首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulation of the stress response in asthmatic children   总被引:1,自引:1,他引:0  
The stress system co-ordinates the adaptive responses of the organism to stressors of any kind. Inappropriate responsiveness may account for increased susceptibility to a variety of disorders, including asthma. Accumulated evidence from animal models suggests that exogenously applied stress enhances airway reactivity and increases allergen-induced airway inflammation. This is in agreement with the clinical observation that stressful life events increase the risk of a new asthma attack. Activation of the hypothalamic–pituitary–adrenal (HPA) axis by specific cytokines increases the release of cortisol, which in turn feeds back and suppresses the immune reaction. Data from animal models suggest that inability to increase glucocorticoid production in response to stress is associated with increased airway inflammation with mechanical dysfunction of the lungs. Recently, a growing body of evidence shows that asthmatic subjects who are not treated with inhaled corticosteroids (ICS) are likely to have an attenuated activity and/or responsiveness of their HPA axis. In line with this concept, most asthmatic children demonstrate improved HPA axis responsiveness on conventional doses of ICS, as their airway inflammation subsides. Few patients may experience further deterioration of adrenal function, a phenomenon which may be genetically determined.  相似文献   

2.
Prenatal stress and neonatal rat brain development   总被引:7,自引:0,他引:7  
Chronic or repeated stress during human fetal brain development has been associated with various learning, behavioral, and/or mood disorders, including depression in later life. The mechanisms accounting for these effects of prenatal stress are not fully understood. The aim of this study was to investigate the effects of prenatal stress on early postnatal brain development, a disturbance of which may contribute to this increased vulnerability to psychopathology. We studied the effects of prenatal stress on fetal growth, stress-induced corticosterone secretion, brain cell proliferation, caspase-3-like activity and brain-derived neurotrophic factor protein content in newborn Fischer 344 rats. In addition to a slight reduction in birth weight, prenatal stress was associated with elevated corticosterone levels (33.8%) after 1 h of maternal deprivation on postnatal day 1, whereas by postnatal day 8 this pattern was reversed (-46.5%). Further, prenatal stress resulted in an approximately 50% decrease in brain cell proliferation just after birth in both genders with a concomitant increase in caspase-3-like activity within the hippocampus at postnatal day 1 (36.1%) and at postnatal day 5 (females only; 20.1%). Finally, brain-derived neurotrophic factor protein content was reduced in both the olfactory bulbs (-24.6%) and hippocampus (-28.2%) of prenatally stressed male offspring at postnatal days 1 and 5, respectively. These detrimental central changes observed may partly explain the increased susceptibility of prenatally stressed subjects to mood disorders including depression in later life.  相似文献   

3.
This study investigated sex differences in the stress-induced activation of neurons containing corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and enkephalin in the paraventricular nucleus (PVN) of gonadectomized male and female sheep. Groups (n=3) of both sexes were either subjected to 90 min isolation and restraint stress (stress group) or were not stressed. Blood samples were taken every 10 min for 90 min prior to and after stress to monitor cortisol levels in plasma. Brains were harvested after 90 min of stress. Stress caused elevation of plasma cortisol levels to a similar extent in both sexes. Double-labeling immunohistochemistry for Fos and either CRH, AVP or enkephalin was undertaken to quantify the numbers of neurons staining for CRH, AVP and enkephalin that also immunostained for Fos. Stress increased Fos immunostaining in all cell types. There was a greater proportion of CRH than AVP neurons activated in stressed animals. There were no sex differences in the activation of CRH and AVP neurons although females had a greater proportion of enkephalin cells staining for Fos than males in both control and stressed animals. There were no differences between control and stressed animals in the proportion of cells co-staining for CRH and AVP. We conclude that isolation and restraint stress activates neurons producing CRH, AVP and enkephalin in sheep and that CRH may play a greater role than AVP in regulating adrenocorticotrophic hormone secretion in response to this stressor in sheep. Finally, isolation and restraint stress does not influence co-localization of CRH and AVP in sheep.  相似文献   

4.
Background Acute stress affects a variety of organs and cellular systems. These include the hypothalamic–pituitary–adrenal (HPA) axis, corticotropin‐releasing factor (CRF), mast cells and nerves. Flinders‐sensitive (FSL) rat strains have hypercholinergic responses and are more sensitive than Flinders‐resistant rats (FRL) to anaphylaxis. Objective To investigate the effects of acute water avoidance stress (1 h) on FSL and FRL tracheal epithelial tissue. Methods We measured short circuit current (Isc) as a measure of tracheal response, and the effect of substance P (SP) on tracheal epithelium in Ussing chambers. Electron microscopy was performed to assess mast cell activation. Results Both strains showed increased Isc responses to stress, inhibited by prior injection of the CRF receptor 1 and 2 antagonist, α‐helical CRF‐(9–41). No increases in conductance were seen. Stress responses were accompanied by electron microscopic morphologic evidence for mast cell degranulation, which was not completely inhibited by α‐helical CRF‐(9–41) pre‐treatment. Stress primed the epithelium for an enhanced response to SP in FSL, but this again was not inhibited by α‐helical CRF‐(9–41). FRL had 2.5 times the corticosterone response of FSL. Conclusion Acute stress affects the tracheal epithelium, not accompanied by changes in ion permeability, but associated with mast cell degranulation. Because blunted HPA axis responses are associated with vulnerability to inflammation, this may partially explain the findings. These stress effects on the lung have a genetic basis associated with relative corticosterone responses, are complex and only in part mediated by CRF.  相似文献   

5.
Russell JA  Brunton PJ 《Neuroscience》2006,138(3):879-889
In late pregnant rats neuroendocrine stress responses, expressed as increased oxytocin secretion and activation of the hypothalamo-pituitary-adrenal axis, are attenuated. These adaptations preserve the oxytocin store for parturition and prevent pre-term birth, and protect the fetuses from adverse programming by exposure to excess glucocorticoid. Mechanisms of adaptations for oxytocin neurones are reviewed, using challenge with systemic interleukin-1beta, simulating activation of immune signaling by infection, as a stressor of special relevance in pregnancy. In virgin rats, systemic interleukin-1beta stimulates the firing of oxytocin neurones, and hence oxytocin secretion, but interleukin-1beta has no effects in late pregnant rats. This lack of response is reversed by naloxone treatment just before interleukin-1beta administration, indicating endogenous opioid suppression of oxytocin responses in late pregnancy. This opioid presynaptically inhibits noradrenergic terminals impinging on oxytocin neurones. Finasteride pretreatment, inhibiting progesterone conversion to allopregnanolone, a positive GABA(A) receptor allosteric modifier, also restores an oxytocin response to interleukin-1beta. This finasteride effect is reversed by allopregnanolone treatment. In virgin rats allopregnanolone attenuates the oxytocin response to interleukin-1beta, which is exaggerated by naloxone. The effects of naloxone and finasteride in late pregnant rats in restoring an oxytocin response to interleukin-1beta are not additive. Accordingly, allopregnanolone may both enhance GABA inhibition of oxytocin neurone responses to interleukin-1beta, and induce opioid suppression of noradrenaline release onto oxytocin neurones.  相似文献   

6.
脑缺血再灌注对大鼠下丘脑-垂体-肾上腺-胸腺轴的影响   总被引:1,自引:0,他引:1  
为探讨脑缺血再灌注损伤对大鼠神经-内分泌和免疫功能的影响,本研究采用免疫组织化学和放射免疫等实验技术,从形态、结构和功能三个层次观察了脑缺血再灌注损伤时大鼠下丘脑-垂体-肾上腺-胸腺(HPAT)轴的变化。结果发现:脑缺血后6h、9h组大鼠垂体重量明显减轻;其下丘脑和垂体激素分泌细胞数量减少,体积缩小;脑缺血后血浆CRH、ACTH和CORT浓度呈一致性先短暂升高后持续下降,T细胞增殖能力、T细胞克隆形成率和IL-2活性明显下降,且上述改变缺血9h组重于6h组。当脑缺血恢复再灌注时,缺血3h再灌注组比缺血6h再灌注组恢复快。以上结果表明:①脑缺血再灌注时,HPAT轴先出现一短暂的激活过程,继而很快转入抑制状态;②脑缺血再灌注损伤后大鼠免疫功能受抑制;③缺血后恢复再灌注早,HPAT轴受损轻,恢复快。  相似文献   

7.
Exposure to early life stress (ELS) can increase vulnerability to various psychiatric disorders. Although ELS has been shown to alter structure and functions of the hippocampus, amygdala and prefrontal cortex in the adult mammalian brain, it remains largely unclear whether ELS also affects embryonic or early‐stage brain development. In this study, I investigated the effects of a maternal stress (maternal starvation for 4 days) of adult zebrafish on offspring's larval brain development. Although maternal starvation did not largely affect proliferation rate in the midbrain and hindbrain, it significantly decreased that in the forebrain of larvae at 5 days post‐fertilization (dpf). I also found that embryos at 10 hr post‐fertilization (hpf) born from a starved mother showed elevated cortisol levels compared to those born from a control mother. Furthermore, cortisol treatment was sufficient to decrease proliferating cells in the forebrain of 5 dpf larvae. Our findings thus demonstrate for the first time that maternal starvation induces neurodevelopmental changes in the forebrain of zebrafish larvae and points to a possible role of maternal cortisol in mediating this effect of maternal stress to offsprings.  相似文献   

8.
Quantitative methods of cell density, the intensities of both acetyl cholinesterase (AChE) and NADPH diaphorase (NADPHd), as well as the basal expression of c-fos, have been carried out in order to study the anatomical divisions of the medial geniculate body (MGB) and the group of nuclei located ventromedially to the MGB called the paralaminar complex (PL). The MGB was composed of the dorsal (MGd), and the ventral (MGv) divisions. We included the medial, or the magnocellular division (MGm), in the PL complex. MGd was composed of a dorsolateral (DL) core and a belt. The belt was composed of the suprageniculate (SG), the deep dorsal (DD), the caudo-medial (CM) and the caudo-dorsal (CD) nuclei. In the MGv, the basal expression of c-fos was the only way to trace a clear boundary between the ovoid (Ov) and the ventrolateral (VL) divisions. However, the marginal zone (MZ) was clearly and contrastingly different. The PL was considered to be composed of: the MGm, the posterior intralaminar nucleus (PIN), the peripeduncular nucleus (PP) and the nucleus subparafascicularis lateralis (SPFL). The MGm and the PIN share most of the chemical features, meanwhile both SPFL and PP displayed different patterns of NADPHd reactivity. The study of cell density on Giemsa stained sections confirmed main divisions of the area. AChE and NADPHd methods allowed the main MGB divisions to be discriminated. The differences between subdivisions were emphasized when cell density and c-fos activity were quantified in each nucleus. Each MGB division displayed a different pattern of c-fos activity under basal conditions. Thus, c-fos basal expression was a particular feature in each MGB or PL nucleus.  相似文献   

9.
Rats repeatedly exposed to restraint show a reduced hypothalamic–pituitary–adrenal axis response upon restraint re-exposure. This hypothalamic–pituitary–adrenal axis response habituation to restraint does not generalize to other novel stressors and is associated with a decrease in stress-induced c-fos expression in a number of stress-reactive brain regions. We examined whether habituation to repeated restraint is also associated with adaptation of immediate early gene expression in brain regions that process and relay primary sensory information. These brain regions may not be expected to show gene expression adaptation to repeated restraint because of their necessary role in experience discrimination. Rats were divided into a repeated restraint group (five 1-hour daily restraint sessions) and an unstressed group (restraint naïve). On the sixth day rats from each group were either killed with no additional stress experience or at 15, 30 or 60 min during restraint. Immediate early gene expression (corticotrophin-releasing hormone heteronuclear RNA, c-fos mRNA, zif268 mRNA) was determined by in situ hybridization. A reduction in stress-induced hypothalamic–pituitary–adrenal axis hormone secretion (plasma corticosterone and adrenocorticotropic hormone) and immediate early gene expression levels in the paraventricular nucleus of the hypothalamus, the lateral septum and the orbital cortex was observed in repeated restraint as compared with restraint naïve animals. This reduction was already evident at 15 min of restraint. Unexpectedly, we also found in repeated restraint rats a reduction in restraint-induced c-fos expression in primary sensory-processing brain areas (primary somatosensory cortex, and ventroposteriomedial and dorsolateral geniculate nuclei of thalamus). The overall levels of hippocampal mineralocorticoid receptor heteronuclear RNA or glucocorticoid receptor mRNA were not decreased by repeated restraint, as may occur in response to severe chronic stress. We propose that repeated restraint leads to a systems-level adaptation whereby re-exposure to restraint elicits a rapid inhibitory modulation of primary sensory processing (i.e. sensory gating), thereby producing a widespread attenuation of the neural response to restraint.  相似文献   

10.
We investigated the association between exhaustion and the habituation of free cortisol responses to repeated stress exposure. The study comprised 25 healthy male subjects (38-59 years) who were confronted three times with the Trier Social Stress Test. Mean cortisol responses showed the well-known general habituation effect. A two-way interaction day by exhaustion (p<0.05) indicated that mean cortisol responses vary across stress sessions depending on the extent of exhaustion. Linear regression revealed a negative dose-response relationship between exhaustion and the degree of habituation (p<0.02). We identified 19 individuals showing a response habituation (negative slope) and 6 individuals showing a response sensitization over the three sessions (positive slope) with the latter reporting higher exhaustion scores. It might be hypothesized that impaired habituation to repeated exposure to the same stressor could reflect a state of increased vulnerability for allostatic load. Absence of normal habituation might be one potential mechanism how exhaustion relates to increased disease vulnerability.  相似文献   

11.
Acute injection of morphine induces expression of the immediate-early genes c-Fos and JunB in several forebrain regions of the rat, in part through an N-methyl-D-aspartate (NMDA) receptor-dependent mechanism. Because membrane depolarization through (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors is believed to be necessary for full activation of NMDA receptors, we determined the role of AMPA receptors in morphine-induced c-Fos expression. Rats were given the AMPA receptor antagonist GYKI-52466 (12.9 mg/kg, i.p.) 15 min before morphine (10 mg/kg, s.c.), or the AMPA receptor enhancer CX516 (30 mg/kg, i.p.) 5 min after morphine. The c-Fos response was attenuated by the antagonist and augmented by the enhancer. Using double immunocytochemistry, we found that morphine induced c-Fos in neurons containing the GluR2/3, but not the GluR1 and rarely the GluR4, subunits of the AMPA receptor. Double immunocytochemistry for mu opioid receptor and c-Fos showed that c-Fos expression was mainly absent in the patch compartment of the striatum, which is enriched in mu opioid receptors.The glutamatergic synapse often contains metabotropic receptors as well as ionotropic receptors. Type I metabotropic glutamate receptors are coupled to activation of protein kinase C, which has also been shown to mediate the immediate-early gene response to morphine. To determine if activation of metabotropic glutamate receptors is involved in rapid effects of morphine on the brain, rats were given the type I metabotropic glutamate receptor antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 0.2 mg/kg, i.p.) or vehicle 30 min before morphine treatment. Pretreatment with AIDA completely blocked morphine-induced c-Fos expression in the caudate-putamen.Taken together, these results demonstrate involvement of both AMPA and type I metabotropic glutamate receptors in the acute effects of morphine on the forebrain, supporting an important role for glutamatergic neurotransmission mediated by non-NMDA glutamate receptors in morphine's actions.  相似文献   

12.
BACKGROUND : Most published studies show that intranasal corticosteroids have no effect on the hypothalamic-pituitary-adrenal (HPA) axis, but there have been isolated reports to the contrary, contradicting accumulated knowledge on pharmacokinetics. OBJECTIVE : To re-evaluate the effect of fluticasone propionate aqueous nasal spray (FPANS) and triamcinolone acetonide (TAA) aqueous nasal spray on the HPA axis using an improved study design. METHODS : Twenty-three healthy volunteers were randomized in a double-blind, three-way crossover study. The study comprised a 4-day placebo run-in phase followed by three 4-day treatment periods (placebo, FPANS (200 microg once daily) or TAA aqueous nasal spray (220 microg once daily)), separated by 7-14 days washout intervals. Before the first, and on the last day of each treatment period, 12-h overnight urine was collected to assess cortisol excretion and cortisol creatinine ratio. Approximately 26 h after the last administration of study medication, volunteers underwent stimulation with 0.5 microg adrenocorticotropic hormone (ACTH). Serum cortisol concentrations were measured before and 20 and 30 min after injection. Blood and urine samples were analysed for cortisol by liquid chromatography tandem mass spectrometry. RESULTS : Compared with placebo, EP or TAA had no significant effect on mean overnight (12 h) urinary cortisol excretion, and did not significantly suppress the overnight geometric mean urinary cortisol/creatinine excretion ratio. Values for serum cortisol before and after ACTH simulation showed no significant suppression, although there was a slight blunting of the HPA-axis response following TAA treatment. CONCLUSION : This study confirms that there are no detectable effects on the HPA axis following short-term intranasal FP or TAA at their recommended dosages.  相似文献   

13.
Sepsis is characterized by a systemic inflammatory response of the immune system against an infection, presenting with hypothalamic–pituitary–adrenal (HPA) axis dysfunction, behavior alterations, and high mortality. In this study, we aimed to evaluate the effects of dexamethasone on mortality, anhedonia, circulating corticosterone and adrenocorticotropin hormone (ACTH) levels, body and adrenal gland weight, and aversive memory in sepsis survivor rats. Male Wistar rats underwent sham operation or cecal ligation and perforation (CLP) procedure. Rats subjected to CLP were treated with “basic support” and dexamethasone (at 0.2 and 2 mg/kg daily for 7 days after CLP, intraperitonially) or saline. After 10 days of sepsis procedure, it was evaluated aversive memory, sweet food consumption, and body and adrenal gland weight. Serum and plasma were also obtained. It was observed that low dose dexamethasone reverted anhedonia, normalized adrenal gland and body weight, corticosterone and ACTH levels, and decreased mortality and avoidance memory impairment, demonstrating that low doses of dexamethasone for moderate periods may be beneficial for sepsis treatment and its sequelae—depressive-like parameters and memory impairment.  相似文献   

14.
The Child Behavior Checklist Dysregulation Profile (DP) in youth has been shown to be a predictor of psychopathology later in life. We examined the activity of the hypothalamic pituitary adrenal (HPA) axis in youth with remitted, new, persistent, and no DP. Data from 489 youth (47% boys) participating in a Dutch longitudinal general population study were included (Wave 1 mean age = 11.5, Wave 2 = 14.2). Wave 2 diurnal cortisol patterns and levels in response to a laboratory stress paradigm were compared in youth with DP at Wave 1 only, Wave 2 only, both Waves, and neither Wave. Youth with the DP at Wave 2 only or at both time points showed blunted cortisol responses to stress relative to the other two groups. There were no group or sex differences in diurnal cortisol activity. More research is needed to determine how the association between DP symptoms and HPA axis functioning changes over time.  相似文献   

15.
The mechanisms by which the atypical neuroleptic clozapine produces its therapeutic effects in the treatment of schizophrenia without causing the extrapyramidal side effects that are characteristic of most antipsychotic drugs remain unclear. Recently, a single injection of the typical antipsychotic haloperidol has been shown to increase c-fos expression in the striatum [Dragunow et al. (1990) Neuroscience 37, 287-294]. C-fos is a proto-oncogene that encodes a 55,000 mol. wt phosphoprotein, Fos, which is thought to assist in the regulation of "target genes" containing an AP-1 binding site. Because a wide variety of physiological and pharmacological stimuli increase c-fos expression, it has been proposed that Fos immunohistochemistry might be useful in mapping functional pathways in the central nervous system. The present experiments examined some potential neuroanatomical differences in the actions of clozapine and haloperidol by comparing their effects on c-fos expression in the medial prefrontal cortex, nucleus accumbens, striatum and lateral septum. The effects of the selective dopamine receptor antagonists SCH 23390 (D1) and raclopride (D2) were also examined. Haloperidol (0.5, 1 mg/kg) and raclopride (1, 2 mg/kg) produced large increases in the number of Fos-containing neurons in the striatum and nucleus accumbens. SCH 23390 (0.5, 1 mg/kg) reduced the number of Fos-positive neurons in the nucleus accumbens and striatum, and had no effect in the other regions. Neither haloperidol nor raclopride increased the number of Fos-positive neurons in the medial prefrontal cortex. Haloperidol, but not raclopride, produced a modest increase in c-fos expression in the lateral septal nucleus. Clozapine (10, 20 mg/kg) was without effect in the striatum; however, it significantly increased the number of Fos-positive neurons in the nucleus accumbens, medial prefrontal cortex and lateral septal nucleus. Destruction of mesotelencephalic dopaminergic neurons with 6-hydroxydopamine abolished the increase in Fos expression in the nucleus accumbens and striatum produced by haloperidol and raclopride, and also blocked the clozapine-induced increase in the nucleus accumbens. However, the inductive effects of clozapine and haloperidol on c-fos expression in the lateral septal nucleus and of clozapine in the medial prefrontal cortex were not affected by the 6-hydroxydopamine lesions. These results suggest that clozapine's unique therapeutic profile may be related to its failure to induce Fos in the striatum as well as its idiosyncratic actions in the lateral septum and medial prefrontal cortex. The effects of clozapine in these latter regions do not appear to be mediated by dopaminergic mechanisms.  相似文献   

16.
Repeated injection of corticosterone (CORT) induces dysregulation in the HPA axis, resulting in depression and anxiety. Many studies have shown that acupuncture, which is widely used for the treatment of stress and mental illness, in East Asian countries, is an effective therapeutic intervention for psychosomatic disorders. We investigated the influence of acupuncture therapy on chronic CORT-induced behavioral responses to the forced swimming test (FST) and elevated plus maze (EPM) and expression of neuropeptide Y (NPY) in the rat brain using immunohistochemistry. Male Sprague-Dawley rats were injected with CORT (40 mg/kg, i.p.) once daily for 19 consecutive days. The dysregulation of HPA axis by external injection of CORT was confirmed by measuring the CORT concentration in plasma and the expression level of CRF in hypothalamus. Acupuncture was performed at the PC6 acupoint for 5 min before CORT injection. Acupuncture significantly reduced depression- and anxiety-like behavior and increased NPY expression in the hypothalamus. These results demonstrated that stimulation of the PC6 acupoint suppresses the symptopathology of the hypoactivated HPA axis in chronic CORT-induced rat model of depression.  相似文献   

17.
SUMMARY  This study examined the effects of sleep deprivation on the expression of the immediate early gene c-fos in the brain with both in situ hybridization and immunocytochemistry. Rats were manually sleep-derived for 3 h, 6 h, 12 h, and 24 h starting at light onset (08.00 hours), and for 12 h starting at dark onset (20.00 hours). c-Fos expression was found to be higher in sleep-deprived rats with respect to control animals in several brain areas. The increase was evident both in terms of c-fos mRNA and Fos protein, although with a different time course. Among the areas that showed a consistent induction of c-fos were many cortical regions, the medial preoptic area and the posterior hypothalamic area, some thalamic nuclei, and several nuclei of the dorsal pontine tegmentum. The pattern of c-fos expression after sleep deprivation was very similar to that observed after comparable periods of spontaneous wakefulness (Pompeiano et al. 1994). In general, the increase in c-fos expression was not simply proportional to the amount of previous wakefulness. In many areas, the highest levels of c-fos were seen after 3 h of sleep deprivation. These observations are discussed with respect to the homeostatic regulation of sleep and to the functional consequences of wakefulness in specific brain areas.  相似文献   

18.
The long term inhibition of masculine sexual behavior after repeated ejaculations is known as sexual satiety. To investigate the brain areas that may regulate sexual satiety, c-Fos expression was studied in different groups of sexually experienced male rats: controls not allowed to copulate, males allowed two or four ejaculations and animals allowed to reach sexual satiety. Interestingly, males that ejaculated two or four times had similar c-Fos densities in all the evaluated brain regions, except for the suprachiasmatic nucleus. Similarly, sexually satiated males had analogous c-Fos densities in all the evaluated brain areas independently of the number of ejaculations required to reach satiety. Sexual activity (evidenced in males that ejaculated two or four times) increased c-Fos levels in the anteromedial bed nucleus of the stria terminalis, claustrum, entorhinal cortex, medial preoptic area, nucleus accumbens core, suprachiasmatic nucleus and supraoptic nucleus; however, sexual satiety did not modify c-Fos expression in these regions. Sexually satiated males had increased c-Fos densities in the ventrolateral septum and the anterodorsal and posteroventral medial amygdala, compared with animals allowed to copulate but that did not reach sexual satiety, and decreased c-Fos density in the piriform cortex. These results suggest that the network that underlies sexual satiety is different from that which regulates copulation.  相似文献   

19.
Neocortical lesions and NGF injections into neocortex induce the immunostaining of Fos, the c-fos gene product, in neuronal nuclei in ipsilateral cortex, and amygdala. Adjacent structures including hippocampus, septal nuclei, globus pallidus, and thalamus were unaffected. It is hypothesized that trophic molecules or other chemicals are released at the injury site and these induce the c-fos gene in cells throughout the ipsilateral hemisphere. Fos induction might mediate metabolic or plasticity responses to the focal injury.  相似文献   

20.
Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号