首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Identification of neural stem cells in the adult vertebrate brain   总被引:26,自引:0,他引:26  
Neurogenesis continues into adult life in restricted germinal layers. The identification of the neural stem cells that give rise to these new neurons has important clinical implications and provides fundamental information to understand the origins of the new neurons. Work in adult birds and rodents yielded a surprising result: the neural stem cells appear to have characteristics of glia. In adult birds, the primary neuronal precursors are radial glia. In adult mammals, the primary neuronal precursors have properties of astrocytes. Radial glial cells have previously been shown to transform into astrocytes; both cell types are classically considered part of a committed astroglial lineage. Instead, we propose that neural stem cells are contained within this astroglial lineage. These findings in adult vertebrate brain, together with recent work in the developing mammalian cerebral cortex, force us to reexamine traditional concepts about the origin of neurons and glia in the central nervous system. In particular, neural stem cells possess a surprisingly elaborate structure, suggesting that in addition to their progenitor role, they have important structural and metabolic support functions. The very same cells that give birth to new neurons also seem to nurture their maturation and support their function.  相似文献   

2.
Neuronal circuits in the adult brain have long been viewed as static and stable. However, research in the past 20 years has shown that specialized regions of the adult brain, which harbor adult neural stem cells, continue to produce new neurons in a wide range of species. Brain plasticity is also observed after injury. Depending on the extent and permissive environment of neurogenic regions, different organisms show great variability in their capacity to replace lost neurons by endogenous neurogenesis. In Zebrafish and Drosophila, the formation of new neurons from progenitor cells in the adult brain was only discovered recently. Here, we compare properties of adult neural stem cells, their niches and regenerative responses from mammals to flies. Current models of brain injury have revealed that specific injury-induced genetic programs and comparison of neuronal fitness are implicated in brain repair. We highlight the potential of these recently implemented models of brain regeneration to identify novel regulators of stem cell activation and regenerative neurogenesis.  相似文献   

3.
4.
5.
Adult neurogenesis and the ischemic forebrain.   总被引:16,自引:0,他引:16  
The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults.  相似文献   

6.
7.
8.
The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo . Taking advantage of the recombination characteristics of a nestin::CreER T2 allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER T2 -expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER T2 -expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER T2 -targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.  相似文献   

9.
10.
The statement, "neurodegenerative diseases are incurable because neurons do not regenerate during adulthood," has been challenged, and we have now found much evidence that the matured brain is capable of regenerating neurons. In our previous study, human neural stem cells (HNSCs) transplanted into aged rat brains differentiated into neural cells and significantly improved the cognitive functions of the animals, indicating that HNSCs may be a promising candidate for neuro-replacement therapy. However, because of ethical and practical issues associated with HNSCs, development of autologous stem cell strategies may be desired. We established new technologies to differentiate adult human mesenchymal stem cells into neural cells by modifying cell fate decisions. We also found a pyrimidine derivative that increases endogenous stem cell proliferation and neurogenesis after peripheral administrations of this compound. Although these results may promise a bright future for clinical applications of stem cell strategies in Alzheimer's disease (AD) therapy, we must acknowledge the complexity of AD. For example, abnormal metabolism of the amyloid-beta precursor protein (APP) may affect stem cell biology, while the prevalence of amyloid-beta peptide (Abeta) toxicity theory in AD pathology tends to limit our focus on the physiological functions of APP. We found that excess APP in the environment causes glial differentiation of stem cells. Even though the glial activation may be useful to eliminate Abeta deposits, neuronal differentiation of stem cells is needed for replacement of degenerating neurons in the AD brain. Thus, further investigation of the influence of AD pathology on stem cell biology is required.  相似文献   

11.
Synapse formation on adult-born hippocampal neurons   总被引:1,自引:0,他引:1  
It is now widely accepted that adult neurogenesis plays a fundamental role in hippocampal function. Neurons born in the adult dentate gyrus of the hippocampus undergo a series of events before they fully integrate in the network and eventually become undistinguishable from neurons born during embryogenesis. Adult hippocampal neurogenesis is strongly regulated by neuronal activity and neurotransmitters, and the synaptic integration of adult-born neurons occurs in discrete steps, some of which are very different from perinatal synaptogenesis. Here, we review the current knowledge on the development of the synaptic input and output of neurons born in the adult hippocampus, from the stem/progenitor cell to the fully mature neuron. We also provide insight on the regulation of adult neurogenesis by some neurotransmitters and discuss some specificities of the integration of new neurons in an adult environment. The understanding of the mechanisms regulating the synaptic integration of adult-born neurons is not only crucial for our understanding of brain plasticity, but also provides a framework for the manipulation and monitoring of endogenous adult neurogenesis as well as grafted cells, for potential therapeutic applications.  相似文献   

12.
P19 embryonic carcinoma (EC) cells are one of the simplest systems for analyzing the neuronal differentiation. To identify the membrane-associated molecules on the neuronal cells involved in the early neuronal differentiation in mice, we generated two monoclonal antibodies, SKY-1 and SKY-2, by immunizing rats with a membrane fraction of the neuronally committed P19 EC cells as an antigen. SKY-1 and SKY-2 recognized the carbohydrate moiety of a 90 kDa protein (RANDAM-1) and the polypeptide core of a 40 kDa protein (RANDAM-2), respectively. In the P19 EC cells, the expression of RANDAM-1 was colocalized to a part of Nestin-positive cells, whereas that of RANDAM-2 was observed in most Nestin-positive cells as well as beta-III-tubulin positive neurons. In the embryonic and adult brain of mice, RANDAM-1 was expressed at embryonic day 8.5 (E8.5), and the localization of antigen was restricted on the neuroepithelium and choroid plexus. The RANDAM-2 expression commenced at E6.0, and the antigen was distributed not only on the neuroepithelium of embryonic brain but on the neurons of adult brain. Collectively, it was concluded that RANDAM-1 is a stage specific antigen to express on the neural stem cells, and RANDAM-2 is constitutively expressed on both the neural stem cells and differentiated neuronal cells in mouse central nervous system (CNS).  相似文献   

13.
神经干细胞及其在脑修复中的可能应用   总被引:13,自引:0,他引:13  
成年哺乳动物脑内存在有能分化成神经元或神经胶质的神经干细胞,这种神经前体细胞一般位于脑室壁部位。从胎脑分离下来的神经前体细胞能在体外分裂并进一步分化成神经元和胶质细胞,许多包括生长因子在内的活性物质或分子结构参与这一分化过程并决定这些细胞的转归;从成年脑中也能分离出有繁殖能力的细胞,当这些存在于中枢神经系统内的干细胞(即多潜能细胞)和具有明确前景的前体细胞(神经母细胞和胶质母细胞)遇到与胚胎时期相同因子的影响时也会分裂、分化。由于在体外培养状况下难以提供神经前体细胞分化繁殖的所有条件,故将其植入发育中或成年中枢神经系统特定部位的做法是研究神经干细胞特性,特别是研究决定其分化微环境的有效办法。对神经干细胞的研究,为进一步探讨神经元的发生、迁移、分化和诊治多种神经疾患提供了新的机遇。  相似文献   

14.
15.
The addition of new neurons to existing neural circuits in the adult brain remains of great interest to neurobiology because of its therapeutic implications. The premier model for studying this process has been the hippocampal dentate gyrus in mice, where new neurons are added to mature circuits during adulthood. Notably, external factors such as an enriched environment (EE) and exercise markedly increase hippocampal neurogenesis. Here, we demonstrate that EE acts by increasing fibroblast growth factor receptor (FGFR) function autonomously within neurogenic cells to expand their numbers in adult male and female mice. FGFRs activated by EE signal through their mediators, FGFR substrate (FRS), to induce stem cell proliferation, and through FRS and phospholipase Cγ to increase the number of adult-born neurons, providing a mechanism for how EE promotes adult neurogenesis.SIGNIFICANCE STATEMENT How the environment we live in affects cognition remains poorly understood. In the current study, we explore the mechanism underlying the effects of an enriched environment on the production of new neurons in the adult hippocampal dentate gyrus, a brain area integral in forming new memories. A mechanism is provided for how neural precursor cells in the adult mammalian dentate gyrus respond to an enriched environment to increase their neurogenic output. Namely, an enriched environment acts on stem and progenitor cells by activating fibroblast growth factor receptor signaling through phospholipase Cγ and FGF receptor substrate proteins to expand the pool of precursor cells.  相似文献   

16.
Previous immunohistochemical analysis revealed a wide distribution of L1cam-positive neural and nonneural structures in adult mouse brain. Although there were numerous punctate immunoreactive nerve terminals, only a few immunoreactive neuronal cell somata were present (Munakata et al. [2003] BMC Neurosci. 4:7). To explore the distribution of L1cam mRNA-containing cells, which are interpreted to be L1cam-producing cells, we performed in situ hybridization histochemistry with an antisense L1cam cRNA probe. L1cam mRNA was distributed widely from the olfactory bulb to the upper cervical cord with an uneven localization pattern in adult brain. All positive cell somata with silver grains after emulsion autoradiography were neuronal, and no grains were detected on nonneural cells in the present study. A high density of signals for neuronal L1cam mRNA was found in the thalamus, mammillary body, and hippocampus. In addition, strong hybridization signals were localized in various nuclei: main and accessory olfactory bulb, compact part of the substantia nigra, pontine gray matter, tegmental reticular nucleus, Edinger-Westphal nucleus, trigeminal motor nucleus, locus coeruleus, mesencephalic trigeminal nucleus, raphe nuclei, facial nucleus, ambiguus nucleus, dorsal motor vagal nucleus, and inferior olivary nucleus. Some long projection neurons such as the pyramidal, mitral, principal neurons of several cranial nuclei, and presumably monoaminergic cells containing noradrenalin, dopamine, and serotonin, expressed high levels of L1cam.  相似文献   

17.
The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury.  相似文献   

18.
The implementation of cell replacement therapies for Huntington's disease using multipotent neural stem cells (NSCs) requires the specific differentiation into gamma-aminobutyric acid (GABA) neuronal subtype before transplantation. Here we present an efficient culture procedure that induces stable GABAergic neurons from the immortalized striatal neural stem cell line ST14A. This process requires sequential retinoic acid treatment and KCl depolarization. Initial addition of 10 microM retinoic acid increased cell survival and promoted neuronal differentiation. Subsequent stimulation with 40 mM KCl induced specific differentiation into GABAergic neurons, yielding 74% of total cultured cells. KCl-evoked Ca(2+) influx reduced cell proliferation and nestin expression, and induced neurite outgrowth and GABAergic markers as well as GABA contents, release, and uptake. Characterization of the integration, survival, and phenotype of these predifferentiated GABAergic neurons following transplantation into the adult brain in a model of Huntington's disease revealed long-term survival in quinolinate-lesioned striata. Under these conditions, cells maintained their GABAergic phenotype and elaborated neurite processes with synaptic contacts with endogenous neurons. In conclusion, we have generated a homogeneous population of functional GABAergic neurons from a neural stem cell line, which survive and maintain their acquired fate in vivo. These data may lend support to the possibility of cell replacement therapies for Huntington's disease using neural stem cells.  相似文献   

19.
Since the studies of Ramon y Cajal, a central postulate in neuroscience has been the view that the adult brain lacks the ability to regenerate its neurons. This dogma has been challenged in the last few decades, and mounting evidence has accumulated showing the existence of a phenomenon designated 'adult neurogenesis'. De novo generation of neurons by neural progenitor cells in the adult brain is thought to be preserved only in restricted brain areas, such as the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. Data in the last decade coming mostly from rodent models have clearly documented that precursor cells residing in the anterior portion of SVZ and the subgranular zone of DG are responsible for adding new neurons in the olfactory bulb and DG, respectively. This raised significant interest in the clinical potential of neural progenitor cells, and recent studies have documented that brain injury is capable of activating an endogenous program of neurogenesis resulting in neuronal replacement in various cerebral regions of rodents and primates. If the newly generated neurons in the adult brain prove to be functional, it could have a tremendous impact for cell replacement therapies. Here, we summarize current knowledge of the mechanisms affecting adult hippocampal neurogenesis in both rodents and primates, and discuss its implications in developing novel strategies for the treatment of human neurological diseases.  相似文献   

20.
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian hippocampus. The distinct developmental steps in the course of adult neurogenesis, including NSC activation, expansion, and neuronal integration, are increasingly well characterized down to the molecular level. However, substantial gaps remain in our knowledge about regulators and mechanisms involved in this biological process. This review highlights three long-standing unknowns. First, we discuss potency and identity of NSCs and the quest for a unifying model of short- and long-term self-renewal dynamics. Next, we examine cell death, specifically focusing on the early demise of newborn cells. Then, we outline the current knowledge on cell integration dynamics, discussing which (if any) neurons are replaced by newly added neurons in the hippocampal circuits. For each of these unknowns, we summarize the trajectory of studies leading to the current state of knowledge. Finally, we offer suggestions on how to fill the remaining gaps by taking advantage of novel technology to reveal currently hidden secrets in the course of adult hippocampal neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号