首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The producers of influenza vaccines are not capable today to meet the global demand for an influenza vaccine in case of pandemic, so the World Health Organization recommends to develop the own influenza vaccine production in each country. A domestic preservative‐ and adjuvant‐free trivalent split vaccine against seasonal influenza was developed at the Research Institute for Biological Safety Problems. The paper presents the results of assessing safety and immunogenicity of the influenza split vaccine after single immunization of healthy volunteers aged 18‐50 years in the course of Phase I Clinical Trials. This study was randomized, blind, and placebo‐controlled. The volunteers were intramuscularly vaccinated with a dose of split vaccine or placebo. The study has shown that all local and systemic reactions had low degree of manifestation and short‐term character, so there was no need in medication. Serious side effects were not observed. On day 21 post vaccination the portion of vaccinated persons with fourfold seroconversions to influenza А/H1N1pdm09 virus was 100.0%, to influenza А/H3N2 virus—95.5%, to influenza B virus—81.8%, and in placebo group this index was 0%. Seroprotection rates against influenza А/H1N1pdm09, А/H3N2 and B viruses were 95.5, 86.3, and 72.7%, respectively. Geometric mean titers (GMT) of antibodies by day 21 post vaccination reached 175.7 for influenza А/H1N1pdm09 virus, 64.2 for influenza А/H3N2 virus, and 37.6 for influenza B virus; in placebo group GMT growth was not observed. So, the seasonal influenza split vaccine is well tolerated and fits all immunogenicity criteria for human influenza vaccines.  相似文献   

2.
目的 分析2010—2016年唐山市甲型H1N1流感病毒血凝素(hemagglutinin,HA)基因序列进化特征.方法 选取唐山市3家哨点医院流感样病例分离到的24株甲型H1N1病毒,通过RT-PCR和测序方法获得HA基因的全长序列,运用分子生物学软件和统计学软件对序列进行拼接、比对和分析.结果 同源进化分析显示,24株甲型H1N1流感病毒HA基因与疫苗株A/California/7/2009的核苷酸和氨基酸的同源性分别为97.0%~99.0%和97.0%~98.5%.进化分析显示,2010—2016年唐山地区流行的甲型H1N1流感病毒属于1、7、6三个基因分支,其中6分支毒株分为6C、6B、6B.1和6B.2亚支.氨基酸位点分析显示,不同毒株与疫苗株比较存在8~16处氨基酸位点改变,其中7个变异涉及3个抗原表位:H138Q/Y和S203T突变位于Ca区,N125S、K153E、S162N、K163T/Q突变位于Sa区,S185T突变位于Sb区同时也位于受体结合部位;2015—2016流行季6B.1分支毒株抗原位点S162N突变增加了新的潜在糖基化位点.结论 与疫苗株比较,随着时间推移唐山地区甲型H1N1流感病毒发生了抗原漂变,未来仍应关注6B分支流行株的变化.  相似文献   

3.
Highly pathogenic H5N1 influenza shares the same neuraminidase (NA) subtype with the 2009 pandemic (H1N1pdm09), and cross-reactive NA immunity might protect against or mitigate lethal H5N1 infection. In this study, mice were either infected with a sublethal dose of H1N1pdm09 or were vaccinated and boosted with virus-like particles (VLP) consisting of the NA and matrix proteins, standardized by NA activity and administered intranasally, and were then challenged with a lethal dose of HPAI H5N1 virus. Mice previously infected with H1N1pdm09 survived H5N1 challenge with no detectable virus or respiratory tract pathology on day 4. Mice immunized with H5N1 or H1N1pdm09 NA VLPs were also fully protected from death, with a 100-fold and 10-fold reduction in infectious virus, respectively, and reduced pathology in the lungs. Human influenza vaccines that elicit not only HA, but also NA immunity may provide enhanced protection against the emergence of seasonal and pandemic viruses.  相似文献   

4.
5.
The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.  相似文献   

6.

Background

Healthcare workers in primary care are at risk of infection during an influenza pandemic. The 2009 influenza pandemic provided an opportunity to assess this risk.

Aim

To measure the prevalence of seropositivity to influenza A(H1N1)pdm09 among primary healthcare workers in Canterbury, New Zealand, following the 2009 influenza pandemic, and to examine associations between seropositivity and participants’ sociodemographic characteristics, professional roles, work patterns, and seasonal influenza vaccination status.

Design and setting

An observational study involving a questionnaire and testing for influenza A(H1N1)pdm09 seropositivity in all primary healthcare workers in Canterbury, New Zealand between December 2009 and February 2010.

Method

Participants completed a questionnaire that recorded sociodemographic and professional data, symptoms of influenza-like illness, history of seasonal influenza vaccination, and work patterns. Serum samples were collected and haemagglutination inhibition antibody titres to influenza A(H1N1)pdm09 measured.

Results

Questionnaires and serum samples were received from 1027 participants, from a workforce of 1476 (response rate 70%). Seropositivity was detected in 224 participants (22%). Receipt of seasonal influenza vaccine (odds ratio [OR] = 2.0, 95% confidence interval [CI] = 1.2 to 3.3), recall of influenza (OR = 1.9, 95% CI = 1.3 to 2.8), and age ≤45 years (OR = 1.4, 95% CI = 1.0 to 1.9) were associated with seropositivity.

Conclusion

A total of 22% of primary care healthcare workers were seropositive. Younger participants, those who recalled having influenza, and those who had been vaccinated against seasonal influenza were more likely to be seropositive. Working in a dedicated influenza centre was not associated with an increased risk of seropositivity.  相似文献   

7.
Influenza A(H1N1)pdm09 pandemic virus causing the 2009 global outbreak moved into the post-pandemic period, but its variants continued to be the prevailing subtype in the 2015-2016 influenza season in Europe and Asia. To determine the molecular characteristics of influenza A(H1N1)pdm09 isolates circulating during the 2015-2016 season in Turkey, we identified mutations in the hemagglutinin (HA) genes and investigated the presence of H275Y alteration in the neuraminidase genes in the randomly selected isolates. The comparison of the HA nucleotide sequences revealed a very high homology (>99.5%) among the studied influenza A(H1N1)pdm09 isolates, while a relatively low homology (96.6%-97.2%), was observed between Turkish isolates and the A/California/07/2009 vaccine virus. Overall 14 common mutations were detected in HA sequences of all 2015-2016 influenza A(H1N1)pdm09 isolates with respect to the A/California/07/2009 virus, four of which located in three different antigenic sites. Eleven rare mutations in 12 HA sequences were also detected. Phylogenetic analysis revealed that all characterized influenza A(H1N1)pdm09 isolates formed a single genetic cluster, belonging to the genetic subclade 6B.1, defined by HA amino acid substitutions S84N, S162N, and I216T. Furthermore, all isolates showed an oseltamivir-sensitive genotype, suggesting that Tamiflu (Oseltamivir) could still be the drug of choice in Turkey.  相似文献   

8.
From January to July 2012, we looked for evidence of subclinical A (H1N1) pdm09 and seasonal human influenza viruses infections in healthy dogs in China. Sera from a total of 1920 dogs were collected from Guangdong, Guangxi, Fujian and Jiangxi provinces. We also examined archived sera from 66 dogs and cats that were collected during 2008 from these provinces. Using hemagglutination inhibition (HI) and microneutralization (MN) assays, we found that only the dogs sampled in 2012 had elevated antibodies (≥1:32) against A(H1N1)pdm09 virus and seasonal human influenza viruses: Of the 1920 dog sera, 20.5 % (n = 393) had elevated antibodies against influenza A(H1N1) pdm09 by the HI assay, 1.1 % (n = 22), and 4.7 % (n = 91) of the 1920 dogs sera had elevated antibodies against human seasonal H1N1 influenza virus and human seasonal H3N2 influenza virus by the HI assay. Compared with dogs that were raised on farms, dogs that were raised as pets were more likely to have elevated antibodies against A(H1N1)pdm09 and seasonal human influenza viruses. Seropositivity was highest among pet dogs, which likely had more diverse and frequent exposures to humans than farm dogs. These findings will help us better understand which influenza A viruses are present in dogs and will contribute to the prevention and control of influenza A virus. Moreover, further in-depth study is necessary for us to understand what roles dogs play in the ecology of influenza A.  相似文献   

9.
The novel influenza A(H1N1)pdm09 virus caused an influenza pandemic in 2009. IgM, IgG, and IgA antibody responses to A(H1N1)pdm09 hemagglutinin (HA) following A(H1N1)pdm09 virus infection were analyzed to understand antibody isotype responses. Age-matched control sera collected from U.S. residents in 2007 and 2008 were used to establish baseline levels of cross-reactive antibodies. IgM responses often used as indicators of primary virus infection were mainly detected in young patient groups (≤5 years and 6 to 15 years old), not in older age groups, despite the genetic and antigenic differences between the HA of A(H1N1)pdm09 virus and pre-2009 seasonal H1N1 viruses. IgG and IgA responses to A(H1N1)pdm09 HA were detected in all age groups of infected persons. In persons 17 to 80 years old, paired acute- and convalescent-phase serum samples demonstrated ≥4-fold increases in the IgG and IgA responses to A(H1N1)pdm09 HA in 80% and 67% of A(H1N1)pdm09 virus-infected persons, respectively. The IgG antibody response to A(H1N1)pdm09 HA was cross-reactive with HAs from H1, H3, H5, and H13 subtypes, suggesting that infections with subtypes other than A(H1N1)pdm09 might result in false positives by enzyme-linked immunosorbent assay (ELISA). Lower sensitivity compared to hemagglutination inhibition and microneutralization assays and the detection of cross-reactive antibodies against homologous and heterologous subtype are major drawbacks for the application of ELISA in influenza serologic studies.  相似文献   

10.
The early isolated swine‐origin influenza A(H1N1)pdm09 viruses were susceptible to oseltamivir; however, there is a concern about whether oseltamivir‐resistant influenza A(H1N1)pdm09 viruses will spread worldwide as did the oseltamivir‐resistant seasonal influenza A(H1N1) viruses in 2007–2008. In this study, the frequency of oseltamivir resistance in influenza A(H1N1)pdm09 viruses was determined in Taiwan. From May 2009 to April 2011, 1,335 A(H1N1)pdm09‐positive cases in Taiwan were tested for the H275Y mutation in the neuraminidase (NA) gene that confers resistance to oseltamivir. Among these, 15 patients (1.1%) were found to be infected with H275Y virus. All the resistant viruses were detected after the patients have received the oseltamivir. The overall monthly ratio of H275Y‐harboring viruses ranged between 0% and 2.88%, and the peak was correlated with influenza epidemics. The genetic analysis revealed that the oseltamivir‐resistant A(H1N1)pdm09 viruses can emerged from different variants with a great diversity under drug pressure. The ratio of NA/HA activities in different clades of oseltamivir‐resistant viruses was reduced compared to those in the wild‐type viruses, indicating that the balance of NA/HA in the current oseltamivir‐resistant influenza A(H1N1)pdm09 viruses was interfered. It is possible that H275Y‐bearing A(H1N1)pdm09 virus has not yet spread globally because it lacks the essential permissive mutations that can compensate for the negative impact on fitness by the H275Y amino acid substitution in NA. Continuous monitoring the evolution patterns of sensitive and resistant viruses is required to respond to possible emergence of resistant viruses with permissive genetic background which enable the wide spread of resistance. J. Med. Virol. 85:379–387, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The vaccination program against the 2009 pandemic H1N1 influenza virus (2009 H1N1) provided a unique opportunity to determine if immune responses to the 2009 H1N1 vaccine were affected by a recent, prior vaccination against seasonal influenza virus. In the present study, we studied the immune responses to the 2009 H1N1 vaccine in subjects who either received the seasonal influenza virus vaccination within the prior 3 months or did not. Following 2009 H1N1 vaccination, subjects previously given a seasonal influenza virus vaccination exhibited significantly lower antibody responses, as determined by hemagglutination inhibition assay, than subjects who had not received the seasonal influenza virus vaccination. This result is compatible with the phenomenon of "original antigenic sin," by which previous influenza virus vaccination hampers induction of immunity against a new variant. Our finding should be taken into account for future vaccination programs against pandemic influenza virus outbreaks.  相似文献   

12.
Pandemic influenza A (H1N1) 2009 virus (H1N1pdm09) was a novel tri-assortment virus that emerged in Mexico and North America in 2009 and caused the first influenza pandemic in the 21st century. This study investigated the prevalence pattern and molecular characteristics of H1N1pdm09 in three continuous years from April 2009 to March 2012 in populations of Tianjin, Northeast China. Totally, 3,068 influenza viruses (25.4 %) were detected from 12,089 respiratory specimens. Among them, 41.4 % (1,269/3,068) were H1N1pdm09 positive. 15.1 % (192/1,269) severe respiratory infection cases were H1N1pdm09 positive. H1N1pdm09 was the predominant prevalence subtype in October 2009–March 2010 (69.1 %, 930/1,346) and October 2010–March 2011 (42.1 %, 220/523). Eight isolated H1N1pdm09 viruses from severe infection/death cases in three different years were selected to sequence the whole genome through splicing the sequences following 46 PCRs. HA sequences of seven H1N1pdm09 isolates from mild infection cases were detected. Phylogenetic analysis showed that HA, NA, M, NP and NS genes of H1N1pdm09 viruses gathered together with swine influenza A (H1N1), whereas PB2 and PA genes originated from avian influenza virus, and PB1 gene originated from human seasonal influenza virus. Identity analysis indicated that all the genes were highly conserved. Compared with vaccine strain A/California/07/2009(H1N1), the maximal mutation gene was HA (0.7–2.6 %), then NA (0.6–1.7 %), last one was M (mutation rate 0–0.6 %). More site substitutions were observed in 2011 isolates than in 2009 and 2010 isolates of HA (p = 0.002), NA (p = 0.003) and PA (p = 0.001) proteins. The amino acid substitution rates were varied among eight gene segments, ranging from 7.39 × 10?4 for PB2 to 7.40 × 10?3 for NA. The higher d N / d S rates were observed in HA, PA and NS segments in H1N1pdm09 in Tianjin. Three HA amino acid site substitutions occurred at the HA receptor-binding sites and antigenic determinant, including S179N and K180T (located at antigenic site Sa) in A/Tianjinhedong/SWL44/2011(H1) and A/Tianjinjinnan/SWL41/2011(H1), and D239N (located at antigenic site Ca) in A/Tianjinninghe/SWL49/2009(H1). Antigenic drift may have occurred in H1N1pdm09 with time. No oseltamivir-resistance site substitution was observed at 275 and 295 sites. Amino acid residue site at 31 in M2 protein was N in all 8 isolates, which suggested that H1N1pdm09 was resistant to amantadine.  相似文献   

13.
ABSTRACT: BACKGROUND: Influenza infection may be more serious in human immunodeficiency virus (HIV)-infected individuals, therefore, vaccination against seasonal and pandemic strains is highly advised. Seasonal influenza vaccines have had no significant negative effects in well controlled HIV infection, but the impact of adjuvanted pandemic A/California/07/2009 H1N1 influenza hemaglutinin (HA) vaccine, which was used for the first time in the Canadian population as an authorized vaccine in autumn 2009, has not been extensively studied. OBJECTIVE: Assess vaccine-related effects on CD4+ T cell counts and humoral responses to the vaccine in individuals attending the Newfoundland and Labrador Provincial HIV clinic. METHODS: A single dose of ArepanrixTM split vaccine including 3.75 mug A/California/07/2009 H1N1 HA antigen and ASO3 adjuvant was administered to 81 HIV-infected individuals by intramuscular injection. Plasma samples from shortly before, and 1--5 months after vaccination were collected from 80/81 individuals to assess humoral anti-H1N1 HA responses using a sensitive microbead-based array assay. Data on CD4+ T cell counts, plasma viral load, antiretroviral therapy and patient age were collected from clinical records of 81 individuals. RESULTS: Overall, 36/80 responded to vaccination either by seroconversion to H1N1 HA or with a clear increase in anti-H1N1 HA antibody levels. Approximately 1/3 (28/80) had pre-existing anti-H1N1 HA antibodies and were more likely to respond to vaccination (22/28). Responders had higher baseline CD4+ T cell counts and responders without pre-existing antibodies against H1N1 HA were younger than either non-responders or responders with pre-existing antibodies. Compared to changes in their CD4+ T cell counts observed over a similar time period one year later, vaccine recipients displayed a minor, transient fall in CD4+ T cell numbers, which was greater amongst responders. CONCLUSIONS: We observed low response rates to the 2009 pandemic influenza vaccine among HIV-infected individuals without pre-existing antibodies against H1N1 HA and a minor transient fall in CD4+ T cell numbers, which was accentuated in responders. A single injection of the ArepanrixTM pandemic A/California/07/2009 H1N1 HA split vaccine may be insufficient to induce protective immunity in HIV-infected individuals without pre-existing anti-H1N1 HA responses.  相似文献   

14.
Antigen-specific antibodies are well characterized after vaccination with pandemic H1N1 or seasonal influenza vaccines. However, knowledge on cellular immunity toward pandemic H1N1 after vaccination and infection and cross-reactivities toward seasonal antigens is limited. Nineteen individuals were vaccinated with the pandemic H1N1 vaccine. Among those, ten had been prevaccinated against seasonal influenza. CD4(+) T cells specific for pandemic H1N1 and for seasonal vaccine, and antibodies were monitored using flow cytometry and ELISA/neutralization assays, respectively. In addition, seven patients with acute pandemic influenza infection were analyzed. Pandemic H1N1 vaccination induced a strong 4.63-fold (IQR 4.16) increase in antigen-specific CD4(+) T cells that was more pronounced in individuals not prevaccinated with seasonal influenza (p = 0.01). T-cell levels toward seasonal vaccine concomitantly rose by 2.71-fold (IQR 2.26). Likewise, prevaccination with seasonal influenza induced a less pronounced increase in specific antibodies. Influenza-specific T cells in vaccinees had a Th1 phenotype mainly coexpressing IFN-γ and IL-2, whereas patients with active pandemic influenza showed a shift toward cells predominantly expressing IFN-γ. In conclusion, T cells toward seasonal influenza antigens cross-react with pandemic H1N1 antigens and affect induction of specific T cells after pandemic influenza vaccination. In addition, the cytokine patterns of specific T cells during acute H1N1 infection and after vaccination differ, and the predominantly dual-positive cytokine profile of vaccine-induced T cells suggests sufficient functionality to confer successful virus control.  相似文献   

15.
Immunization of the world population before an influenza pandemic such as the 2009 H1N1 virus spreads globally is not possible with current vaccine production platforms. New influenza vaccine technologies, such as virus-like-particles (VLPs), offer a promising alternative. Here, we tested the immunogenicity and protective efficacy of a VLP vaccine containing hemagglutinin (HA) and M1 from the 2009 pandemic H1N1 influenza virus (H1N1pdm) in ferrets and compared intramuscular (i.m.) and intranasal (i.n.) routes of immunization. Vaccination of ferrets with VLPs containing the M1 and HA proteins from A/California/04/2009 (H1N1pdm) induced high antibody titers and conferred significant protection against virus challenge. VLP-vaccinated animals lost less weight, shed less virus in nasal washes, and had markedly lower virus titers in all organs tested than naïve controls. A single dose of VLPs, either i.m. or i.n., induced higher levels of antibody than did two doses of commercial split vaccine. Ferrets vaccinated with split vaccine were incompletely protected against challenge; these animals had lower virus titers in olfactory bulbs, tonsils, and intestines, but lost weight and shed virus in nasal washes to a similar extent as naïve controls. Challenge with heterologous A/Brisbane/59/07 (H1N1) virus revealed that the VLPs conferred minimal cross-protection to heterologous infection, as revealed by the lack of reduction in nasal wash and lung virus titers and slightly higher weight loss relative to controls. In summary, these experiments demonstrate the strong immunogenicity and protective efficacy of VLPs compared to the split vaccine and show that i.n. vaccination with VLPs has the potential for highly efficacious vaccination against influenza.  相似文献   

16.
Background/purposeInfluenza vaccine has been recommended in Finland since 2007 for all children of 6–35 months of age and in 2009 for those ≥6 months against pandemic influenza. We investigated the incidence of influenza and vaccine effectiveness in a birth cohort of children in 2008–2011.MethodsWe followed 923 children from birth to 2 years of age for respiratory tract infections. A nasal swab sample for PCR for influenza A and B viruses was taken at the onset of acute respiratory infections. Samples were collected either at the study clinic or at home by parents. Vaccination data was retrieved from the health registries.ResultsVaccination coverage of children aged 6–23 months was 22–47% against seasonal influenza and 80% against the A(H1N1)pdm09 virus in the pandemic season 2009–2010. During 3 influenza seasons, 1607 nasal swab samples were collected. Influenza was confirmed in 56 (6.1%) of 923 children (16 A(H1N1), 14 A(H3N2), and 26 B viruses). The incidence of influenza was 5.1% in 2008–2009, 2.7% in 2009–2010, and 5.0% in 2010–2011. Effectiveness of the adjuvanted vaccine against the pandemic influenza A(H1N1)pdm09 was 97% (95% confidence interval, 76–100%). Three children with influenza were hospitalized.ConclusionThe yearly incidence of seasonal influenza was 5% in this cohort of very young children with variable influenza vaccine coverage. Adjuvanted vaccine against the pandemic influenza was highly effective. Both seasonal and pandemic influenza cases were mostly non-severe.  相似文献   

17.
The pandemic influenza A (H1N1)pdm09 virus continues to be a threat to human health. Low doses of mannan‐binding lectin (MBL) (<1 μg/mL) were shown not to protect against influenza A(H1N1)pdm09 infection. However, the effect of high doses of MBL has not been investigated. Dendritic cell‐specific intercellular adhesion molecule‐3 grabbing non‐integrin (DC‐SIGN) has been proposed as an alternative receptor for influenza A(H1N1)pdm09 virus. In this study, we examined the expression of DC‐SIGN on DCs as well as on acute monocytic leukemia cell line, THP‐1. High doses of recombinant or human MBL inhibited binding of influenza A(H1N1)pdm09 to both these cell types in the presence of complement derived from bovine serum. Further, anti‐DC‐SIGN monoclonal antibody inhibited binding of influenza A(H1N1)pdm09 to both DC‐SIGN‐expressing DCs and THP‐1 cells. This study demonstrates that high doses of MBL can inhibit binding of influenza A(H1N1)pdm09 virus to DC‐SIGN‐expressing cells in the presence of complement. Our results suggest that DC‐SIGN may be an alternative receptor for influenza A(H1N1)pdm09 virus.  相似文献   

18.
19.
Innate and adaptive immune responses play critical roles in the body’s defense against viruses. We investigated the host immune response against the 2009 pandemic H1N1 influenza virus [A(H1N1)pdm09] in patients before and after anti-influenza therapy and found that the numbers of dendritic cells and T cells were significantly reduced compared with those of a healthy control group. In contrast, the frequency of natural killer, γδT and T regulatory (Treg) cells increased, and the concentrations of plasma interferon (IFN)-α/γ and interleukin (IL-15) were significantly higher than those of the control. Following therapy the frequency of γδT and Treg cells returned to normal; the counts of myeloid dendritic and plasmacytoid dendritic cells were still lower than the control, while the concentrations of IFN-α/γ and IL-15 remained high. We show that infection with A (H1N1)pdm09 was accompanied by changes in peripheral blood lymphocyte subgroups and cytokine profiles, leading to deleterious imbalances in innate and adaptive immunity.  相似文献   

20.
目的掌握河北省甲型H1N1流感的流行特征,为流感防控提供科学依据.方法通过中国流感监测信息系统收集河北省2011年4月至2017年3月流感及流感样病例(influenza-likeillness,ILI)监测数据进行统计分析.结果共检测ILI标本77 008份,甲型H1N1流感病毒核酸阳性2 699份,阳性率3.50%.对2 699例甲型H1N1流感病例进一步分析显示:全省11个地市均有该病例检出,男女比例为1.09:1,各年龄组均可发病,检出率最高的是25~59岁组,最低0~4岁组.2011年11月至2017年3月共出现4次流行,具有明显的季节性,且呈单峰性.各年度均有甲型H1N1流感病例检出,甲型H1N1流感分别是2012-2013、2013-2014和2016-2017年度的优势病原.结论河北省甲型N1N1流感流行具有明显的季节性,冬春季流行,近年来感染以5~14岁年龄组为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号