首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ARHI is a maternally imprinted tumor suppressor gene that maps to a site on chromosome 1p31 where loss of heterozygosity has been observed in 40% of human breast and ovarian cancers. ARHI is expressed in normal ovarian and breast epithelial cells, but ARHI expression is lost in a majority of ovarian and breast cancers. Expression of ARHI from the paternal allele can be down-regulated by multiple mechanisms in addition to loss of heterozygosity. This article explores the role of DNA methylation in silencing ARHI expression. There are three CpG islands in the ARHI gene. CpG islands I and II are located in the promoter region, whereas CpG island III is located in the coding region. Consistent with imprinting, we have found that all three CpG islands were partially methylated in normal human breast epithelial cells. Additional confirmation of imprinting has been obtained by studying DNA methylation and ARHI expression in murine A9 cells that carry either the maternal or the paternal copy of human chromosome 1. All three CpG islands were methylated, and ARHI was not expressed in A9 cells that contained the maternal allele. Conversely, CpG islands were not methylated and ARHI was expressed in A9 cells that contained the paternal allele of human chromosome 1. Aberrant methylation was found in several breast cancer cell lines that exhibited decreased ARHI expression. Hypermethylation was detected in 67% (6 of 9) of breast cancer cell lines at CpG island I, 33% (3 of 9) at CpG island II, and 56% (5 of 9) at CpG island III. Hypomethylation was observed in 44% (4 of 9) of breast cancer cell lines at CpG island II. When methylation of CpG islands was studied in 20 surgical specimens, hypermethylation was not observed in CpG island I, but 3 of 20 cases exhibited hypermethylation in CpG island II (15%), and 4 of 20 cases had hypermethylation in CpG island III (20%). Treatment with 5-aza-2'-deoxycytidine, a methyltransferase inhibitor, could reverse aberrant hypermethylation of CpG island I, II and III and partially restore ARHI expression in some, but not all of the cell lines. Treatment with 5-aza-2'-deoxycytidine partially reactivated ARHI expression in cell lines with hypermethylation of CpG islands I and II but not in cell lines with partial methylation or hypomethylation of these CpG islands. To test the impact of CpG island methylation on ARHI promoter activity more directly, constructs were prepared with the ARHI promoter linked to a luciferase reporter and transfected into SKBr3 and human embryo kidney 293 cells. Methylation of the entire construct destroyed promoter activity. Selective methylation of CpG island II alone or in combination with CpG island I also abolished ARHI promoter activity. Methylation of CpG I alone partially inhibited promoter activity of ARHI. Thus, hypermethylation of CpG island II in the promoter region of ARHI is associated with the complete loss of ARHI expression in breast cancer cells. Other epigenetic modifications such as hypermethylation in CpG island III may also contribute to the loss of ARHI expression.  相似文献   

2.
Absence or low expression of DLC-1, a tumor suppressor gene, in breast cancers has been shown recently. LOH of 8p12-p22, on which DLC-1 is located, is frequent in breast cancers, but the correlation between low expression of DLC-1 and LOH has not been confirmed. To determine the implication of aberrant methylation, one of the most frequent mechanisms of silencing the tumor suppressor or cancer-related genes, we examined the methylation status of DLC-1 promoter region in breast cancer cell lines and primary breast tumors. The hypermethylation status was examined by MSP and 25% of cell lines harbored a methylated allele. The gene silencing by methylation was also confirmed by the re-expression of DLC-1 by the 5-aza-2'-deoxycytidine treatment in DLC-1 hypermethylated cell line. But the methylation of DLC-1 gene was less frequently shown in primary breast cancers (10%). These data suggest that hypermethylation is responsible for silencing of DLC-1 gene in a limited portion of breast cancers.  相似文献   

3.
A variety of tumor suppressor genes are down-regulated by hypermethylation during carcinogenesis. Using methylated CpG amplification-representation difference analysis, we identified a DNA fragment corresponding to the Tazarotene-induced gene 1 (TIG1) promoter-associated CpG island as one of the genes hypermethylated in the leukemia cell line K562. Because TIG1 has been proposed to act as a tumor suppressor, we tested the hypothesis that cytosine methylation of the TIG1 promoter suppresses its expression and causes a loss of responsiveness to retinoic acid in some neoplastic cells. We examined TIG1 methylation and expression status in 53 human cancer cell lines and 74 primary tumors, including leukemia and head and neck, breast, colon, skin, brain, lung, and prostate cancer. Loss of TIG1 expression was strongly associated with TIG1 promoter hypermethylation (P < 0.001). There was no correlation between TIG1 promoter methylation and that of retinoid acid receptor beta2 (RARbeta2), another retinoic-induced putative tumor suppressor gene (P = 0.78). Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine for 5 days restored TIG1 expression in all eight silenced cell lines tested. TIG1 expression was also inducible by treatment with 1 micro M all-trans-retinoic acid for 3 days except in densely methylated cell lines. Treatment of the K562 leukemia cells with demethylating agent combined with all-trans-retinoic acid induced apoptosis. These findings indicate that silencing of TIG1 promoter by hypermethylation is common in human cancers and may contribute to the loss of retinoic acid responsiveness in some neoplastic cells.  相似文献   

4.
5.
6.
7.
Ovarian carcinoma (OC) is a leading cause of death among women throughout the world. A number of cancer-associated genes have been shown to be inactivated by hypermethylation of CpG islands during tumorigenesis. We tested the hypothesis that methylation status of MGMT, CDH1, RAR-beta and SYK could be important in the ovarian tumorigenic process and can lead to the gene(s) inactivation. Therefore, we assessed the promoter hypermethylation of MGMT, CDH1, RAR-beta and SYK in 43 ovarian granulosa cell tumours (GCTs) (adult type) using methylation-specific PCR. These tumours are relatively rare, accounting for approximately 3% of all ovarian cancers. Hypermethylation of MGMT (in 14 tumours), CDH1 (in nine tumours), RAR-beta (in eight tumours) and SYK (in seven tumours) have been found. Selective loss of RAR-beta and RAR-beta2 mRNA has been found in seven patients, while that of MGMT and SYK in three patients who also show aberrant methylation in promoter region of RAR-beta in addition to MGMT, SYK and CDH1 genes. Promoter CpG hypermethylation may be an alternative to mutation(s) to inactivate tumour suppressor genes such as MGMT, CDH1, RAR-beta and SYK, and this can also be an early event in the pathogenesis of OCs. Moreover, hypermethylation of the MGMT and CDH1, MGMT and RAR-beta and CDH1 and RAR-beta promoters occurred concordantly (P< 0.001, 0.0421 and 0.0005 respectively; Fischer's exact test). In addition to this, monosomy 22 and trisomy 14 have also been found in 10 tumours. It is clear from the results that hypermethylation of the promoter region of these tumour suppressor genes, monosomy 22 and trisomy 14, may be critical steps in the tumorigenesis, which consequently play a permissive role for tumour aggressiveness. All these events might play an important role in the early clinical diagnosis of the disease. Our results, therefore, suggest a potential role for epigenetic modification of these critical tumour suppressor genes in pathways relevant to the transformation and differentiation of rare type of ovarian cancer (GCTs).  相似文献   

8.
Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma   总被引:7,自引:0,他引:7  
Deletion of 11q23 is a common genetic aberration in nasopharyngeal carcinoma (NPC). Multiple candidate tumor suppressor genes (TSG) were mapped to this region but few of them were investigated in NPC. TSLC1 (tumor suppressor in lung cancer) is recently reported to be a putative TSG on 11q23. This gene was found to be inactivated by promoter hypermethylation in non-small cell lung carcinoma (NSCLC), liver cancer, and breast cancer. To study the role of TSLC1 gene in NPC tumorigenesis, we screened for mutations and aberrant methylation of TSLC1 gene in 5 NPC cell lines, 3 NPC xenografts, and 38 primary NPC cases. No somatic mutations of TSLC1 were detected in the NPC samples, but a 9-bp (CCACCACCA) deletion in exon 8 was found in a primary NPC and its corresponding blood sample. Bisulfite sequencing revealed aberrant methylation of TSLC1 promoter in four NPC cell lines. Loss of TSLC1 gene expression was found in two cell lines (HK-1 and CNE-2) with dense methylation. Expression of this gene was restored in these cell lines after treatment with demethylating agent 5-aza-2'-deoxycytidine. Our results showed that silencing of TSLC1 gene expression in NPC was associated with promoter hypermethylation. Promoter hypermethylation of TSLC1 gene was further illustrated in 34.2% (13/38) of primary NPCs. No aberrant promoter methylation was found in any of the four investigated normal nasopharyngeal epithelia. Frequent epigenetic inactivation of TSLC1 gene in NPC suggested that this gene is one of the target tumor suppressor genes of this endemic cancer.  相似文献   

9.
Allele loss and loss of expression of fragile histidine triad (FHIT), a putative tumor suppressor gene located in chromosome region 3p14.2, are frequent in several types of cancers. Tumor-acquired methylation of promoter region CpG islands is one method for silencing tumor suppressor genes. We investigated 5' CpG island methylation of the FHIT gene in 107 primary non-small cell lung cancer (NSCLC) samples and corresponding nonmalignant lung tissues, 39 primary breast carcinomas, as well as in 49 lung and 22 breast cancer cell lines by a methylation-specific PCR assay. In addition, we analyzed brushes from the bronchial epithelium of 35 heavy smokers without cancer. FHIT methylation was detected in 37% of primary NSCLCs, 31% of primary breast cancers, and 65% of lung and 86% of breast cancer cell lines. The frequency of methylation in small cell and NSCLC cell lines were identical. Methylation was found in 9% of the corresponding nonmalignant lung tissues and in 17% of bronchial brushes from heavy cigarette smokers. FHIT methylation was significantly correlated with loss of FHIT mRNA expression by Northern blot analysis in lung cancer cell lines and with loss of Fhit expression in NSCLC and breast tumors by immunostaining. We conclude that methylation of FHIT is a frequent event in NSCLC and breast cancers and is an important mechanism for loss of expression of this gene. Methylation of FHIT commences during lung cancer pathogenesis and may represent a marker for risk assessment.  相似文献   

10.
Zhang Z  Huettner PC  Nguyen L  Bidder M  Funk MC  Li J  Rader JS 《Oncogene》2006,25(39):5436-5445
  相似文献   

11.
Cystatin M is a secreted inhibitor of lysosomal cysteine proteases. Several lines of evidence indicate that cystatin M is a tumor suppressor important in breast malignancy; however, the mechanism(s) that leads to inactivation of cystatin M during cancer progression is unknown. Inspection of the human cystatin M locus uncovered a large and dense CpG island within the 5' region of this gene (termed CST6). Analysis of cultured human breast tumor lines indicated that cystatin M expression is either undetectable or in low abundance in several lines; however, enhanced gene expression was measured in cells cultured on the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC). Increased cystatin M expression does not correlate with a cytotoxic response to 5-aza-dC; rather, various molecular approaches indicated that the CST6 gene was aberrantly methylated in these tumor lines as well as in primary breast tumors. Moreover, 60% (12 of 20) of primary tumors analyzed displayed CST6 hypermethylation, indicating that this aberrant characteristic is common in breast malignancies. Finally, preinvasive and invasive breast tumor cells were microdissected from nine archival breast cancer specimens. Of the five tumors displaying CST6 gene methylation, four tumors displayed methylation in both ductal carcinoma in situ and invasive breast carcinoma lesions and reduced expression of cystatin M in these tumors was confirmed by immunohistochemistry. In summary, this study establishes that the tumor suppressor cystatin M is a novel target for epigenetic silencing during mammary tumorigenesis and that this aberrant event can occur before development of invasive breast cancer.  相似文献   

12.
目的:探讨miR-335基因启动子区异常甲基化状态对胃癌细胞系中miR-335表达水平的影响,以及miR-335基因启动子区甲基化状态对胃癌细胞侵袭,迁移,以及增殖能力的影响。方法:1株永生化胃黏膜上皮细胞系(GES-1)和4株胃癌细胞系(SGC-7901,MKN-45,BGC-823和AGS)。实时荧光定量PCR(qRT-PCR)检测胃癌细胞株miR-335及CRKL的表达水平。甲基化特异性PCR(MSP)方法检测胃癌细胞株miR-335的基因启动子区甲基化状态。应用MTT方法检测恢复miR-335表达对胃癌细胞增殖能力的影响,Transwell侵袭迁移实验及划痕愈合实验分析恢复miR-335表达对胃癌细胞系侵袭及迁移能力的影响。结果:MSP实验结果表明,MKN-45、SGC-7901和BGC-823细胞系均存在基因启动子区异常的高甲基化状态,AGS细胞系基因启动子区亦呈部分高甲基化状态。去甲基药物5-aza-2′-deoxycytidine处理后胃癌细胞miR-335的表达水平可升高2~3倍。Transwell侵袭迁移实验及划痕愈合实验表明miR-335表达水平恢复后SGC-7901细胞的侵袭和迁移能力明显降低。MTT实验结果表明5-aza-2′-deoxycytidine处理后的SGC-7901细胞系与对照组相比,增殖能力显著降低。结论:miR-335启动子区的异常高甲基化状态抑制了miR-335在胃癌细胞系中的表达,恢复miR-335的表达水平可以抑制胃癌细胞的增殖,迁移和侵袭能力。miR-335为胃癌的肿瘤抑制因子。  相似文献   

13.
14.
Epigenetic inactivation of the RUNX3 gene in lung cancer   总被引:10,自引:0,他引:10  
  相似文献   

15.
Kang SH  Bang YJ  Im YH  Yang HK  Lee DA  Lee HY  Lee HS  Kim NK  Kim SJ 《Oncogene》1999,18(51):7280-7286
The transforming growth factor-beta (TGF-beta) signaling pathway subserves an essential tumor suppressor function in various cell types. A heteromeric complex composed of TGF-beta type I (RI) and type II (RII) receptors is required for TGF-beta signaling. We have identified a subset of human gastric cancer cell lines which are insensitive to TGF-beta and which express a low level of TGF-beta type I receptor mRNA relative to a gastric cancer cell line which is highly responsive to TGF-beta. Using these cells, we show that hypermethylation of a CpG island in the 5' region of the TGF-beta RI gene provides another potentially important mechanism of escape from negative growth control by TGF-beta. This hypermethylation was found in four of five human gastric cancer cell lines and five out of 40 (12.5%) primary tumors examined. In human gastric cancer cell lines, treatment with the demethylating agent, 5-aza-2'-deoxycytidine, resulted in increased expression of the TGF-beta RI gene, but not the RII gene. Transient transfection of an RI expression vector into the TGF-beta resistant SNU-601 cell line restores TGF-beta responsiveness. These findings suggest that one of the mechanisms of escape from autocrine or paracrine growth control by TGF-beta during carcinogenesis could involve aberrant methylation of CpG islands in the 5' region of the TGF-beta RI gene.  相似文献   

16.
17.
18.
19.
20.
Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号