首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Zhang  L He  Z Yuan  Z Xie  J Wang  H Hamada  X Cao 《Human gene therapy》1999,10(7):1151-1161
Pulsing dendritic cells (DCs) with tumor cell-derived mRNA is regarded as an attractive alternative in the development of DC-based tumor vaccines. Our aim is to improve the therapeutic efficacy of DC-based tumor RNA vaccines by augmenting the preferential chemotaxis of DCs to T cells. Mouse bone marrow-derived DCs were genetically modified with lymphotactin (Lptn) by adenovirus vector, which conferred on DCs preferential chemotaxis to CD4+ and CD8+ T cells (Cao et al., 1998). Lptn gene-modified DCs (Lptn-DCs) were pulsed with tumor mRNA and used for vaccination in the tumor models of 3LL lung carcinoma and B16 melanoma. In both tumor models, immunization with 4 X 10(4) tumor RNA-pulsed Lptn-DCs induced more potent CTL activity, compared with their counterparts, specifically against tumor cells and Mut1 or tyrosinase-related protein 2 (TRP-2) peptide-pulsed RMA-S cells, and rendered the immunized mice resistant to tumor challenge much more effectively. CD8+ T cells were necessary and sufficient to generate the protection of Lptn-DC-based RNA tumor vaccines, and CD4+ T cells were required for the induction of tumor rejection. In the preestablished 3LL and B16 tumor models, vaccination with DC-based or LacZ-DC-based tumor RNA vaccines (2 X 10(5) cells) could reduce pulmonary metastasis and extend survival of tumor-bearing mice, but was less effective than the Lptn-DC counterpart (with 60-80% mice surviving). When the immunizing dose was decreased to 4 X 10(4) cells, Lptn-DC-based tumor vaccines rather than their counterparts were still significantly effective. Our studies provide a potential strategy to improve the efficacy of DC-based vaccines, and a new approach to immunological intervention by chemokines.  相似文献   

2.
Immunization with defined tumor antigens is currently limited to a small number of cancers where candidates for tumor rejection antigens have been identified. In this study we investigated whether pulsing dendritic cells (DC) with tumor-derived RNA is an effective way to induce CTL and tumor immunity. DC pulsed with in vitro synthesized chicken ovalbumin (OVA) RNA were more effective than OVA peptide-pulsed DC in stimulating primary, OVA-specific CTL responses in vitro. DC pulsed with unfractionated RNA (total or polyA+) from OVA-expressing tumor cells were as effective as DC pulsed with OVA peptide at stimulating CTL responses. Induction of OVA-specific CTL was abrogated when polyA+ RNA from OVA-expressing cells was treated with an OVA- specific antisense oligodeoxynucleotide and RNase H, showing that sensitization of DC was indeed mediated by OVA RNA. Mice vaccinated with DC pulsed with RNA from OVA-expressing tumor cells were protected against a challenge with OVA-expressing tumor cells. In the poorly immunogenic, highly metastatic, B16/F10.9 tumor model a dramatic reduction in lung metastases was observed in mice vaccinated with DC pulsed with tumor-derived RNA (total or polyA+, but not polyA- RNA). The finding that RNA transcribed in vitro from cDNA cloned in a bacterial plasmid was highly effective in sensitizing DC shows that amplification of the antigenic content from a small number of tumor cells is feasible, thus expanding the potential use of RNA-pulsed DC- based vaccines for patients bearing very small, possibly microscopic, tumors.  相似文献   

3.
Xia DJ  Zhang WP  Zheng S  Wang J  Pan JP  Wang Q  Zhang LH  Hamada H  Cao X 《Gene therapy》2002,9(9):592-601
Lymphotactin (Lptn) is a C chemokine that attracts T cells and NK cells. Dendritic cells (DC) are highly efficient, specialized antigen-presenting cells and antigen-pulsed DC has been regarded as promising vaccines in cancer immunotherapy. The aim of our present study is to improve the therapeutic efficacy of DC-based tumor vaccine by increasing the preferential chemotaxis of DC to T cells. In this study, Lptn and/or melanoma-associated antigen gp100 were transfected into mouse bone marrow-derived DC, which were used as vaccines in B16 melanoma model. Immunization of C57BL/6 mice with DC adenovirally cotransfected with Lptn and gp100 (Lptn/gp100-DC) could enhance the cytotoxicities of CTL and NK cells, increase the production of IL-2 and interferon-gamma significantly, as compared with immunization with gp100-DC, Lptn-DC, LacZ-DC, DC or PBS counterparts. The Lptn/gp100-DC immunized mice exhibited resistance to tumor challenge most effectively. It was found that the tumor mass of mice vaccinated by Lptn/gp100-DC showed obvious necrosis and inflammatory cell infiltration. In vivo depletion analysis demonstrated that CD8(+) T cells are the predominant T cell subset responsible for the antitumor effect of Lptn/gp100-DC and CD4(+) T cells were necessary in the induction phase of tumor rejection, while NK cells were less important although they participated in the antitumor response either in the induction phase or in the effector phase. In the murine model with the pre-established subcutaneous B16 melanoma, immunization with Lptn/gp100-DC inhibited the tumor growth most significantly when compared with other counterparts. These findings provide a potential strategy to improve the efficacy of DC-based tumor vaccines.  相似文献   

4.
Importance of the field: Dendritic cells (DC) are powerful antigen-presenting cells that induce and maintain primary cytotoxic T lymphocyte (CTL) responses directed against tumor antigens. Consequently, there has been much interest in their application as antitumor vaccines.

Areas covered in this review: A large number of DC-based vaccine trials targeting a variety of cancers have been conducted; however, the rate of reported clinically significant responses remains low. Modification of DC to express tumor antigens or immunostimulatory molecules through the transfer of genes or mRNA transfection offers a logical alternative with potential advantages over peptide- or protein antigen-loaded DC. In this article, we review the current results and future prospects for genetically modified DC vaccines for the treatment of cancer.

What the reader will gain: Genetically-modified dendritic cell-based vaccines represent a powerful tool for cancer therapy. Numerous preclinical and clinical studies have demonstrated the potential of dendritic cell vaccines alone or in combination with other therapeutic modalities.

Take home message: Genetically modified DC-based anti-cancer vaccination holds promise, perhaps being best employed in the adjuvant setting with minimal residual disease after primary therapy, or in combination with other antitumor or immune-enhancing therapies.  相似文献   

5.
Non-ablative pulsed focused ultrasound (pFUS) targets non-thermal forces that activate local molecular and cellular immune responses. Optimal parameters to stimulate immunotherapeutic tumor microenvironments (TME) and responses in different tumor types remain uninvestigated. Flank B16 murine melanoma and 4T1 breast tumors received 1 MHz pFUS at 1–8 MPa peak negative pressures (PNP) and were analyzed 24 hr post-sonication. Necrosis or hemorrhage were unaltered in both tumors, but pFUS induced DNA strand breaks in tumor cells at PNP ≥6 MPa. pFUS at >4 MPa suppressed anti-inflammatory cytokines in B16 tumors. pFUS to 4T1 tumors decreased anti-inflammatory cytokines and increased pro-inflammatory cytokines and cell adhesion molecules. pFUS at 6 MPa increased calreticulin and alterations in check-point proteins along with tumoral and splenic immune cell changes that could be consistent with a shift towards an anti-TME. pFUS-induced TME alterations shows promise in generating anti-tumor immune responses, but non-uniform responses between tumor types require additional investigation to assess pFUS as a suitable anti-tumor therapy.  相似文献   

6.
Antigen presentation by host dendritic cells (DC) is critical for the initiation of adaptive immune responses. We have previously demonstrated in immunogenic murine tumor models that bone marrow (BM)- derived DC pulsed ex vivo with synthetic tumor-associated peptides, naturally expressed by tumor cells, serve as effective antitumor vaccines, protecting animals against an otherwise lethal tumor challenge (Mayordomo, J.I., T. Zorina, W.J. Storkus, C. Celluzzi, L.D. Falo, C.J. Melief, T. Ildstad, W.M. Kast, A.B. DeLeo, and M.T. Lotze. 1995. Nature Med. 1:1297-1302). However, T cell-defined epitopes have not been identified for most human cancers. To explore the utility of this approach in the treatment of tumors expressing as yet uncharacterized epitopes, syngeneic granulocyte/macrophage colony- stimulating factor-stimulated and BM-derived DC, pulsed with unfractionated acid-eluted tumor peptides (Storkus, W.J., H.J. Zeh III, R.D. Salter, and M.T. Lotze. 1993. J. Immunother. 14:94-103) were used to treat mice bearing spontaneous, established tumors. The adoptive transfer of 5 x 10(5) tumor peptide-pulsed DC dramatically suppressed the growth of weakly immunogenic tumors in day 4 to day 8 established MCA205 (H-2b) and TS/A (H-2d) tumor models, when applied in three biweekly intravenous injections. Using the immunogenic C3 (H-2b) tumor model in B6 mice, tumor peptide-pulsed DC therapy resulted in the erradication of established d14 tumors and long-term survival in 100% of treated animals. The DC-driven antitumor immune response was primarily cell mediated since the transfer of spleen cells, but not sera, from immunized mice efficiently protected sublethally irradiated naive mice against a subsequent tumor challenge. Furthermore, depletion of either CD4+ or CD8+ T cells from tumor-bearing mice before therapy totally suppressed the therapeutic efficacy of DC pulsed with tumor- derived peptides. Costimulation of the host cell-mediated antitumor immunity was critical since inoculation of the chimeric fusion protein CTLA4-Ig virtually abrogated the therapeutic effects of peptide-pulsed DC in vivo. The analysis of the cytokine pattern in the draining lymph nodes and spleens of tumor-bearing mice immunized with DC pulsed with tumor-eluted peptides revealed a marked upregulation of interleukin (IL) 4 and interferon (IFN) gamma production, as compared with mice immunized with DC alone or DC pulsed with irrelevant peptides. DC- induced antitumor effects were completely blocked by coadministration of neutralizing monoclonal antibody directed against T helper cell 1- associated cytokines (such as IL-12, tumor necrosis factor alpha, IFN- gamma), and eventually, but not initially, blocked by anti-mIL-4 mAb. Based on these results, we believe that DC pulsed with acid-eluted peptides derived from autologous tumors represents a novel approach to the treatment of established, weakly immunogenic tumors, and serves as a basis for designing clinical trials in cancer patients.  相似文献   

7.
Dendritic cells (DCs) are bone marrow–derived leukocytes that function as potent antigen presenting cells capable of initiating T cell–dependent responses from quiescent lymphocytes. DC pulsed with tumor-associated antigen (TAA) peptide or protein have recently been demonstrated to elicit antigen-specific protective antitumor immunity in a number of murine models. Transduction of DCs with TAA genes may allow stable, prolonged antigen expression as well as the potential for presentation of multiple, or unidentified, epitopes in association with major histocompatibility complex class I and/or class II molecules. To evaluate the potential efficacy of retrovirally transduced DCs, bone marrow cells harvested from BALB/c mice were transduced with either a model antigen gene encoding β-galactosidase (β-gal) or a control gene encoding rat HER-2/neu (Neu) by coculture with irradiated ecotropic retroviral producer lines. Bone marrow cells were differentiated into DC in vitro using granulocyte/macrophage colony-stimulating factor and interleukin-4. After 7 d in culture, cells were 45–78% double positive for DC phenotypic cell surface markers by FACS® analysis, and DC transduced with β-gal were 41–72% positive for β-gal expression by X-gal staining. In addition, coculture of β-gal transduced DC with a β-gal–specific T cell line (CTLx) resulted in the production of large amounts of interferon-γ, demonstrating that transduced DCs could process and present endogenously expressed β-gal. DC transduced with β-gal and control rat HER-2/neu were then used to treat 3-d lung metastases in mice bearing an experimental murine tumor CT26.CL25, expressing the model antigen, β-gal. Treatment with β-gal–transduced DC significantly reduced the number of pulmonary metastatic nodules compared with treatment with Hank''s balanced salt solution or DCs transduced with rat HER-2/neu. In addition, immunization with β-gal–transduced DCs resulted in the generation of antigen-specific cytotoxic T lymphocytes (CTLs), which were significantly more reactive against relevant tumor targets than CTLs generated from mice immunized with DCs pulsed with the Ld-restricted β-gal peptide. The results observed in this rapidly lethal tumor model suggest that DCs transduced with TAA may be a useful treatment modality in tumor immunotherapy.Dendritic cells (DCs)1 are highly specialized APCs that possess unique immunostimulatory properties and function as the principal activators of quiescent T cells, and thus cellular immune responses in vivo. (1). These bone marrow–derived leukocytes express a unique repertoire of cell-surface molecules including high levels of MHC class I and II, adhesion molecules, and costimulatory molecules, all of which assist in the activation of T cells. As motile cells with elaborate cytoplasmic processes and a unique veiled morphology, DCs are specialized for antigen capture and transport from the periphery to T cell–dependent areas of lymphoid organs.The key role of DCs in the initiation of immune responses has focused the attention of many investigators on the potential efficacy of these cells in tumor immunotherapy. Several groups have demonstrated that DCs pulsed with peptides from tumor associated antigens (TAA) can induce antigen-specific antitumor responses in vivo in a variety of murine tumor models (27). The successes of TAA-pulsed DCs in murine models has supported the use of autologous, peptide-pulsed DCs in recent clinical trials (8).In developing strategies to optimize the use of DCs in tumor immunotherapy, retroviral transduction of DCs with TAA genes may offer important advantages over peptide-pulsed DCs and other methods of immunization currently in use. The efficacy of peptide-pulsed DCs might be limited in vivo, because peptides pulsed onto DCs stay bound to the MHC molecules only transiently due to variation in peptide binding affinities, peptide–MHC complex dissociation, and MHC turnover (9). Additionally, the use of peptide-pulsed DCs is dependent on the knowledge of the HLA haplotype of the patient, as well as the restriction element of the peptide epitopes for any particular antigen.However, retroviral transduction of DCs with TAA genes may allow for constitutive expression of the full-length protein leading to prolonged antigen presentation in vivo, and presentation of multiple or unidentified antigen epitopes in the context of MHC class I, and possibly class II, molecules. Additionally, retrovirally transduced DCs are entirely autologous, thus abrogating the potential for development of neutralizing antibodies with repeated treatments, as can occur with recombinant viral immunization modalities. TAA-transduced DCs might also be given repeatedly and/or combined with other viral or peptide-based immunization strategies.As nonreplicating, terminally differentiated cells, mature DCs are poor candidates for retroviral gene modification. However, dividing bone marrow progenitor cells can be efficiently transduced with retroviral vectors (1012). Because DCs can successfully be generated in vitro from bone marrow cells in the presence of GM-CSF–containing cytokine combinations (1316), we used a method by which bone marrow cells were retrovirally transduced by coculture with irradiated producer lines and then differentiated in vitro to DCs. This method has previously been shown to be effective in human DC by retroviral transduction of CD34+ hematopoietic progenitor cells (HPCs) and differentiation of transduced cells in vitro to mature DC (17, 18).In this study, we demonstrate that murine DCs retrovirally transduced with the gene encoding β-galactosidase (β-gal) stably express, process, and present the gene in the context of MHC class I molecules, and that treatment with β-gal–transduced DCs is capable of mediating effective antitumor activity against established pulmonary metastases of a murine tumor expressing β-gal.  相似文献   

8.
Song W  Tong Y  Carpenter H  Kong HL  Crystal RG 《Gene therapy》2000,7(24):2080-2086
Dendritic cells (DC) are potent antigen-presenting cells that play a critical role in the initiation of cellular immune responses. Using a BALB/c syngeneic colon carcinoma cell line expressing a model tumor antigen beta-galactosidase (betagal), we previously reported (Song et al, J Exp Med 1997; 186: 1247-1256) that immunization of mice with a single injection of DCs genetically modified with an adenovirus vector expressing betagal confers potent protection against a lethal intravenous tumor challenge, as well as suppression of pre-established lung tumors, resulting in a significant survival advantage. In the present study, we have addressed the question: how long does the memory of tumor antigen- specific immunity persists after DC priming in vivo using this genetically modified DC-based cancer vaccination strategy? To accomplish this, two groups of mice were evaluated: (1) mice surviving >400 days following protection from an initial intravenous tumor challenge after immunization with DC genetically modified to express betagal; and (2) mice surviving >300 days that had previously demonstrated regression of pre-established lung tumors after treatment with DC immunization. By analyzing the antigen-specific cytotoxic T lymphocyte response and challenging these long-term survival mice with a second subcutaneous tumor administration, the data demonstrate that a single administration of DC genetically modified to express a model antigen induces long-lasting, antigen-specific antitumor immunity in both naive and tumor-bearing hosts, observations that have important implications in the development of genetically modified DC-based antitumor vaccination strategies. Gene Therapy (2000) 7, 2080-2086.  相似文献   

9.
TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.  相似文献   

10.
The immunogenicity of recombinant canarypox (ALVAC) viral vectors within murine whole-cell tumor vaccines was evaluated using the T cell thymic lymphoma STF10 and the B16 melanoma. Tumor cells were modified with the recombinant ALVAC vectors and injected into syngeneic mice. Control mice receiving cells alone all developed tumors, while mice injected with tumor variants bearing parental and recombinant vectors either completely rejected their tumors, or exhibited a significant delay in tumor formation. Rechallenge of mice receiving STF10-variant vaccines yielded a protective effect against parental tumor cells only when a modified regimen incorporating two vaccinations was utilized. Notably, the parental ALVAC virus was equivalent to all other recombinant ALVAC viruses in conferring antitumor immunity when using a prime-and-boost protocol. Tumorigenicity experiments in nude mice revealed that the effector mechanism mediating rejection of tumor cells bearing ALVAC vectors is multifactorial, in that the immunogenicity of STF10/ALVAC vaccines is reduced, but not completely abolished in these mice. Finally, in vitro experiments revealed that cytotoxic T cells specific for parental STF10 cells could be generated as a result of in vivo immunization with STF10/ALVAC vaccines.  相似文献   

11.
Cancer vaccines composed of tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) are currently being clinically evaluated. To enhance the immunogenicity of GM-CSF-secreting tumor cell vaccines, a novel approach expressing GM-CSF as a membrane-bound form (mbGM-CSF) on the tumor cell surface was investigated. The intent was to enhance antigen presentation by increasing interactions between the tumor cell lines in the vaccine and GM-CSF receptor positive antigen presenting cells (APC), notably the patient's Langerhans cells residing within the intradermal injection site. B16.F10 cells engineered to express either membrane-bound or secreted GM-CSF were compared in the B16.F10 mouse melanoma model. We observed that mbGM-CSF on the tumor cell surface retarded growth and induced protective immunity to subsequent wild-type tumor challenge more effectively than tumor cells secreting GM-CSF. Vaccination with irradiated mbGM-CSF B16.F10 also provided strong protection from wild-type tumor challenge, improved therapeutic effects against established tumors, and retarded lung metastases. These results demonstrate that mbGM-CSF B16.F10 cells can induce strong systemic immunity that protects against and therapeutically treats B16.F10 melanoma more effectively than analogous vaccines containing only secreted GM-CSF. These data warrant further development and clinical testing of mbGM-CSF tumor cell vaccines.  相似文献   

12.
The immunotherapy of cancer is predicated on the belief that it is possible to generate a clinically meaningful antitumor response that provides patient benefit, such as improvement in the time to progression or survival. Indeed, immunotherapeutics with dendritic cells (DC) as antigen-presenting delivery vehicles for cell-based vaccines have already improved patient outcome against a wide range of tumor types (1-9). This approach stimulates the patient's own antitumor immunity through the induction or enhancement of T-cell immunity. It is generally believed that the activity of cytotoxic T lymphocytes (CTL), the cells directly responsible for killing the tumor cells in vivo, are directed by DC. Therefore, the goal of many current designs for DC-based vaccines is to induce strong tumor-specific CTL responses in patients with cancer. In practice, most studies for DC-based cancer vaccine development have focused on the development of methods that can effectively deliver exogenous tumor antigens to DC for cross-priming of CD8+ T cells through the endogenous MHC class I processing and presentation pathway (10). To date, many methods have been developed or evaluated for the delivery of defined and undefined tumor antigens to DC. This review provides a brief summary on these methods, the techniques used in these methods, as well as the advantages and disadvantages of each method.  相似文献   

13.
Introduction: Dendritic cells (DCs) are the most important antigen-presenting cell population for activating antitumor T-cell responses; therefore, they offer a unique opportunity for specific targeting of tumors.

Areas covered: We will discuss the critical factors for the enhancement of DC vaccine efficacy: different DC subsets, types of in vitro DC manufacturing protocol, types of tumor antigen to be loaded and finally different adjuvants for activating them. We will cover potential combinatorial strategies with immunomodulatory therapies: depleting T-regulatory (Treg) cells, blocking VEGF and blocking inhibitory signals. Furthermore, recommendations to incorporate these criteria into DC-based tumor immunotherapy will be suggested.

Expert opinion: Monocyte-derived DCs are the most widely used DC subset in the clinic, whereas Langerhans cells and plasmacytoid DCs are two emerging DC subsets that are highly effective in eliciting cytotoxic T lymphocyte responses. Depending on the type of tumor antigens selected for loading DCs, it is important to optimize a protocol that will generate highly potent DCs. The future aim of DC-based immunotherapy is to combine it with one or more immunomodulatory therapies, for example, Treg cell depletion, VEGF blockage and T-cell checkpoint blockage, to elicit the most optimal antitumor immunity to induce long-term remission or even cure cancer patients.  相似文献   

14.
Dendritic cells (DCs) pulsed by tumor antigens have been widely used as tumor vaccines to specifically trigger the cytotoxicity of CD8+ T cells. But the tumor microenviroment with enriched immunosuppressants hampered DC maturation and co-stimulation. CD40/CD40L signaling, one of the most important co-stimulatory molecules is capable of effectively skewing the immune response by promoting DCs maturation and co-stimulation. To establish a novel specific immunotherapeutic approach for the use of DC vaccine in the treatment of B lymphoma, hu-SCID mice bearing B lymphoma were vaccinated by different combination of tumor antigen pulsed DC or imDC vaccines and immune-enhancing agencies such as agonist CD40 mAb and T cells. The results of immature DCs combined with agonistic CD40 mAb were encouraging with achievement of tumor regression and induction of antigen-specific immune responses. These findings demonstrated the potential utility of imDC-based tumor vaccination combining with agonistic CD40 mAb in the treatment of malignant lymphoma.  相似文献   

15.
The in vivo therapeutic efficacy of DC-based cancer vaccines is limited by suboptimal DC maturation protocols. Although delivery of TLR adjuvants systemically boosts DC-based cancer vaccine efficacy, it could also increase toxicity. Here, we have engineered a drug-inducible, composite activation receptor for DCs (referred to herein as DC-CAR) comprising the TLR adaptor MyD88, the CD40 cytoplasmic region, and 2 ligand-binding FKBP12 domains. Administration of a lipid-permeant dimerizing ligand (AP1903) induced oligomerization and activation of this fusion protein, which we termed iMyD88/CD40. AP1903 administration to vaccinated mice enabled prolonged and targeted activation of iMyD88/CD40-modified DCs. Compared with conventionally matured DCs, AP1903-activated iMyD88/CD40-DCs had increased activation of proinflammatory MAPKs. AP1903-activated iMyD88/CD40-transduced human or mouse DCs also produced higher levels of Th1 cytokines, showed improved migration in vivo, and enhanced both antigen-specific CD8+ T cell responses and innate NK cell responses. Furthermore, treatment with AP1903 in vaccinated mice led to robust antitumor immunity against preestablished E.G7-OVA lymphomas and aggressive B16.F10 tumors. Thus, the iMyD88/CD40 unified "switch" effectively and safely replaced exogenous adjuvant cocktails, allowing remote and sustained DC activation in vivo. DC "licensing" through iMyD88/CD40 may represent a mechanism by which to exploit the natural synergy between the TLR and CD40 signaling pathways in DCs using a single small molecule drug and could augment the efficacy of antitumor DC-based vaccines.  相似文献   

16.
Natural killer (NK) cells are thought to provide the first line of defence against tumors, particularly major histocompatibility complex (MHC) class I variants. We have confirmed in C57BL/6 (B6) mice lacking perforin that peritoneal growth of MHC class I RMA-S tumor cells in unprimed mice is controlled by perforin-dependent cytotoxicity mediated by CD3 NK1.1+ cells. Furthermore, we demonstrate that B6 mice lacking tumor necrosis factor (TNF) are also significantly defective in their rejection of RMA-S, despite the fact that RMA-S is insensitive to TNF in vitro and that spleen NK cells from B6 and TNF-deficient mice are equally lytic towards RMA-S. NK cell recruitment into the peritoneum was abrogated in TNF-deficient mice challenged with RMA-S or RM-1, a B6 MHC class I prostate carcinoma, compared with B6 or perforin-deficient mice. The reduced NK cell migration to the peritoneum of TNF-deficient mice correlated with the defective NK cell response to tumor in these mice. By contrast, a lack of TNF did not affect peptide-specific cytotoxic T lymphocyte–mediated rejection of tumor from the peritoneum of preimmunized mice. Overall, these data show that NK cells delivering perforin are the major effectors of class I tumor rejection in the peritoneum, and that TNF is specifically critical for their recruitment to the peritoneum.  相似文献   

17.
Genetic modification of tumor cells with the gene for the B7.1 or with the genes for cytokines results in increased tumor cell immunogenicity. In the work reported here, immunization of naive animals with either B7.1 or gamma-IFN gene-modified MCA106 tumor cells effectively protects the host from subsequent challenge with parental tumor. The same treatment fails to induce regression of established tumors, although tumor-specific CTL are generated in the tumor-bearing animals. In contrast, a large tumor burden of the MCA106 fibrosarcoma can be successfully eliminated by treatment with MCA106 tumor cells cotransduced with the B7.1 and gamma-IFN genes. Antitumor immunity induced by the cotransductants is primarily dependent on CD8+ T cells and partly on CD4+ T cells and NK cells, and the enhanced therapeutic effect may be attributed to the in vivo increase of CTL precursors following treatment. The gamma-IFN and B7.1 genes must be expressed on the same tumor cell for optimal therapeutic effect. Our results suggest that tumor vaccines with a potent immunoprotective effect do not necessarily have therapeutic potential and that weakly immunogenic tumors may be rendered highly immunogenic by cotransfection with the genes for B7.1 and gamma-IFN.  相似文献   

18.
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in the initiation of antitumor immune responses. In this study, we show that genetic modifications of a murine epidermis-derived DC line and primary bone marrow–derived DCs to express a model antigen β-galactosidase (βgal) can be achieved through the use of a replication-deficient, recombinant adenovirus vector, and that the modified DCs are capable of eliciting antigen-specific, MHC-restricted CTL responses. Importantly, using a murine metastatic lung tumor model with syngeneic colon carcinoma cells expressing βgal, we show that immunization of mice with the genetically modified DC line or bone marrow DCs confers potent protection against a lethal tumor challenge, as well as suppression of preestablished tumors, resulting in a significant survival advantage. We conclude that genetic modification of DCs to express antigens that are also expressed in tumors can lead to antigen-specific, antitumor killer cells, with a concomitant resistance to tumor challenge and a decrease in the size of existing tumors.  相似文献   

19.
We determined whether tumor cells consistently generating granulocyte/macrophage colony– stimulating factor (GM-CSF) can recruit and activate macrophages to generate angiostatin and, hence, inhibit the growth of distant metastasis. Two murine melanoma lines, B16-F10 (syngeneic to C57BL/6 mice) and K-1735 (syngeneic to C3H/HeN mice), were engineered to produce GM-CSF. High GM-CSF (>1 ng/106 cells)– and low GM-CSF (<10 pg/106 cells)–producing clones were identified. Parental, low, and high GM-CSF–producing cells were injected subcutaneously into syngeneic and into nude mice. Parental and low-producing cells produced rapidly growing tumors, whereas the high-producing cells produced slow-growing tumors. Macrophage density inversely correlated with tumorigenicity and directly correlated with steady state levels of macrophage metalloelastase (MME) mRNA. B16 and K-1735 subcutaneous (s.c.) tumors producing high levels of GM-CSF significantly suppressed lung metastasis of 3LL, UV-2237 fibrosarcoma, K-1735 M2, and B16-F10 cells, but parental or low-producing tumors did not. The level of angiostatin in the serum directly correlated with the production of GM-CSF by the s.c. tumors. Macrophages incubated with medium conditioned by GM-CSF– producing B16 or K-1735 cells had higher MME activity and generated fourfold more angiostatin than control counterparts. These data provide direct evidence that GM-CSF released from a primary tumor can upregulate angiostatin production and suppress growth of metastases.  相似文献   

20.
The use of chimeric antigen receptor (CAR)–modified T cells as a therapy for hematologic malignancies and solid tumors is becoming more widespread. However, the infusion of a T-cell product targeting a single tumor-associated antigen may lead to target antigen modulation under this selective pressure, with subsequent tumor immune escape. With the purpose of preventing this phenomenon, we have studied the impact of simultaneously targeting two distinct antigens present on tumor cells: namely mucin 1 and prostate stem cell antigen, both of which are expressed in a variety of solid tumors, including pancreatic and prostate cancer. When used individually, CAR T cells directed against either tumor antigen were able to kill target-expressing cancer cells, but tumor heterogeneity led to immune escape. As a combination therapy, we demonstrate superior antitumor effects using both CARs simultaneously, but this was nevertheless insufficient to achieve a complete response. To understand the mechanism of escape, we studied the kinetics of T-cell killing and found that the magnitude of tumor destruction depended not only on the presence of target antigens but also on the intensity of expression—a feature that could be altered by administering epigenetic modulators that upregulated target expression and enhanced CAR T-cell potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号