首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to survey, facilitate, and evaluate studies of medical language processing on clinical narratives, i2b2 (Informatics for Integrating Biology to the Bedside) organized its second challenge and workshop. This challenge focused on automatically extracting information on obesity and fifteen of its most common comorbidities from patient discharge summaries. For each patient, obesity and any of the comorbidities could be Present, Absent, or Questionable (i.e., possible) in the patient, or Unmentioned in the discharge summary of the patient. i2b2 provided data for, and invited the development of, automated systems that can classify obesity and its comorbidities into these four classes based on individual discharge summaries. This article refers to obesity and comorbidities as diseases. It refers to the categories Present, Absent, Questionable, and Unmentioned as classes. The task of classifying obesity and its comorbidities is called the Obesity Challenge.The data released by i2b2 was annotated for textual judgments reflecting the explicitly reported information on diseases, and intuitive judgments reflecting medical professionals' reading of the information presented in discharge summaries. There were very few examples of some disease classes in the data. The Obesity Challenge paid particular attention to the performance of systems on these less well-represented classes.A total of 30 teams participated in the Obesity Challenge. Each team was allowed to submit two sets of up to three system runs for evaluation, resulting in a total of 136 submissions. The submissions represented a combination of rule-based and machine learning approaches.Evaluation of system runs shows that the best predictions of textual judgments come from systems that filter the potentially noisy portions of the narratives, project dictionaries of disease names onto the remaining text, apply negation extraction, and process the text through rules. Information on disease-related concepts, such as symptoms and medications, and general medical knowledge help systems infer intuitive judgments on the diseases.  相似文献   

2.

Objective

Evaluate the effectiveness of a simple rule-based approach in classifying medical discharge summaries according to indicators for obesity and 15 associated co-morbidities as part of the 2008 i2b2 Obesity Challenge.

Methods

The authors applied a rule-based approach that looked for occurrences of morbidity-related keywords and identified the types of assertions in which those keywords occurred. The documents were then classified using a simple scoring algorithm based on a mapping of the assertion types to possible judgment categories.

Measurements

Results for the challenge were evaluated based on macro F-measure. We report micro and macro F-measure results for all morbidities combined and for each morbidity separately.

Results

Our rule-based approach achieved micro and macro F-measures of 0.97 and 0.77, respectively, ranking fifth out of the entries submitted by 28 teams participating in the classification task based on textual judgments and substantially outperforming the average for the challenge.

Conclusions

As shown by its ranking in the challenge results, this approach performed relatively well under conditions in which limited training data existed for some judgment categories. Further, the approach held up well in relation to more complex approaches applied to this classification task. The approach could be enhanced by the addition of expert rules to model more complex medical reasoning.  相似文献   

3.
The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records presented three tasks: a concept extraction task focused on the extraction of medical concepts from patient reports; an assertion classification task focused on assigning assertion types for medical problem concepts; and a relation classification task focused on assigning relation types that hold between medical problems, tests, and treatments. i2b2 and the VA provided an annotated reference standard corpus for the three tasks. Using this reference standard, 22 systems were developed for concept extraction, 21 for assertion classification, and 16 for relation classification.These systems showed that machine learning approaches could be augmented with rule-based systems to determine concepts, assertions, and relations. Depending on the task, the rule-based systems can either provide input for machine learning or post-process the output of machine learning. Ensembles of classifiers, information from unlabeled data, and external knowledge sources can help when the training data are inadequate.  相似文献   

4.

Objective

The authors used the i2b2 Medication Extraction Challenge to evaluate their entity extraction methods, contribute to the generation of a publicly available collection of annotated clinical notes, and start developing methods for ontology-based reasoning using structured information generated from the unstructured clinical narrative.

Design

Extraction of salient features of medication orders from the text of de-identified hospital discharge summaries was addressed with a knowledge-based approach using simple rules and lookup lists. The entity recognition tool, MetaMap, was combined with dose, frequency, and duration modules specifically developed for the Challenge as well as a prototype module for reason identification.

Measurements

Evaluation metrics and corresponding results were provided by the Challenge organizers.

Results

The results indicate that robust rule-based tools achieve satisfactory results in extraction of simple elements of medication orders, but more sophisticated methods are needed for identification of reasons for the orders and durations.

Limitations

Owing to the time constraints and nature of the Challenge, some obvious follow-on analysis has not been completed yet.

Conclusions

The authors plan to integrate the new modules with MetaMap to enhance its accuracy. This integration effort will provide guidance in retargeting existing tools for better processing of clinical text.  相似文献   

5.

Background

Temporal information detection systems have been developed by the Mayo Clinic for the 2012 i2b2 Natural Language Processing Challenge.

Objective

To construct automated systems for EVENT/TIMEX3 extraction and temporal link (TLINK) identification from clinical text.

Materials and methods

The i2b2 organizers provided 190 annotated discharge summaries as the training set and 120 discharge summaries as the test set. Our Event system used a conditional random field classifier with a variety of features including lexical information, natural language elements, and medical ontology. The TIMEX3 system employed a rule-based method using regular expression pattern match and systematic reasoning to determine normalized values. The TLINK system employed both rule-based reasoning and machine learning. All three systems were built in an Apache Unstructured Information Management Architecture framework.

Results

Our TIMEX3 system performed the best (F-measure of 0.900, value accuracy 0.731) among the challenge teams. The Event system produced an F-measure of 0.870, and the TLINK system an F-measure of 0.537.

Conclusions

Our TIMEX3 system demonstrated good capability of regular expression rules to extract and normalize time information. Event and TLINK machine learning systems required well-defined feature sets to perform well. We could also leverage expert knowledge as part of the machine learning features to further improve TLINK identification performance.  相似文献   

6.

Objective

Medication information comprises a most valuable source of data in clinical records. This paper describes use of a cascade of machine learners that automatically extract medication information from clinical records.

Design

Authors developed a novel supervised learning model that incorporates two machine learning algorithms and several rule-based engines.

Measurements

Evaluation of each step included precision, recall and F-measure metrics. The final outputs of the system were scored using the i2b2 workshop evaluation metrics, including strict and relaxed matching with a gold standard.

Results

Evaluation results showed greater than 90% accuracy on five out of seven entities in the name entity recognition task, and an F-measure greater than 95% on the relationship classification task. The strict micro averaged F-measure for the system output achieved best submitted performance of the competition, at 85.65%.

Limitations

Clinical staff will only use practical processing systems if they have confidence in their reliability. Authors estimate that an acceptable accuracy for a such a working system should be approximately 95%. This leaves a significant performance gap of 5 to 10% from the current processing capabilities.

Conclusion

A multistage method with mixed computational strategies using a combination of rule-based classifiers and statistical classifiers seems to provide a near-optimal strategy for automated extraction of medication information from clinical records.Many of the potential benefits of the electronic medical record (EMR) rely significantly on our ability to automatically process the free-text content in the EMR. To understand the limitations and difficulties of exploiting the EMR we have designed an information extraction engine to identify medication events within patient discharge summaries, as specified by the i2b2 medication extraction shared task.  相似文献   

7.

Objective

In this study the authors describe the system submitted by the team of University of Szeged to the second i2b2 Challenge in Natural Language Processing for Clinical Data. The challenge focused on the development of automatic systems that analyzed clinical discharge summary texts and addressed the following question: “Who''s obese and what co-morbidities do they (definitely/most likely) have?”. Target diseases included obesity and its 15 most frequent comorbidities exhibited by patients, while the target labels corresponded to expert judgments based on textual evidence and intuition (separately).

Design

The authors applied statistical methods to preselect the most common and confident terms and evaluated outlier documents by hand to discover infrequent spelling variants. The authors expected a system with dictionaries gathered semi-automatically to have a good performance with moderate development costs (the authors examined just a small proportion of the records manually).

Measurements

Following the standard evaluation method of the second Workshop on challenges in Natural Language Processing for Clinical Data, the authors used both macro- and microaveraged Fβ=1 measure for evaluation.

Results

The authors submission achieved a microaverage Fβ=1 score of 97.29% for classification based on textual evidence (macroaverage Fβ=1 = 76.22%) and 96.42% for intuitive judgments (macroaverage Fβ=1 = 67.27%).

Conclusions

The results demonstrate the feasibility of the authors approach and show that even very simple systems with a shallow linguistic analysis can achieve remarkable accuracy scores for classifying clinical records on a limited set of concepts.  相似文献   

8.

Objective

Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task.

Design

The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels.

Measurement

For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F1-macro and F1-micro for measurements.

Results

On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F1-macro = 0.80 for the textual and F1-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge.

Conclusions

The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse.  相似文献   

9.

Objective

This paper describes the approaches the authors developed while participating in the i2b2/VA 2010 challenge to automatically extract medical concepts and annotate assertions on concepts and relations between concepts.

Design

The authors''approaches rely on both rule-based and machine-learning methods. Natural language processing is used to extract features from the input texts; these features are then used in the authors'' machine-learning approaches. The authors used Conditional Random Fields for concept extraction, and Support Vector Machines for assertion and relation annotation. Depending on the task, the authors tested various combinations of rule-based and machine-learning methods.

Results

The authors''assertion annotation system obtained an F-measure of 0.931, ranking fifth out of 21 participants at the i2b2/VA 2010 challenge. The authors'' relation annotation system ranked third out of 16 participants with a 0.709 F-measure. The 0.773 F-measure the authors obtained on concept extraction did not make it to the top 10.

Conclusion

On the one hand, the authors confirm that the use of only machine-learning methods is highly dependent on the annotated training data, and thus obtained better results for well-represented classes. On the other hand, the use of only a rule-based method was not sufficient to deal with new types of data. Finally, the use of hybrid approaches combining machine-learning and rule-based approaches yielded higher scores.  相似文献   

10.

Objective

To describe a system for determining the assertion status of medical problems mentioned in clinical reports, which was entered in the 2010 i2b2/VA community evaluation ‘Challenges in natural language processing for clinical data’ for the task of classifying assertions associated with problem concepts extracted from patient records.

Materials and methods

A combination of machine learning (conditional random field and maximum entropy) and rule-based (pattern matching) techniques was used to detect negation, speculation, and hypothetical and conditional information, as well as information associated with persons other than the patient.

Results

The best submission obtained an overall micro-averaged F-score of 0.9343.

Conclusions

Using semantic attributes of concepts and information about document structure as features for statistical classification of assertions is a good way to leverage rule-based and statistical techniques. In this task, the choice of features may be more important than the choice of classifier algorithm.  相似文献   

11.
Objective The trade-off between the speed and simplicity of dictionary-based term recognition and the richer linguistic information provided by more advanced natural language processing (NLP) is an area of active discussion in clinical informatics. In this paper, we quantify this trade-off among text processing systems that make different trade-offs between speed and linguistic understanding. We tested both types of systems in three clinical research tasks: phase IV safety profiling of a drug, learning adverse drug–drug interactions, and learning used-to-treat relationships between drugs and indications.Materials We first benchmarked the accuracy of the NCBO Annotator and REVEAL in a manually annotated, publically available dataset from the 2008 i2b2 Obesity Challenge. We then applied the NCBO Annotator and REVEAL to 9 million clinical notes from the Stanford Translational Research Integrated Database Environment (STRIDE) and used the resulting data for three research tasks.Results There is no significant difference between using the NCBO Annotator and REVEAL in the results of the three research tasks when using large datasets. In one subtask, REVEAL achieved higher sensitivity with smaller datasets.Conclusions For a variety of tasks, employing simple term recognition methods instead of advanced NLP methods results in little or no impact on accuracy when using large datasets. Simpler dictionary-based methods have the advantage of scaling well to very large datasets. Promoting the use of simple, dictionary-based methods for population level analyses can advance adoption of NLP in practice.  相似文献   

12.

Objective

This article describes a system developed for the 2009 i2b2 Medication Extraction Challenge. The purpose of this challenge is to extract medication information from hospital discharge summaries.

Design

The system explored several linguistic natural language processing techniques (eg, term-based and token-based rule matching) to identify medication-related information in the narrative text. A number of lexical resources was constructed to profile lexical or morphological features for different categories of medication constituents.

Measurements

Performance was evaluated in terms of the micro-averaged F-measure at the horizontal system level.

Results

The automated system performed well, and achieved an F-micro of 80% for the term-level results and 81% for the token-level results, placing it sixth in exact matches and fourth in inexact matches in the i2b2 competition.

Conclusion

The overall results show that this relatively simple rule-based approach is capable of tackling multiple entity identification tasks such as medication extraction under situations in which few training documents are annotated for machine learning approaches, and the entity information can be characterized with a set of feature tokens.  相似文献   

13.

Objective

Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task.

Design

A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines.

Measurements

Performance was evaluated in terms of the macroaveraged F1 measure.

Results

The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13th in the textual task.

Conclusions

The system demonstrates that effective comorbidity status classification by an automated system is possible.  相似文献   

14.
近年来,医疗事故鉴定已经成为社会的焦点问题之一,医疗事故鉴定中需要法医作为专家参与鉴定, 法医学检验在医疗事故鉴定中发挥着提供科学证据的重要作用。文章就医疗事故技术鉴定中法医学检验证据的采 集、法医学鉴定结论的应用等问题进行了探讨,以便供有关研究工作者参考。  相似文献   

15.
The Third i2b2 Workshop on Natural Language Processing Challenges for Clinical Records focused on the identification of medications, their dosages, modes (routes) of administration, frequencies, durations, and reasons for administration in discharge summaries. This challenge is referred to as the medication challenge. For the medication challenge, i2b2 released detailed annotation guidelines along with a set of annotated discharge summaries. Twenty teams representing 23 organizations and nine countries participated in the medication challenge. The teams produced rule-based, machine learning, and hybrid systems targeted to the task. Although rule-based systems dominated the top 10, the best performing system was a hybrid. Of all medication-related fields, durations and reasons were the most difficult for all systems to detect. While medications themselves were identified with better than 0.75 F-measure by all of the top 10 systems, the best F-measure for durations and reasons were 0.525 and 0.459, respectively. State-of-the-art natural language processing systems go a long way toward extracting medication names, dosages, modes, and frequencies. However, they are limited in recognizing duration and reason fields and would benefit from future research.  相似文献   

16.

Background

The fifth i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records conducted a systematic review on resolution of noun phrase coreference in medical records. Informatics for Integrating Biology and the Bedside (i2b2) and the Veterans Affair (VA) Consortium for Healthcare Informatics Research (CHIR) partnered to organize the coreference challenge. They provided the research community with two corpora of medical records for the development and evaluation of the coreference resolution systems. These corpora contained various record types (ie, discharge summaries, pathology reports) from multiple institutions.

Methods

The coreference challenge provided the community with two annotated ground truth corpora and evaluated systems on coreference resolution in two ways: first, it evaluated systems for their ability to identify mentions of concepts and to link together those mentions. Second, it evaluated the ability of the systems to link together ground truth mentions that refer to the same entity. Twenty teams representing 29 organizations and nine countries participated in the coreference challenge.

Results

The teams'' system submissions showed that machine-learning and rule-based approaches worked best when augmented with external knowledge sources and coreference clues extracted from document structure. The systems performed better in coreference resolution when provided with ground truth mentions. Overall, the systems struggled in solving coreference resolution for cases that required domain knowledge.  相似文献   

17.

Objective

Patient discharge summaries provide detailed medical information about hospitalized patients and are a rich resource of data for clinical record text mining. The textual expressions of this information are highly variable. In order to acquire a precise understanding of the patient, it is important to uncover the relationship between all instances in the text. In natural language processing (NLP), this task falls under the category of coreference resolution.

Design

A key contribution of this paper is the application of contextual-dependent rules that describe relationships between coreference pairs. To resolve phrases that refer to the same entity, the authors use these rules in three representative NLP systems: one rule-based, another based on the maximum entropy model, and the last a system built on the Markov logic network (MLN) model.

Results

The experimental results show that the proposed MLN-based system outperforms the baseline system (exact match) by average F-scores of 4.3% and 5.7% on the Beth and Partners datasets, respectively. Finally, the three systems were integrated into an ensemble system, further improving performance to 87.21%, which is 4.5% more than the official i2b2 Track 1C average (82.7%).

Conclusion

In this paper, the main challenges in the resolution of coreference relations in patient discharge summaries are described. Several rules are proposed to exploit contextual information, and three approaches presented. While single systems provided promising results, an ensemble approach combining the three systems produced a better performance than even the best single system.  相似文献   

18.

Objective

The US Vaccine Adverse Event Reporting System (VAERS) collects spontaneous reports of adverse events following vaccination. Medical officers review the reports and often apply standardized case definitions, such as those developed by the Brighton Collaboration. Our objective was to demonstrate a multi-level text mining approach for automated text classification of VAERS reports that could potentially reduce human workload.

Design

We selected 6034 VAERS reports for H1N1 vaccine that were classified by medical officers as potentially positive (Npos=237) or negative for anaphylaxis. We created a categorized corpus of text files that included the class label and the symptom text field of each report. A validation set of 1100 labeled text files was also used. Text mining techniques were applied to extract three feature sets for important keywords, low- and high-level patterns. A rule-based classifier processed the high-level feature representation, while several machine learning classifiers were trained for the remaining two feature representations.

Measurements

Classifiers'' performance was evaluated by macro-averaging recall, precision, and F-measure, and Friedman''s test; misclassification error rate analysis was also performed.

Results

Rule-based classifier, boosted trees, and weighted support vector machines performed well in terms of macro-recall, however at the expense of a higher mean misclassification error rate. The rule-based classifier performed very well in terms of average sensitivity and specificity (79.05% and 94.80%, respectively).

Conclusion

Our validated results showed the possibility of developing effective medical text classifiers for VAERS reports by combining text mining with informative feature selection; this strategy has the potential to reduce reviewer workload considerably.  相似文献   

19.

Objective

As clinical text mining continues to mature, its potential as an enabling technology for innovations in patient care and clinical research is becoming a reality. A critical part of that process is rigid benchmark testing of natural language processing methods on realistic clinical narrative. In this paper, the authors describe the design and performance of three state-of-the-art text-mining applications from the National Research Council of Canada on evaluations within the 2010 i2b2 challenge.

Design

The three systems perform three key steps in clinical information extraction: (1) extraction of medical problems, tests, and treatments, from discharge summaries and progress notes; (2) classification of assertions made on the medical problems; (3) classification of relations between medical concepts. Machine learning systems performed these tasks using large-dimensional bags of features, as derived from both the text itself and from external sources: UMLS, cTAKES, and Medline.

Measurements

Performance was measured per subtask, using micro-averaged F-scores, as calculated by comparing system annotations with ground-truth annotations on a test set.

Results

The systems ranked high among all submitted systems in the competition, with the following F-scores: concept extraction 0.8523 (ranked first); assertion detection 0.9362 (ranked first); relationship detection 0.7313 (ranked second).

Conclusion

For all tasks, we found that the introduction of a wide range of features was crucial to success. Importantly, our choice of machine learning algorithms allowed us to be versatile in our feature design, and to introduce a large number of features without overfitting and without encountering computing-resource bottlenecks.  相似文献   

20.
As part of the 2006 i2b2 NLP Shared Task, we explored two methods for determining the smoking status of patients from their hospital discharge summaries when explicit smoking terms were present and when those same terms were removed. We developed a simple keyword-based classifier to determine smoking status from de-identified hospital discharge summaries. We then developed a Naïve Bayes classifier to determine smoking status from the same records after all smoking-related words had been manually removed (the smoke-blind dataset). The performance of the Naïve Bayes classifier was compared with the performance of three human annotators on a subset of the same training dataset (n = 54) and against the evaluation dataset (n = 104 records). The rule-based classifier was able to accurately extract smoking status from hospital discharge summaries when they contained explicit smoking words. On the smoke-blind dataset, where explicit smoking cues are not available, two Naïve Bayes systems performed less well than the rule-based classifier, but similarly to three expert human annotators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号