共查询到20条相似文献,搜索用时 15 毫秒
1.
Many actin-binding proteins are expressed in eukaryotic cells. These polypeptides assist in stabilizing and rearranging the organization of the actin cytoskeleton in response to external stimuli, or during cell migration and adhesion. Here we review a particular set of actin-binding proteins called plastins. Plastins (also called fimbrins) belong to a subclass of actin-binding proteins known as actin bundling proteins. Three isoforms have been characterized in mammals: T-plastin is expressed in cells from solid tissue, whereas L-plastin occurs predominantly in hematopoietic cells. The third isoform, I-plastin, is specifically expressed in the small intestine, colon and kidney. These proteins share the unique property of cross-linking actin filaments into tight bundles. Although plastins are primarily involved in regulation of the actin cytoskeleton, they possess some unique features. For instance, they are implicated in invasion by pathogenic bacteria such as Shigellaflexneri and Salmonella typhimurium. Also, L-plastin plays an important role in leukocyte function. T-plastin, on the other hand, is possibly involved in DNA repair. Finally, both T- and L-plastin are implicated in several diseases, and L-plastin is considered to be a valuable marker for cancer. 相似文献
2.
3.
Diseased tissues are noted for their compromised mechanical properties, which contribute to organ failure; regeneration entails restoration of tissue structure and thereby functions. Thus, the physical signature of a tissue is closely associated with its biological function. In this review, we consider a mechanics-centric view of disease and regeneration by drawing parallels between in vivo tissue-level observations and corroborative cellular evidence in vitro to demonstrate the importance of the mechanical stiffness of the extracellular matrix in these processes. This is not intended to devalue the importance of biochemical signaling; in fact, as we discuss, many mechanical stiffness-driven processes not only require cooperation with biochemical cues, but they ultimately converge at common signaling cascades to influence cell and tissue function in an integrative manner. The study of how physical and biochemical signals collectively modulate cell function not only brings forth a more holistic understanding of cell (patho)biology, but it also creates opportunities to control material properties to improve culture platforms for research and drug screening and aid in the rationale design of biomaterials for molecular therapy and tissue engineering applications. 相似文献
4.
Schrenk D Baus PR Ermel N Klein C Vorderstemann B Kauffmann HM 《Toxicology letters》2001,120(1-3):51-57
Expression of a variety of ABC efflux pumps including certain conjugate transporters of the multidrug resistance protein (MRP) subfamily is inducible in primate and rodent tissues, and in a variety of cell lines and primary cells in culture. In human cell lines (HepG2, MCF-7), we studied the inducibility of MRPs 1–5. Similar to the rat mrp2 gene, human mrp2 is inducible by the chemical carcinogen 2-AAF, the chemotherapeutic drug cisplatin and the barbiturate phenobarbital, as demonstrated in Northern and Western Blots. Furthermore, the antibiotic rifampicin was identified as MRP2 inducer in HepG2 cells. MRP1 and 4 mRNAs being expressed in human liver at a very low level could not be detected in HepG2 cells after treatment with various agents. However, MRP3 and 5 mRNAs were detected in addition to MRP2 and their expression was found to be increased by 2-AAF, cisplatin and rifampicin. MRP1 expression was studied in MCF-7 cells where the chemotherapeutic drug vinblastine and tert-butyl hydroquinone but not the MRP2 inducing agents described above acted as inducers. 相似文献
5.
Waanders F de Vries LV van Goor H Hillebrands JL Laverman GD Bakker SJ Navis G 《Current vascular pharmacology》2011,9(5):594-605
Aldosterone, a steroid hormone with mineralocorticoid activity, is far more than merely a salt-and-water hormone. Aldosterone has a number of non-classical, mineralocorticoid receptor (MR)-mediated actions, including tissue remodeling, modulation of vascular tone and stimulating inflammation and fibrosis, which may fuel progression of end organ damage. Aldosterone breakthrough during blockade of the renin-angiotensin aldosterone system (RAAS) may explain why this treatment regimen only confers partial cardiovascular and renal protection. Of major interest, aldosterone is deleterious only if inappropriately high for its sodium status i.e. high aldosterone and high sodium. The mechanism of sodium dependence of aldosterone-induced renal and cardiovascular damage continues to fascinate. Aldosterone excess increases sodium and fluid retention and consequently increases blood pressure, which, in turn, mediates target organ damage. Moreover, blood pressure independent effects play a role with dissociation of low circulating and high tissue aldosterone levels during high sodium intake and possibly enhanced MR signaling. MR blockade is a valuable strategy, which has potency to halt the progressive end organ damage as observed during current treatments. In heart failure, MR blockade on top of RAAS blockade reduces hard clinical endpoints. Despite encouraging results on the intermediate endpoint proteinuria, long-term data on the efficacy and safety of MR blockade in preventing dialysis and/or cardiovascular endpoints in chronic kidney disease are still lacking. It is obligatory that future clinical studies on the effects of MR blockade on end-organ damage take into account the sodium status. 相似文献
6.
7.
V S Shashkov 《Farmakologiia i toksikologiia》1990,53(1):5-10
There are considered the physiological systems of the body which are the most sensitive to the action of weightlessness and are subject to pharmacological correction at different stages of a space flight. Particular emphasis is given to the development and practical use of the cardiovascular drugs, the agents for prevention of movement disease and also the agents influencing the metabolic processes and mineral saturation of the bony tissue. The possibility of using the drugs intended for the application during space flights and in medical practice is emphasized. 相似文献
8.
Multidrug resistance (MDR) is a kind of acquired resistance of microorganisms and cancer cells to chemotherapic drugs that are characterized by different chemical structure and different mechanism of action. Classic MDR is the consequence of the over-expression of a variety of proteins that extrude the chemotherapic from the cell, lowering its concentration below the effective one. The ABC (ATP Binding Cassette) is a ubiquitous and important family of such transporter proteins. Members of this super family are present in mammals as well as in prokaryotic organisms and use ATP as the energy source to activate the extrusion process. P-glycoprotein (Pgp) and Multidrug Resistance Proteins (MRP1 and sister proteins) are the most important and widely studied members of ABC super family. Our knowledge about the structures and functions of transporter proteins has definitely improved in recent years, following the resolution of the structure of bacterial pumps which opened the way to the building of homology models for the more complex Pgp and MRP. It can be anticipated that these results will have a strong impact on the design of more potent and safer MDR reverters. A huge number of small molecules, many of natural origin, are able to reverse multidrug resistance by inhibiting the functions of Pgp, MRP1 and sister proteins and their action has been considered a possible way to reverse MDR. However, while a few compounds have reached clinical trials, none of them has, so far, been cleared for therapeutic use. Two main reasons are at the base of this difficulty: i) MDR is a complex phenomenon that may arise from several different biochemical mechanisms, with the consequence that inhibition of transporter proteins may be insufficient to reverse it; ii) the physiological role of Pgp and sister proteins requires more potent modulators with proper selectivity and pharmacokinetic in order to avoid unwanted side effects. This paper first reviews the most recent discoveries on the structures and functions of the ABC super family, in particular Pgp and MRP. Then, the medicinal chemistry of MDR reverters, in light of these findings, is discussed and the molecules that are presently in development are reviewed. 相似文献
9.
10.
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 相似文献
11.
Stewart G 《British journal of pharmacology》2011,164(7):1780-1792
In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes - urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters. 相似文献
12.
13.
睡眠不足和夺眠可诱发多种神经行为和生理功能改变.大量研究报道,睡眠结构紊乱/夺眠常与炎症反应相关.睡眠改变取决于不良生活方式、年龄增加及疾病状态等多种因素,而这些因素往往伴随着某些炎症标志物的增加,且某些炎症因子可影响人体的健康. 相似文献
14.
The organic anion transporter (OATP) family 总被引:5,自引:0,他引:5
Mikkaichi T Suzuki T Tanemoto M Ito S Abe T 《Drug metabolism and pharmacokinetics》2004,19(3):171-179
In the last decade, many organic anion transporters have been isolated, characterized their distribution and substrates. The recently identified organic anion transporter family OATP (organic anion transporting polypeptide)/LST (liver-specific transporter) family, transport bile acids, hormones as well as eicosanoids, various compounds (BSP, HMG-CoA reductase inhibitor, angiotensin converting enzyme inhibitor, etc.). The isolation of the family revealed that not only hydrophilic compounds, drugs and hormones of lipophilic nature need a membrane transport system to penetrate cell membrane. In this family, the nomenclature becomes very complicated and the physiological role of this family is still unclear except about few organs such as the brain, liver and kidney. Even in such organs, the co-existence of the OATP/LST family and similar substrate specificity hamper the progress and clear characterization identifying the real role of the transporter family. Here, recent progress and an insight of this field are reviewed. 相似文献
15.
《Drug metabolism reviews》2012,44(2):317-354
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1–5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy. 相似文献
16.
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy. 相似文献
17.
Recent studies in our laboratory have shown that the loop diuretic, furosemide, is actively secreted by Caco-2 cells and rat jejunal tissue. This active secretion could be the result of efflux transporters such as P-gp, MRP1 or MRP2 (cMOAT). To determine if any of these transporters is responsible for the secretion of furosemide, we compared directional permeability in the wild-type cell lines, MDCK strains I and II, and LLC-PK1, vs. cell lines that overexpress a single transporter, in both the presence and absence of various inhibitors, for furosemide as compared to vinblastine. Sulfinpyrazone significantly inhibited the transport of vinblastine in MRP2 expressing cells, but not the wild-type controls. Vinblastine could not be confirmed as a substrate of MRP1. We were also unable to demonstrate that any particular transporter affected furosemide in excess of the background effects of endogenous transporters in the parental cell lines. Furosemide secretion from these kidney-derived cell lines is probably not the primary result of any of the well characterized efflux transporters (P-gp, MRP1 or MRP2), although they may still play a role in the observed Caco-2 secretion. This equivocal result acknowledges the difficulty in trying to determine the effect of a single protein in a complicated expression system. 相似文献
18.
The ATP-binding cassette (ABC) transporter ABCC1, or multidrug resistance-related protein 1 (MRP1) is implicated in Phase II metabolism and multidrug resistance as it effluxes substrate anticancer drugs. As cannabinoids inhibit two related ABC transporters, P-glycoprotein and ABCG2, here we examined whether they also inhibit ABCC1. Indeed, the cannabinoids enhanced the intracellular accumulation of two ABCC1 substrates, Fluo3 and vincristine, in ovarian carcinoma cells over-expressing ABCC1 (2008/MRP1) with a rank order of potency: cannabidiol>cannabinol>Delta(9)-tetrahydrocannabinol. Cannabinoid inhibition of ABCC1 was confirmed using insect cell membrane MRP1 ATPase assays. These results demonstrate that cannabinoids inhibit ABCC1. 相似文献
19.
20.
The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis 总被引:3,自引:0,他引:3
Hooijberg JH Peters GJ Assaraf YG Kathmann I Priest DG Bunni MA Veerman AJ Scheffer GL Kaspers GJ Jansen G 《Biochemical pharmacology》2003,65(5):765-771
Previously, we reported that the multidrug resistance proteins MRP1, MRP2 and MRP3 confer resistance to therapeutic antifolates by mediating their cellular extrusion. We now determined whether MRPs also play a role in controlling cellular homeostasis of natural folates. In MRP1, MRP2 and MRP3-transfected 2008 human ovarian carcinoma cells total cellular folate content was 32-38% lower than in 2008 cells (105+/-14pmolfolate/mgprotein) when grown in medium containing 2.3 microM folic acid (FA). Under these conditions cellular growth rates were not compromised. However, when cells were challenged under folate-depleted conditions with a short exposure (4 hr) to FA or leucovorin, MRP1 and MRP3 overexpressing cells were impaired in their growth. In contrast to wild-type cells, MRP1 transfected cells retained only 60% of the maximum growth when exposed to 500 nM leucovorin or 500 microM FA. For 2008/MRP1 and 2008/MRP3 cells FA growth stimulation capacity was dramatically decreased when, during a 4 hr exposure, metabolism into rapidly polyglutamatable and retainable dihydrofolate was blocked by the dihydrofolate reductase inhibitor trimetrexate. To retain growth under such conditions MRP1 overexpressing cells required much higher concentrations of FA (EC(50) > 500 microM) compared to 2008 cells (EC(50): 12 microM). These results suggest that down- and up-regulation of MRP1 (and MRP3) expression can influence cellular folate homeostasis, in particular when cellular retention by polyglutamylation of folates is attenuated. 相似文献