‐risk NB correlating with 11q immune status. We show in two independent cohorts that 11q‐deleted NB exhibits various immune inhibitory mechanisms, including increased CD4+ resting T cells and M2 macrophages, higher expression of programmed death‐ligand 1, interleukin‐10, transforming growth factor‐beta‐1, and indoleamine 2,3‐dioxygenase 1 (P < 0.05), and also higher chromosomal breakages (P ≤ 0.02) and hemizygosity of immunosuppressive miRNAs than MYCN‐amplified and other 11q‐nondeleted high‐risk NB. We also analyzed benefits of maintenance treatment in 83 high‐risk stage M NB patients focusing on 11q status, either with standard anti‐GD2 immunotherapy (n = 50) or previous retinoic acid‐based therapy alone (n = 33). Immunotherapy associated with higher EFS (50 vs. 30, P = 0.028) and OS (72 vs. 52, P = 0.047) at 3 years in the overall population. Despite benefits from standard anti‐GD2 immunotherapy in high‐risk NB patients, those with 11q deletion still face poor outcome. This NB subgroup displays intratumoral immune suppression profiles, revealing a potential therapeutic strategy with combination immunotherapy to circumvent this immune checkpoint blockade.

Abbreviations

11q‐del
11q‐deleted
ADCC
antibody‐dependent cellular cytotoxicity
CDC
complement‐dependent cytotoxicity
COJEC
chemotherapeutic agents cisplatin, vincristine, carboplatin, etoposide, and cyclophosphamide
CTLA‐4
cytotoxic T lymphocyte antigen 4
EFS
event‐free survival
FISH
fluorescence in situ hybridization
HR
hazard ratio
ICI
immune checkpoint inhibitor
IDO1
indoleamine 2,3‐dioxygenase 1
IFN‐γ
interferon‐γ
IL‐10
interleukin 10
INRG
International Neuroblastoma Risk Group
miR
microRNA
MLPA
multiplex ligation‐dependent probe amplification
MMR
mismatch repair
MNA
MYCN amplification
MS
metastatic special stage
MSI
microsatellite instability
NB
neuroblastoma
NCA
numerical chromosome aberrations
NOS
nitric oxide synthase
OS
overall survival
PD‐1
programmed cell death protein 1
PD‐L1
programmed death‐ligand 1
SCA
segmental chromosome aberrations
TAM
tumor‐associated macrophages
Tfh
follicular helper T cells
TGF‐β
tumor growth factor‐β
TMB
tumor mutational burden
TME
tumor microenvironment
TNF‐α
tumor necrosis factor‐α
Treg
regulatory T cells
  相似文献   

17.
KRAS is a key oncogenic driver in lung adenocarcinoma (LUAD). Chromatin‐remodeling gene SMARCA4 is comutated with KRAS in LUAD; however, the impact of SMARCA4 mutations on clinical outcome has not been adequately established. This study sought to shed light on the clinical significance of SMARCA4 mutations in LUAD. The association of SMARCA4 mutations with survival outcomes was interrogated in four independent cohorts totaling 564 patients: KRAS‐mutant patients with LUAD who received nonimmunotherapy treatment from (a) The Cancer Genome Atlas (TCGA) and (b) the MSK‐IMPACT Clinical Sequencing (MSK‐CT) cohorts; and KRAS‐mutant patients with LUAD who received immune checkpoint inhibitor‐based immunotherapy treatment from (c) the MSK‐IMPACT (MSK‐IO) and (d) the Wake Forest Baptist Comprehensive Cancer Center (WFBCCC) immunotherapy cohorts. Of the patients receiving nonimmunotherapy treatment, in the TCGA cohort (n = 155), KRAS‐mutant patients harboring SMARCA4 mutations (KS) showed poorer clinical outcome [P = 6e‐04 for disease‐free survival (DFS) and 0.031 for overall survival (OS), respectively], compared to KRASTP53 comutant (KP) and KRAS‐only mutant (K) patients; in the MSK‐CT cohort (n = 314), KS patients also exhibited shorter OS than KP (= 0.03) or K (= 0.022) patients. Of patients receiving immunotherapy, KS patients consistently exhibited the shortest progression‐free survival (PFS; = 0.0091) in the MSK‐IO (n = 77), and the shortest PFS (= 0.0026) and OS (P = 0.0014) in the WFBCCC (n = 18) cohorts, respectively. Therefore, mutations of SMARCA4 represent a genetic factor leading to adverse clinical outcome in lung adenocarcinoma treated by either nonimmunotherapy or immunotherapy.

Abbreviations

DCB
durable clinical benefit
DFS
disease‐free survival
K
KRAS‐only mutant
KL
KRAS‐STK11 comutant
KP
KRAS‐TP53 comutant
KS
KRAS‐SMARCA4 comutant
LUAD
lung adenocarcinoma
LUSC
lung squamous carcinoma
MSK‐CT
the MSK‐IMPACT clinical sequencing cohort
MSK‐IO
MSK‐IMPACT cohort
NSCLC
non‐small‐cell lung cancer
OS
overall survival
PFS
progression‐free survival
TCGA
The Cancer Genome Atlas
WFBCCC
the Wake Forest Baptist Comprehensive Cancer Center
  相似文献   

18.
The oncogenic fusion protein nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), found in anaplastic large‐cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM‐ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM‐ALK interacted with Epstein–Barr virus nuclear antigen 1‐binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM‐ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0/G1‐phase cell cycle arrest in Ba/F3 cells transformed by NPM‐ALK and ALCL patient‐derived Ki‐JK cells, but not ALCL patient‐derived SUDH‐L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM‐ALK and Ki‐JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC‐0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt‐mTORC1 pathway in NPM‐ALK‐positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.

Abbreviations

ALCL
anaplastic large‐cell lymphoma
EBP2
EBNA1‐binding protein 2
IMT
inflammatory myofibroblastic tumors
mTOR
mechanistic target of rapamycin
mTORC1
mTOR complex 1
NoLS
nucleolar localization signal
NPM1
nucleophosmin 1
NPM‐ALK
nucleophosmin‐anaplastic lymphoma kinase
NSCLC
non‐small cell lung cancer
TPM3
tropomyosin 3
  相似文献   

19.
20.
Leptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin‐induced growth of breast cancer cells. Herein, leptin induced significant increase in fatty acid oxidation‐dependent ATP production in estrogen receptor‐positive breast cancer cells. Furthermore, leptin induced both free fatty acid release and intracellular lipid accumulation, indicating a multifaceted effect of leptin in fatty acid metabolism. These findings were further validated in an MCF‐7 tumor xenograft mouse model. Importantly, all the aforementioned metabolic effects of leptin were mediated via autophagy activation. In addition, SREBP‐1 induction driven by autophagy and fatty acid synthase induction, which is mediated by SREBP‐1, plays crucial roles in leptin‐stimulated metabolic reprogramming and are required for growth of breast cancer cell, suggesting a pivotal contribution of fatty acid metabolic reprogramming to tumor growth by leptin. Taken together, these results highlighted a crucial role of autophagy in leptin‐induced cancer cell‐specific metabolism, which is mediated, at least in part, via SREBP‐1 induction.

Abbreviations

2‐DG
2‐deoxyglucose
3‐MA
3‐methyladenine
ACC‐1
acetyl‐CoA carboxylase 1
ACLY
ATP citrate lyase
ER
estrogen receptor
FADS1
fatty acid desaturase 1
FADS2
fatty acid desaturase 2
FAO
fatty acid oxidation
FAS
fatty acid synthesis
FASN
fatty acid synthase
FFA
free fatty acid
IHC
immunohistochemistry
SCD‐1
stearoyl‐CoA desaturase‐1
SREBP‐1
sterol regulatory element‐binding protein 1
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号